Effect of Nanographite on Electrical, Mechanical and Wear Characteristics of Graphite Epoxy Composites

Sanjeev K. Joshi#,*, Ashavani Kumar#, and M.G.H. Zaidi@

#DRDO HQr, DRDO Bhawan, Delhi-110 011, India
@Department of Physics, National Institute of Technology, Kurukshetra - 136 119, India
*Department of Chemistry, G.B. Pant University of Agriculture & Technology, Pant Nagar - 263 145, India

E-mail: skjoshi10@rediffmail.com

ABSTRACT

Effect of weight fraction (WF, mg/dL) of nanographite (NG, 400 nm) on electrical, mechanical and wear characteristics of graphite epoxy composites (GECs) were investigated. For this purpose, a series of GECs was prepared through dispersion of various WF of NG into epoxy resin, followed by curing with polyamine. Dispersion of NG into epoxy matrix and onward formation of GECs and was revealed through Ultraviolet, Fourier transformed Infrared spectra and atomic force micrographs. Photoelastic analysis in combination with atomic force microscopy reveals the presence of uniformly dispersed domain of NG into stress free matrix of GECs with fringe order ranging 0.23 to 0.61 under compression of 8 to 20 kgf. GECs have rendered a rising trend in DC conductance ranging 98.32 nS/cm to 0.54 μS/cm with electrical percolation threshold at 175 WF of NG. GECs have shown enhanced compressive, impact, tensile, strength, Rockwell hardness and wear resistance at 200WF of NG. In general, GECs has shown a marginal modification in their compressive strength by 5.30 % over cured epoxy (CE). However, impact (%) and tensile strengths (%) of GECs were largely improved to 31.78 and 43.98 over CE.

Keywords: Nanographite; Weight fraction; Spectra; Microstructure; Stress analysis; DC Conductance; Mechanical properties; Wear behaviour

1. INTRODUCTION

Epoxies are thermosetting networks derived through curing of oxirane functional monomers with organic acids, anhydrides or polyamines. Epoxies have received wide scope of applications over decades with key example as electrical insulators, adhesives, coatings and structural materials. However, inherent brittleness, high internal stress, limited toughness, impact strength and losses in their mechanical stability under external stress and chemical environments has raised need of their modification through reinforcing carbonaceous, inorganic, polymeric and waste materials as fillers.

Carbon presents the family of allotropes in diverse shapes, aspect ratios, physical properties and reactivity. Graphite is the parent allotrope of carbon with layered graphene sheets held through van der Waals forces. High natural abundance, low cost, moderate electrical conductance and tunable surface area has raised the preference to graphite as filler for epoxy modification. However, improper compatibility of graphite and dispersion into epoxy matrix leads to their agglomeration into epoxy matrix that limits the electrical conductance, impact strength, fatigue, tensile strength, wear resistance and chemical stability of resulting graphite epoxy composites (GECs). For such reasons, GECs finds their limited scope of application as conducting electrodes for fuel cells and in development of chemical and biosensors.

Recently, nanographite [NG] existing as graphite nanoplatelets has received growing attention as one dimensional nanofillers for epoxy modification. NG is the novel class of carbonaceous material with high surface area at small lateral size. NG, due to their wide range of aspect ratios and ease of availability at a low cost are preferred over other carbonaceous nanofillers for development of polymer nanocomposites. NG differs from natural graphite in terms of ease of processability, high binding affinity with epoxy resin (ER) and liquid curing agents like polyamines (PA). High surface area, prominent electrical conductance and ease of dispersion of NG into ER deliver polymer nanocomposites with improved mechanical properties and wear behaviour. Such promising physical characteristics of NG makes them a promising filler for development of GECs with improved DC conductance, mechanical properties and wear resistance. However, low weight fraction (WF, mg/dL) of NG are recommended for achieving enhanced dispersion and DC conductance of GECs, whereas high WF of NG results GECs with improved mechanical properties and wear resistance. While much progress has been made on development GECs, from naturally abundant graphite and its NG analogue up to 5WF, additional explorations...
related to optimum WF of NG that could result GECs with improved mechanical properties, wear resistance, electrical conductance and reduced internal stress are yet to be made. The objective of present communication is to report the effect of WF of NG ranging 0 to 300 on their dispersion into CE and onwards modification in mechanical properties, wear resistance, internal stress and DC conductance of GECs.

2. EXPERIMENTAL

2.1 Materials

Epoxy resin (LY 556, density 1.16 g/cc) and polyamine hardener (PA, HY 951) were procured from Huntsman India Limited, NG with average particle size 400 nm, purity >99.5% was procured from SRL Chemicals India. Other chemicals and solvents with purity >99.5% were locally arranged and used without purifications.

2.2 Preparation of GECs

All preparations were conducted in a temperature controlled autoclave (+1°C) with 316-stainless steel make reaction chamber of 125 mL capacity. GECs were prepared through slight modifications of method reported earlier. In brief, a suspension of epoxy resin (ER, Epoxy equivalent 196 g/ equivalent) supplemented with requisite WF of NG was subjected to ultrasonication over 10 min at 500W followed by thermal activation at 90 ±1°C over 1h and curing with PA (15%, v/v) at 40 ±1°C. In order to have the GECs free from air pockets, prior to curing, thermally activated suspensions were kept under evacuation at 400 mm Hg/40±1°C over 20 min. Cured GECs were kept over a week under evacuation at 400 mm Hg/40±1°C over 20 min. Ultrasonication over 10 min at 500W followed by silver paint and checked for good electrical conductivity. A coupled with 6221 current source and an indigenous sample holder with PID controlled oven. Two parallel surfaces of the disc were polished with sand paper followed by silver paint and checked for good electrical conductance.

Mechanical characterisations were made according to ASTM D recommendations (Table 1). Tensile strength was recorded at cross head speed of 1.0 mm/min over computer controlled Tesnometer. Compressive strength was recorded @ 5.0 mm/min on Tenuous Olsen universal testing machine with capacity of 35 KN. Izod Impact strength was recorded using notched specimens fabricated at 0.001 mm accuracy of screw gauge and venire caliper. Rockwell hardness was recorded with ball indenter (½”, 12.70 mm) at minor load of 10 kgs.

Wear behaviour was investigated on Plint wear and friction machine equipped with dead weight tester, transducer (calibrated at 0.892 mv/v) and a chart recorder. The machine was coupled with lathe for carrying a disc shaped specimen on a mandrel. This was connected with two pins pressed into contact at opposite surfaces of the disc by means of hydraulic cylinders. Hydraulic end load was applied by means of a precision weight pressure tester, loaded with arbitrary dead weights. A conical hole, with included angle of 60° and of 5 mm diameter was drilled at the end face of the pins. Elapsed time and the cumulative number of revolutions were recorded from digital counter equipped with the panel. Wear rate was estimated through differential weighing of the mass of pin at accuracy of 1 mg, at the intervals of 60 s.

Photoelastic analysis was conducted over standard circular polariscope irradiated in monochromatic light. Stress analysis data was recorded under diametric compression of circular disc shaped specimens of 75 mm diameter and 5 mm thickness at 4 to 20 kgf.

3. RESULTS AND DISCUSSION

3.1 Spectra

Figure 1 presents the absorption maxima of individual reactants and their shift on event of the formation of products. ER and PA have shown their individual absorption maxima at 282 and 294 nm. Curing of ER with PA results CE with absorption maxima at 288 nm. Shift in absorption maxima from 282 to 288 attributes to formation of –OH and –NH- as auxochromic pairs on event of curing of ER with PA. NG and a representative GECs synthesised at 300 WF of NG renders common absorption maxima at 246 nm that attributes to presence of graphitic domains into the matrix of GECs. An additional absorption maxima corresponding to GECs was appeared at 291 nm. Graphitic materials are associated with inherent oxygen bearing groups that makes them reactive with molecules of different functionalities. In the present

<table>
<thead>
<tr>
<th>WF (mg/dL) of NG</th>
<th>ASTM D</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC conductivity X10³ (μS/cm)</td>
<td>45.70</td>
<td>46.20</td>
<td>46.80</td>
<td>47.30</td>
<td></td>
</tr>
<tr>
<td>Tensile strength (MPa)</td>
<td>31.00</td>
<td>31.50</td>
<td>32.00</td>
<td>32.50</td>
<td></td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>18.87</td>
<td>19.14</td>
<td>19.41</td>
<td>19.68</td>
<td></td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>695</td>
<td>130.70</td>
<td>131.36</td>
<td>136.92</td>
<td>137.64</td>
</tr>
<tr>
<td>Impact strength (KJ/m³)</td>
<td>256</td>
<td>17.15</td>
<td>18.32</td>
<td>21.84</td>
<td>22.60</td>
</tr>
<tr>
<td>Hardness (R-Scale)</td>
<td>785</td>
<td>74.90</td>
<td>84.40</td>
<td>91.67</td>
<td>93.60</td>
</tr>
<tr>
<td>Wear loss (Wc) at 2.0 bar</td>
<td>3.70</td>
<td>3.59</td>
<td>3.55</td>
<td>3.39</td>
<td></td>
</tr>
<tr>
<td>Wc at 4.0 bar</td>
<td>3.99</td>
<td>3.72</td>
<td>3.67</td>
<td>3.58</td>
<td></td>
</tr>
</tbody>
</table>
investigation, appearance of optical maxima at 291 nm attributes to the formation of GECs through reaction of oxygen bearing groups of NG with oxirane functionalities during the process of curing of ER with PA.

Further insight into presence of oxygen bearing functionalities over NG, formation of CE and respective GECs was made through wave numbers (cm^-1) appeared in FTIR spectra (Fig. 2). CE has shown characteristic wave numbers at 3670.25 (ν O-H), 1756.23 (ν C=O), 1673.27(δN-H), 1457.09 (δC-H), and 749.88 (oxirane ring) (2a)^42. Residual oxygen bearing functionalities introduced during the manufacturing of NG were appeared at 2924 (ν O-H), 2846 (ν C-H), 1632 (ν C=O) and 1110 (δ O-H). Additionally, NG shows the characteristic functionalities of graphene derived C=C at 1345 to 1710. GECs synthesised at 300 WF of NG (2c) have shown a large resemblance with NG in the wave number range of 4000 to 2270 (2b) with simultaneous reduction in transmittance over CE (2a). Characteristic wave numbers associated with CE (2a) falling in the range of 2270 to 1400 (ν C=O, δ N-H, δ C-H) and 1345 to 1710 (graphene derived C=C) were reappeared in GECs (2c). Moreover, the transmittance at wave numbers associated with graphene derived C=C falling in the range of 1345 to 1710 (2b) found intensified in GECs (2c). Such increase of transmittance in the range of graphene derived C=C attributes to enhanced enrichment of NG into GECs. Results based on spectral analysis reveals that residual oxygen bearing functionalities over NG plays constructive roles in their integration with macromolecular segments of CE produced during the process of curing with PA^28,42.

3.2 Microstructure

Figure 3 presents AFM of CE (a), representative GECs synthesised at 20 (b) and 200 WF of NG (c) at the XY stage of 5 μm. AFM reveals biphasic composition of GECs with bright zones corresponding to prominence of NG, and small entities with grains identifiable as ordered domains of CE, forming dark phase. The inherent properties of the phases were related to their relative phase contrast. Brighter areas of AFM images attributes to greater force experienced by the cantilever tip during contact with NG. CE has shown characteristic phase separated morphology with average roughness of 47 nm at the depth of 149 nm (Fig. 3a). However, GECs were found free from the aggregates of NG (Fig. 3b). This reveals that at low WF, GECs with qualitatively improved dispersion of NG were produced^42. NG at 200 WF has demonstrated the persistent tendency of clustering into agglomerates. (Fig. 3c). The
extent of relative changes in morphology of GECs was further explored through examination of their average roughness (a_r, nm). CE shows average roughness (a_r, nm) of 26.45 at the depth (nm) of 149 (Fig. 3b). With WF of NG, gradual increase in the a_r of respective GECs was observed. GECs with 20 WF of NG has rendered the a_r of 9.06 at the depth of 120 nm (Fig. 3b). An increase in a_r to 89.55 nm at the depth of 200 nm was observed for GECs with 200 WF of NG (Fig. 3c). AFM based microstructural examinations reveals that low WF down to 20 was found most effective in achieving improved dispersion of NG into matrix of CE.

3.3 Photoelastic Behaviour

Photoelastic measurements are known over decades as non-contact and non-destructive method of real-time stress analysis during damage and repair of transparent polymers, complex pore structures and related composite materials. Although, epoxies are known for their photoelastic behaviour, a few reports has been documented in relation to photoelastic behaviour of epoxy based nanocomposites. Experimental stress analysis evaluates isochromatic fringe order defined as the number of fringes that pass through the point under application of external loads. In the present investigation, effect of WF of NG on fringe order of GECs was investigated under diametric compression of disc shaped specimens ranging 4 to 20 kgf. Present studies reveals that GECs with WF ranging 1.0 to 20 has rendered fringe order ranging 0.23 to 0.61 under diametric compression ranging 8 to 20 kgf. However, no distinct fringe order was appeared up to the diametric compression of 4.0 for all the samples synthesised over 20WF of NG (Fig. 4a). In general, all GECs have regained their initial mechanical properties along with specimen dimensions, and display a complete release of the residual stress through transfer to cured epoxy matrix during the diametric compression.

3.4 Electrical Conductance

In order to have insight into the dispersion of the NG into CE, DC conductance of GECs was investigated. Transitions from insulator to conductor are explained in terms of percolation threshold value. An electrical percolation threshold is the minimum quantity of conductive filler associated with electrical conductance of the composite from insulator to conductive phase. DC conductance measurements were conducted under two different set of WF of NG (Fig. 5). The first part of study comprises conductance measurements ranging 100 to 300 WF of NG. Such high WF of NG was assigned due to low in plane DC conductance of GECs. However, in plane DC conductance of GECs could be improved through incorporation of large amount of conductive filler to achieve the desired level of DC conductance. Another section comprise conductance measurements up to 20WF of NG. High WF of NG ranging 100 to 300, impart rise in the electrical conductance (μS/cm) of GECs ranging 0.42 to 0.53, that was optimised at 0.53 with an electrical percolation threshold at 175 WF of NG (Fig. 5a). Such high DC conductance at WF of NG ranging 100 to 200 attributes to formation of electrical conducting pathways into GECs. NG up to 20WF imparts gradual rise in DC conductance (nS/cm) ranging 98.32 to 119. Increase in voltage up to 100V imparts no significant improvement in DC conductance, that attribute to electrical insulation in GECs. Such enhanced electrical conductance of GECs derived at low WF of NG is being driven due to increase in excluded-volume associated with high aspect-ratios of NG.

3.5 Mechanical Properties

Table 1 demonstrates the effect of WF of NG ranging 0 to 300 on tensile behaviour, compressive and impact strength of GECs. The ultimate modification (%) in the various
mechanical properties over CE is sketched in Fig. 6. In general, mechanical properties of GECs were largely improved up to 100WF of NG. Further increase in WF of NG to 200 has raised the mechanical properties of GECs to maximum and was marginally improved with onward increase in WF of NG to 300. With WF of NG, tensile strength (MPa) of CE was raised from 30.35 to 42.7 and was stagnated to 43.70 till 300 WF of NG. GECs have shown an ultimate modification in tensile strength over CE by 43.98%. Modification in tensile strength was associated with simultaneous reduction in the elongation (%) by 14.76 over CE. Such modification in tensile behaviour attributes to the inherent brittleness of GECs. Accordingly, impact strength of CE was optimised to 21.84 at 200 WF of NG. Increase in WF of NG to 300 imparts a marginal increase in impact strength by 22.60 with ultimate improvement by 31.78% over CE. However, increase in WF of NG to 300 imparts marginal improvement in compressive strength of GECs by 5.30% over CE.

In the present investigation, effect of WF of NG on wear rate of GECs at hydraulic end loads (bar) of 2.0 and 4.0 under constant disc speed of 320 rpm was investigated. With WF of NG, a remarkable reduction in wear rate of GECs was observed irrespective to the applied hydraulic end load. Increase in hydraulic end load from 2bar to 4bar has enhanced the wear rates of GECs. Wear of CE was progressed at 3.70 mg/min at 2b that was gradually reduced to 3.55 mg/min at 200WF of NG (Table 1). GEC with 200WF has shown a marginal increase in wear rate to 3.66 at 4 bar. Study reveals that NG at 200 WF enhanced RH to GECs that imparts control over their wear rate up to 4bar at 232 rpm (Fig. 4). Such reduction in wear behaviour with improved RH hardness attributes to the formation of NG epoxy interface with improved strength.

4. CONCLUSIONS
Effect of WF of NG ranging 0 to 300 on modification in mechanical properties, DC conductance and wear resistance of GECs was systematically investigated. Formation of GECs was revealed through diverse spectral methods, AFM and stress analysis. With WF of NG, DC conductance of GECs was increased ranging 99.32 nS/cm to 0.53 μS/cm at 100V. GECs prepared up to 20 WF of NG were found with improved dispersion of NG into epoxy matrix. This has liberated GECs with reduced internal stress and photoelastic fringe order ranging 0.23 to 0.61 under diametric compression of 8 to 20 kgf. However, higher WF of NG ranging 100 to 300 has raised the DC conductance, mechanical stability and wear resistance to GECs. Study concludes that stress free GECs with desired durability and physical properties may be achieved through processing under optimised WF of NG. This may deliver the GECs suitable as material of construction for development of mechanically durable structures, conducting electrodes, optomechanical devices wear and resistant runways.

REFERENCES

Carbonaceous fillers are the major source of energy dissipation in polymer nanocomposites through mechanism of load transfer from filler to macromolecular segments. Mechanism of stress transfer prevails through segmental movements among macromolecular segments that specially increase the fracture energy of nanocomposites. Presence of oxygen bearing functionalities promotes the fortification of NG with macromolecular segments of CE (Fig. 2). In the present investigation, a rapid improvement in mechanical properties till 200WF of NG attributes to fast transfer of load under elongation, compression or impact over GECs from relatively soft epoxy matrix to the strong NG filler.

3.6 Wear Behaviour
Resistance of GECs against wear depends on dispersion of NG their integration with epoxy matrix and Rockwell hardness (RH). NG bearing functionalities are compatible with CE that imparts control over wear rate of GECs.

ACKNOWLEDGEMENTS

Research grant funded by Govt. of India. DRDO Letter No EPIR/ER/003266/M/01/13-9-2001 is hereby acknowledged.

CONTRIBUTORS

Mr Sanjeev Kumar Joshi has obtained his MSc (Physics) from Kumaun University, Nainital and MTech (CRSE) from G.B. Pant University of Agriculture & Technology, Pant Nagar, Uttarakhand. Currently pursuing his PhD from National Institute of Technology, Kurukshetra, Haryana. Presently working as Scientist ‘F’ and Technology Advisor to Secretary DD R&D and Chairman DRDO with an additional charge of Programme Office (Missiles). His areas of research are CNM composites, computational molecular dynamics, molecular docking, supercritical fluids assisted dispersion of nano-materials, finite element modelling, crack propagation in materials, snow physics and mechanics and avalanche initiation mechanisms. He has more than 30 research publication, technical reports and monograph in his credit.

Dr M.G.H. Zaidi is the distinguished Physical Chemist, educator and academic administrator. Presently the Professor and Head, Department of Chemistry, G.B. Pant University of Agriculture & Technology, Pant Nagar, Uttarakhand. His research activities cover the supercritical fluids assisted development of technologically viable polymer materials and their biodegradation. He has published more than 100 research publications, monographs, technical notes in refereed international journals and patents.

Dr Ashavani Kumar is working as professor of physics at National Institute of Technology Kurukshetra. He has published more than 100 research papers in international journals, guided more than 70 students for their MTech and PhD degrees; involved as conceptual and reviewer of the work in the paper.