
Received 2 July 2008

Defence Science Journal, Vol. 59, No. 3, May 2009, pp. 314-317
Ó 2009, DESIDOC

314

1. INTRODUCTION
As software systems are becoming complex and

mission-critical, ensuring software reliability is the prime
concern. Particularly in mission critical software systems,
unreliable software results in high costs for end users
and developers2. These are caused due to specification
related as well as run-time related errors. Various types
of testing techniques like peer reviews, code inspection
and dynamic testing are used but these are effective in
detecting presence of bugs never their absence. Run-
time errors are a class of faults that are caused during
execution and finding these using dynamic testing is a
hard task. Sometimes run-time errors, like division by
zero, causes the crashing of system. Array out of bounds
access, invalid arithmetic operations, and unreachable
code, are some of the run time problems.

Software reliability comprises various aspects that
include good software engineering practices ranging from
requirements elicitation, design patterns, architectural
robustness, use of coding standards, selection of appropriate
hardware and operating system to execute the software,
use of appropriate case tools, comprehensive quality checks
through peer and independent reviews. The development
needs to be augmented with stringent monitoring and
control methodologies throughout the development period
as suggested and advocated by various quality models
like International Standard Organisation (ISO), Capability
Maturity Model (CMM), and Capability Maturity Model
Integrated (CMMI). Strict adherence to documented process

Software Reliability through Theorem Proving

S.G.K. Murthy and K. Raja Sekharam
Defence Research & Development Laboratory, Hyderabad – 500 058

ABSTRACT

Improving software reliability of mission-critical systems is widely recognised as one of the major challenges.
Early detection of errors in software requirements, designs and implementation, need rigorous verification and
validation techniques. Several techniques comprising static and dynamic testing approaches are used to improve
reliability of mission critical software; however it is hard to balance development time and budget with software
reliability. Particularly using dynamic testing techniques, it is hard to ensure software reliability, as exhaustive
testing is not possible. On the other hand, formal verification techniques utilise mathematical logic to prove
correctness of the software based on given specifications, which in turn improves the reliability of the software.
Theorem proving is a powerful formal verification technique that enhances the software reliability for mission-
critical aerospace applications. This paper discusses the issues related to software reliability and theorem proving
used to enhance software reliability through formal verification technique, based on the experiences with STeP
tool, using the conventional and internationally accepted methodologies, models, theorem proving techniques
available in the tool without proposing a new model.

Keywords: Software reliability, formal methods, software testing, software model checking, software theorem proving,
stanford temporal theorem prover (STeP), autopilot software.

by these techniques does enhance the reliability and
maintainability of the software. In the case of mission-
critical and safety- critical software, where the path coverage,
branch coverage, decision coverage for all input conditions,
the system needs to be verified with mathematical-intensive
techniques like formal methodologies to ensure a high
reliability.

Formal verification techniques utilise mathematical
logic to prove correctness of the software based on given
specifications, which in turn improves the reliability of
the software3. Formal verification of hardware and software
systems gained more importance after the Pentium bug
in 19944 that costed millions of dollars. Unlike normal
testing, formal verification considers predicates as input
assertions values, so that program is verified for all possible
conditions without executing the software. Theorem proving
is a branch of formal verification technique used to
prove the properties of the software programs.

The formal verification tools comprise models,
methodologies, algorithms based on first-order or higher-
order logic truly represented in mathematical form. The
details of implementation, the actual process for validating
the assertions are not widely published in the public domain
in the case of all the tools referred – STeP, PVS, HOL.
Based on literature survey and the simplicity of expressing
the code to be verified, STeP tool has been chosen to
verify the properties. The autopilot software has been
verified to prove the properties of the software with algorithm
that is implemented.

SHORT COMMUNICATION

315

MURTHY & SEKHARAM .: SOFTWARE RELIABILITY THROUGH THEOREM PROVING

This paper discusses the issues related to software
reliability of mission-critical software through formal verification
techniques and verification of properties of software using
theorem prover to identify requirement as well as run time
errors.

2. SOFTWARE RELIABILITY
Reliability is defined as the probability of failure-

free operation for a specified time, in a specified environment,
under a specific condition1. It means the software in
an onboard application will be 99.9 per cent reliable
during a period implies that failure may occur in one
case out of 1000. Usually software faults are discovered
either through program inspection or from the software
failures. The presence of certain un known errors in the
software are caused by a set of inputs, generated a set
of erroneous outputs typically both. This situation is
depicted in Fig. 1.

As reliability is the prime concern for mission-
critical software, number of techniques like peer reviews,
code inspection, and dynamic testing, etc are used throughout
the development to improve software reliability.

3. FORMAL VERIFICATION METHODS
 Formal verification methods for software comprise a

set of techniques for proving the correctness of software
for a possible combination of input values. So, a deterministic
software program is correct, if it satisfies the intended
input/output relation {P} S { Q}, where P is called pre
condition. Q is called post condition or output assertion
and S is the software program. With the help of formal
verification techniques it is possible to prove the formula
{ P} S { Q}. Generally correctness is interpreted as partial
and total as follows:
• Partial correctness: If a program starts from a state

satisfying P, runs the code and completes, then Q will
be true.

• Total correctness: If a program starts from a state
satisfying P and runs the code, then eventually it will
complete with Q being true.
Model checking and theorem proving are two types

of techniques frequently used alone or in action combination
to verify the properties of software. Detailed description
is given in sections 3.1 and 3.2 about verification techniques.

3.1 MODEL CHECKING
Model checking is well known formal verification approach

used in many applications. In this approach, an abstract
model (for states) is constructed and used to verify the
required properties. Verification of software by model checking
is more suitable for control-intensive applications as it
contains more if else statements4. Software verification
using model checking involves translation of source into
a model, so that it has a limitation on state space. As
model checking is automatic, it has gained popularity in
software verification industry; however software program
states are not finite and contain complex data types, it
is difficult to check the properties with the model checking
technique.

3.2 THEOREM PROVING
As per Hoare, correctness of program, is achieved

using pre-and post-conditions and inference such as
assignment rule, composition rule, condition rule, while
rule, for total and partial correctness. A simple inference
is shown in Eqn.(1) for ‘if ’ statement.

1 1 2 1 2 2

1 1 2 2

{ B } C { } { B} C { }

{ } if B then C else C { }

f L f f LØ f
f f (1)

Further these ideas were extended by Dijkstra using
the weakest pre condition concept5. As per Dijkstra, verification
process starts from post-condition instead of pre-condition.
The weakest pre-condition of a program S and a post
condition Q is denoted by Wp (S, Q) and it is a predicate
that describes the set of all initial states that will guarantee
termination of S in state satisfying Q, It is also represented
as Hoare triple shown in Eqn.(2).

{ Wp (S, Q)} S { Q} (2)

For the verification of {P} S { Q} using weakest
precondition concept, it is necessary to find out Wp (S,
Q) and the property PÍWp (S, Q) has to be proved.

To verify the run-time errors of a program, certain
conditions are annotated in the code, using formal specification
language. For verification of programs, usually properties
to be proved are represented in first-order or temporal
logic. In this paper, first-order logic based properties
are considered to prove the given software.

Theorem proving is a technique, where the system
to be proved and desired properties expressed in a
mathematical form (i.e. first-order logic or temporal logic).
Theorem proving technique considers set of axioms as
pre or initial conditions and properties to be proved are
post-conditions. In general pre-and post- conditions are
asserted in the software using specialised tags. Utilising
deductive and inductive proving logics, automatic theorem
prover tools verify system properties. There are various
public domain tools available for software theorem proving
(Ex PVS, HOL, STeP). STeP tool is considered to verify
the properties for the example in Section 4.1.Figure 1. Input/output mapping.

316

DEF SCI J, VOL. 59, NO. 3, MAY 2009

4. VERIFICATION OF PROPERTIES USING
THEOREM PROVING
As theorem-proving technique needs mathematical

logic related formulas, there is a necessity to pre- process
the input information (software, specifications). Following
steps are involved in verification process.
(i) Conversion of system specifications (i.e. input and

outputs) into a formal specifications using 1st order
or temporal logic7.

(ii) Inserting specifications obtained in (a) as pre and
post conditions in the code.

(iii) Conversion of system (software functions) into SPL
code manually or using C2SPL converter 8.

(iv) Verifying the properties using STeP tool9.
Fig 2. illustrates the verification process using

STeP tool.With the help of theorem proving tool, it is
possible to verify that the software meet the given
specifications for all possible conditions (i.e., pre-
conditions). Apart from that by proper annotation of
required checks, same theorem-prover tool can also be
used to identify run-time errors. In the following example
[Section (4.1)], an example is given to check the unreachable
code in a function.

4.1 Example
A simple industrial example is given to verify the

run time properties without executing the code. The
following function (Example1) accepts an input x which
contains any value i.e. x >=0 or x < 0. Example1
function has, ‘if ’ and else statements, and based on
the value of x, each if statement is executed. As mentioned
in Sections 4, required specifications are inserted with
special tags as pre and post-conditions in the source
code, which are shown in bold letters in the given
function. To verify the unreachability for the statements
given in the if and else statements, post condition property
has to be designed accordingly. In the given example,
to verify the unreachability of the last ‘else statement’,
a post condition (rcnt < 4) is asserted.

The files Example1.spl (source code) and Example1.spec
(formal specifications) are generated using c2spl tool and
in turn these two files are fed to STeP tool as inputs. By
applying the options B-INV and WLPC9 repeatedly, post
condition property is proved, which is indicated by STeP
tool, as “The proof is COMPLETE”. The post condition
property rcnt < 4 is true for all input conditions of x,
implies that the statements under last else are unreachable.

If it is reachable, the Post condition is not true. Fig. 3.
describes this situation.

double Example1 (int x)
{
 int xarray[8];
 short index = 1;
 short n;
 double return_status = 0 ;
 int rcnt = 0;
 /*pre ((x >= 0 \/ x < 0) /\ xarray[0] = 0 xarray[1]
= 1 /\ xarray[2] = 2 /\ xarray[3] = 3 /\ xarray[4] =
4 /\ xarray[5] = 5 /\ xarray[6] = 7 /\ xarray[7] = 10
/\ n = 5) end*/

if(x <= xarray[0])
 {

 rcnt = 1;
 return_status = 0.0;
 }
 else if(x >= xarray[n-1])
 {

 rcnt = 2;
 return_status = 1.0;

 }
 else if(x >= xarray[index])
 {

 rcnt = 3;
 return_status = 2.0;

 }
 else
 {

 rcnt = 4;
 return_status = 2.0;
 }

 return(return_status);
/*post (rcnt < 4) end*/
}

5. CONCLUSIONS
Software reliability for the mission-critical software

is discussed. The role of Software theorem-proving technique
helps to enhance software reliability is presented. With
the help of STeP (Stanford temporal theorem prover)
tool, a live industrial example is presented to prove the
properties. For verifying run-time errors of software, it
is required to annotate various flags and desired properties,
which requires more manual efforts. Proving loop properties
usually requires constructing loop-invariants and verifying
loop-invariants with induction- related techniques, requires

Theorem
prover

(STeP)

Formal
specifications

SPL code

Verification
Result

Specifications

Source code

Figure 2. Verification process using STeP.

317

MURTHY & SEKHARAM .: SOFTWARE RELIABILITY THROUGH THEOREM PROVING

expertise and user efforts. As verification process is not
fully automatic, it is hard to apply theorem proving for
larger software systems, however formal methods have
certain advantages over normal testing, combined utilisation
of both the techniques ensures absence of bugs, so that
software reliability is achieved.

REFERENCES
1. Sommerville,Ian. Software engineering. Addison-Wesley

Publisher Ltd, 1978.
2. Ponarsard, C. et al. Early verification and validation

of mission-critical systems.CETIC Research
Center,Charleroi, Belgium, 2004.

3. Collins, Michael. Formal methods , Carnegie Mellon
University, 1998.

4. Ouimet, Martin. Formal software verification: model
checking and theorem proving. Embedded Systems
Laboratory , Technical Report MIT, USA, 2005.

5. Popov, Nikolaj. Verification using weakest precondition
strategy. Research Institute of Symbolic Computation,
Hagenberg, Austria.

6. Ben-Ari, M. Mathematical logic for computer science,

Printice Hall International (UK) Ltd.,1993.
7. Sandholm Tuomas. First-order logic (FOL), Computer

Science Department. Carnegie Mellon University.
8. Sharma, Babita. et al., Assertion checking environment

(ACE) for formal verification of C program. Reliability
Engineering & System Safety, 2003.

9. Bjorner, Nikolaj. et al., The Stanford temporal prover
Users Manual, Stanford University, 1998.

Contributors

Mr S.G.K. Murthy did MSc(Mathematics). He is presently
working as Scientist D at the Defence Research and Development
Laboratory (DRDL), Hyderabad. His areas of interest are:
Software theorem proving techniques. Multi-sensor data fusion,
information security, and soft computing.

Mr K. Raja Sekharam did MSc(Computer Science). He is
presently working as Scientist E and is Head, IV & V Group
at Defence Research and Development Laboratory, Hyderabad.
His areas of interest are: Software theorem proving techniques,
software testing, software reliability, and embedded systems.

Figure 3. Verification of properties using STeP GUI.

