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ABSTRACT

Hexagonal lattice pattern formed by helical and circumferential ribs is the most common among different
possible lattice patterns. An energy-based smeared stiffener model (SSM) is developed to obtain equivalent
stiffness coefficients of a composite lattice cylindrical shell with such hexagonal lattice patterns. Using the
equivalent stiffness coefficients, Ritz buckling analysis was carried out. Extensive finite element modelling
covering different representative sizes have been carried out. SSM is validated by comparing the estimated
buckling loads. Variation of material properties of rib unidirectional composites from those of normal
unidirectional composites is accounted for in the energy formulations.
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NOMENCLATURE UV W,  Amplitudes of generalised displacements
A.B.D Elements of stiffness matrice’,B,D Up ,UF,y Uy Strain energies unde?, P, T, respectively
A.B.D Elements of compliance matricés ,B",D' X, Y, Z Axial, circumferential and radial coordinates
b, h Cross-sectional width and depth of stiffening as per cylindrical coordinate system
ribs €€y Yy In-plane normal and shear strains
D,LLR Diameter, length, and radius (at mid-plane), ¢,y .y, Out-of-plane normal and shear strains
respectively of the shell/lattice cylinder — ¢%,&0 ) In-plane normal and shear strains in the
e Distance between the centreline and load mid-plane
(applied eccentrically) € €LYy Changes in curvatures in the mid-plane
E,E,G,v;, 2-D orthotropic material properties ¢t Vectors of in-plane strains and changes in
h, z coordinate of thek" ply curvatures, respectively
m, n Half-wave numbers G,,0,,0, Normal stresses at a point
M, ,M M _  In-plane moment resultants A Surface area
N, Number of pairs of helical ribs Ty Ty ¥ e Shear stresses at a point
N,M Vectors of in-plane force and moment g Angle of orientation of helical ribs wrt meridian
resultants Subscripts
N, N, N In-plane force resultants e Equivalent shell
P.P.T, Axial compressive force, lateral compressive " Rib segments
force and torque respectively oo Helical-to-helical crossovers
6 Reduced transformed stiffness matrix of o Circumferential-to-helical crossovers
the composite laminate making the ribs
u,v, w Displacements at a point (x, y, z) inthe 1. INTRODUCTION
x, y, z directions, respectively Cylindrical shellg are used i_n many Weight—sensiti\(e
Uy, Vo W, Displacements at a point in the mid-plane 2€rospace and other high-end gppllcanons. B.uckl'lng behgylour
i of such a structure under axial compression is of critical
u,V,I1 Strain energy, work done by external forces,

: : importance and grid-stiffened composite shells, on account
and total potential energy respectively of  of their very high specific strength and stiffness properties,
the shell provide an attractive alternative to traditional monolithic
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metallic/composite shells. A special class of such structures Issues involved in buckling analysis of composite
is a lattice structure that comprises a grid of stiffening ribs structures are complex and the subject is still evolving as
without any skin. The stiffening ribs are basically unidirectional is evident from a large number of publications that are
composites made by filament winding and these form an appearing regularly. For example, Jaulket al. have
efficient system of load-bearing elements. Different lattice presented a discussion of shell theories as applied to buckling
patterns such as diamond lattice with helical ribs only, of cylindrical laminated composite shell. Similarly, some
hexagonal lattice with helical and circumferential ribs, and simple solutions for buckling behavior of cylindrical shell
hexagonal lattice with helical and meridional ribs, etc can are presented by Geiéret al.
be designed. Out of the various lattice patterns, hexagonal Filament-wound composite grid-stiffened shells throw
pattern with helical and circumferential ribs is the most up numerous possible design configurations in terms of
common and the study of buckling analysis of lattice composite various design elements. Once decided to use a particular
cylindrical shell with such hexagonal lattice patterns has lattice pattern (such as hexagonal pattern with helical and
been presented. circumferential ribs), the choice of design elements comes
There is a growing interest in grid-stiffened composite down; but still the designer needs to consider many possible
shells for their high-buckling resistance capabilities; but configurations that involve factors like nhumber of ribs,
the subject is of relatively recent origin and open literature cross-sectional details, spacing of ribs, rib orientation,
is somewhat limited. Three basic methods are used in the etc. As a result, in the initial design phase, wherein broad

buckling analysis of a stiffened shell. These are: choice of design elements is made, finite element analysis
(i) smeared stiffener model, (FEA) is time-consuming and also it is more economical
(i) discrete model, and to use a quick tool, such as smeared stiffener model to
(i) branched plate and shell model. find global buckling load.
Smeared stiffener approach is efficient in global buckling While several smeared stiffener models are available

analysis and it is based on mathematical models that smearin the open literature that account for material property
the stiffening ribs into an equivalent ply. Several authbrs  variation, from the crossover zone to the unidirectional rib
have adopted the smearing approach in buckling analysis segment is rare. The aim of this study is to evolove a
of stiffened shells. A general note on the development of simple and efficient analytical model, which takes this material
grid-stiffened composite shells, covering design and analysis property variation into account, for global buckling analysis
procedure as well as issues on manufacturing and testing,that would be useful in the initial design phase. This model
is given by VasilieY, et al. Initial design/analysis is based is intended to be used for narrowing down design choices
on a continuum model where stiffening ribs are smeared, involving many possible configurations, so that in the
based on rib spacing, to arrive at an equivalent shell. final design phase, finite element analysis with finer and
Jones8also usedib spacing in relation to rib cross-sectional local details can be carried out effectively. A cylindrical
width as the criterion to smear the ribs. Velmuruga composite shell made up of a grid of continuous ribs has
al. have presented a quick and efficient method useful for been considered. Smearing the ribs into an equivalent shell
parametric studies in the initial design phase of a grid- is done by equating the strain energy of the stiffened shell
stiffened shell. Wodesenbeet al.and Kidang et alhave to that of the equivalent shell and the methodology involved
presented a global buckling analysis model wherein smeareduse of simplified force distribution in the formulation of
stiffener approach is used through force/moment analysis strain energy. Ritz buckling analysis of the equivalent composite
of a unit cell to determine stiffness contribution of the shell is carried out to find out the critical buckling load.
stiffeners. Transverse strain and shear strains are neglected.

An improved smeared stiffener model that accounts 2. ANALYTICAL FORMULATION
for transverse shear flexibility, is used by Jaurket al. 2.1 Kinematic Relations
and Damod&r et al. In this model, skin-stiffener interaction Classical laminated shell thedfyCLST) is based on
effects are included by considering a neutral surface profile the following displacement field
of the skin-stiffener combination. Smearing criterion is based

on equivalence of strain energies and involves considering Uy (% y) - z%
the strain energies of the skin and stiffeners using strain u(x, v, 2 o OX
compatibility equations. Slinchenket al.used the smearing e ow,
approach, on the basis of rib spacing, to determine structural Vi ¥, 9 =1 ¥(x y- Zg
stiffness matrix for finite element analysis of grid-stiffened wW(X, V; 2 (1)
structure. Wo (%, Y)
The discrete approach and branched plate/shell approach
are computationally more involved and these methods are Displacements and the coordinate directions are defined

normally used in the final design phase of a grid-stiffened in Fig. 1.Following Kirchhoff hypothesisg, =v,,=v,,=0

shell. Several authors have worked in these directions, e.9. and the strain-displacement relations for CLST are given
Huybrecht®’, et al. and Wand. by:
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Figure 1. Coordinate system and displacements.
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2.2 Constitutive Relations
The linear constitutive relations as per CLST can be

expressed as
N| [A BlJe €| |A B[N
{M}_|:B Dj| gl or, gl BT D {M} (4)

The vectors and matrices in Eqn (4) are defined as

NX MX
N={N,t M={M,
ny Mxy
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2.3 Energy Formulations

The total potential energy of the grid stiffened composite
shell is given by the sum of the strain energy and work
done by external forces as

Im=U+V (6)
Strain energy is given by
Z%M(G 8, 4O £, FO £ AT FT ¥ FT 3 Jdzdxdy (7)

In CLST, transverse shear strains are zero and one
obtains the following:

%H(ngi+ NS+ Ny o+ Mels Mgl M g* ) dxdy  (8)
Then, using Egn (4), mid-plane strain and mid-plane
curvatures (changes) are replaced with compliance matrix
elements and force and moment resultants, and one gets
the following:

U= (AN + AN+ AN,
+2(A£2Nx Ny+ QGI\L l\Ly+ AG ,\l/ N(y)
+2( BIle Mx + BZZ Ny My+ 3}6 l\Ly Mxy)
+2( BIZ Nx My + le Ny Mx+ 36 l\L Mxy)
+2(861NXYMX+ BN, M, + B, nyMy)
+(D;M? + D,M? + D M2,

A

(9)

+2(D MM +DM M, +D,MM, ) ]

A convenient way to express the strain energy for Ritz
buckling analysis is in terms of the generalised strain vector
and stiffness matrix as:

1 2R (g0 "TA B &0

= dxd
o3 1t ls offfee
e work done by in-plane loadsare given by

rk
N I

2.4 Smeared Stiffener Model

A representative unit cell is considered such that by
repeating the unit cell the complete system of stiffening
ribs can be obtainedFig. 2.)

An equivalent shell represented by its length, radius,
and the orthotropic stiffness/compliance matrices is considered
for buckling analysis. The shell is simply supported at

(10)
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Figure 2. Hexagonal pattern—helical and circumferential ribs.

! L Unit cell
e

Surface area of the shell in Eqn (12) is given by
Ae=21R, Lo, Whereas the force resultants and moment
resultants are defined in a conventional way and these
correspond to certain load cases statedlahle 1. Using
Egn (12) and Table 1, strain energy esgsions for the
equivalent cylindrical shell under different load cases are
readily obtained. (Each of these expressions has only one
unknown compliance matrix element and the corresponding
applied load).

The load cases considered in the strain energy formulations
of the equivalent shell are also considered in the strain
energy formulations of the stiffening ribs. In each load
case, the load applied on the equivalent shell is also applied
on the lattice cylinder. The load is discretely distributed
in the ribs and a simplified force/moment distribution in
the unit cell is found out.

Thus, the stress resultants in the rib segments and

the bottom-end and free at the top-end. While the length crossovers in the unit cell are expressed in terms of the
and radius of the equivalent shell are readily obtained applied load and other geometrical parameters describing

from the geometry of the lattice cylinder, the orthotropic

the lattice members. Different material properties are used

stiffness/compliance matrices are obtained by considering for the crossover zones and the ribs and, individual stiffness/
strain energy. In line with Eqn (9), under the combined compliance matrix elements for the ribs and crossover
action of the in-plane loads the strain energy of the equivalent zones are fourfd The compliance matrix elements along

shell is given by:

[ A+ 2 "
(Alequ Nxequ+ A§2 equNZ yeqj’ &6 eq\N xye)]u

1lequ  xequ xequ 22 equ  yequ

A
[ ST +2(B* N M +B

12equ ~ xequ yequ 21 eq'u\l yeq'l\J/I eqy

+B

6lequ ~ xyequ xequ 26 equ  yequ

+(D* M2 D, M2 4D

+Z(A*ZequNxequN yequ+ 66 eqLN xeq\’J\l xyeqﬁ 66 eq’bl yet!|\u| x)equ
+2( B* N M ha B N M yeﬁt BG6 e(!]}Jl ><ye't§|{1I x))equ

M xyeq).l

42BN eeM it Bo o oM ot B N M )

16 equN xequ

2 * M 2
1lequ xequ 22 equ yequ 66 equ xyegu

with the applied load and the geometrical parameters are
utilized to obtain the strain energy expressions of the
lattice cylinder under each load case. Total strain energy
is obtained by adding the strain energies of the rib segments,
helical-to-helical crossovers and helical-to-axial cross overs.
Final strain energy expressions are givem\ppendix1.
Strain energy of the equivalent shell under each load case
is equated to that of the lattice cylinder and the corresponding
unknown compliance matrix element of the equivalent shell
is obtained. (Matri8 and Aq.,,, Agequ s Pisequ @Nd Dy are

¥+2( DIZeun xeun yequ+ D;G eqM ><et':]\\{I xyeéﬁ DZG L\({Iu yMu x;)iu assumEd tO be ZerO)
12)
Table 1. Load cases
Load Non-zero
force/moment Simulated by
Case
resultants
1 N equ An axial compressive forc®, distributed on the mid-plane.
5 M An axial compressive force and an axial tensile force, each of magritfudistributed
xea eccentrically bye/2 and-€/2 respectively wrt the mid-plane.
3 Nyequ A lateral compressive forcB, (by an external pressupg distributed on the mid-plane.
A lateral compressive force (by an external prespuand a lateral tensile force (by an
4 yequ internal pressurp), each of magnitud®, distributed eccentrically bg/2 and-¢/2
respectively wrt the mid-plane (Fig. 3.).
5 N,yequ AtorqueT, (by circumferential force distributed on the mid-plane at the top).
AtorqueT, (by circumferential force distributed eccentrically &2 wrt the mid-plane at
6 M, equ the top) and a torque of the equal magnitude but in opposite direction (by circumferential
force distributed eccentrically bye/2 wrt the mid-plane at the top) (Fig. 3.).
7 N, @ndN ., Forces described iBiasel andCase 3applied simultaneously.
8 M equ @NdM ., Forces described iBase2 andCase4 applied simultaneously.

# Material properties and ply details are indicated in the section on rib unidirectional composites.
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3. BUCKLING ANALYSIS
Ritz buckling analysis procedure of minimisation
of total potential energy is adopted to determine the

critical buckling load of the equivalent composite shell.

NO. 3, MAY 2009

crossovers both in terms of material properties as well
as ply construction.

Several representative cas@able 2) covering broad
and practical ranges of different parameters, viz., radius,

The generalised displacements are expressed as kinematically L

admissible expressions for simply supported boundary
conditiong as follows:

u= iZUmnco&xx copy
m=1 n=1

0 0

v=>">"V, sinaxsingy

m=1 n=1

(13)

0 0

w=>">W, sinoaxcopy

m=1 n=1

mn n
here, o =— dB=—=
where 1 and B R

Strain-displacement relations as per CLST are used
in the energy expressions given in Eqns (10) & (11) and
the expression for total energy of the shell is obtained
by integration. First derivatives dfl wrt U__ V__and
W__are found. For equilibrium, the total potential energy
has to be minimum for which the above derivatives are
equated to zero and an Eigen value problem is formed.
For different values ofx and different applied loads
satisfy the equilibrium equations out of which the minimum
load is the critical buckling load.

4. FINITE ELEMENT VALIDATION

With a view to check the validity of the smeared
stiffener model, finite element modelling of lattice cylinder
of hexagonal lattice pattern with helical and circumferential
ribs was carried out. ANSYS finite element software was
used for modelling as well as obtaining a solution. Twenty
nodded 3-D layered solid elements were used to model
the stiffening rils (Fig. 4).The number of elements used
across the width and depth of any stiffener is 1 whereas
along the length of the rib segments, different numbers
of elements were used in different models depending upon
the length of the rib segment. Different real constant
tables are used to represent the rib segments, helical-
to-helical crossovers and helical-to-circumferential
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rmans
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D ratio, number of helical ribs and height of ribs, have
been considered.

A comparison of smeared stiffener model results with
finite element results has been made and typical results
are given in Table 3 and Fig. 5. Smea stiffener models,
in general, are known to estimate buckling load on the
higher side and the present model tends to make estimates
in a similar way for low rib thicknesses. For higher rib
thicknesses, modelling with single element across rib thickness
makes the finite element models too stiff and finite element
estimates are found to be on the higher side than found
in the estimates of smeared stiffener modelling. Deviation
(calculated as percentage of the higher estimate) is the
maximum at low rib thickness. Deviations are attributed
to the fact that while in the finite element analysis, the
ribs are modelled and represented nearly accurately as
3-D discrete structural parts, in the smeared stiffener
modelling, the stiffening ribs are converted into an equivalent
cylindrical shell based on certain simplistic criteria.

-
R

-

Figure 4. Typical finite element model.
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Figure 5. Typical comparison of SSM results with FEM results.
Radius of shell=500 mm; No. of helical pair of

ribs=45; L/D=0.73; width of ribs=4 mm.
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Table 2. Lattice models for finite element modelling

Radius, R [ No. of hefical rib  Width of Rib thickness,h No. of
(mm) D pairs, N, (mr;l) (mm) models
250 0.53, 0.76, 0.98 36, 45 3,4,5 0.5b, b, 1.5, 2b 72
500 0.48, 0.73, 0.97 45, 60 4,68 0.5b, b, 1.5, 2b 72
750 0.48, 0.73, 0.98 45, 60 6,8, 10 0.5b, b, 1.5b, 2b 72
1000 0.45, 0.73, 1.00 60, 72 8,10, 12 0.5b, b, 1.5b, 2b 72

Table 3. Comparison of typical SSM results with FEM results.

Buckling load (kN)

L/D h/b Deviation (%)
SSM FEM
0.5 54.4 40.8 25.0
1.0 220.2 206.3 6.3
0.48
1.5 494.2 516.9 4.4
2.0 877.4 963.1 8.9
0.5 54.4 40.5 25.6
1.0 218.2 203.9 6.6
0.73
1.5 494.2 508.4 2.8
2.0 877.4 948.9 7.5
0.5 54.4 40.4 25.7
0.98 1.0 218.9 203.1 7.2
15 494.2 506.0 2.3
2.0 877.4 942.6 6.9

Radius of shell=500 mm; No. of helical pair of ribs=45; Width of ribs=4 mm

5. RIB MATERIAL VERSUSUD COMPOSITE lattice cylindrical shell of hexagonal lattice pattern formed
The ribs in a composite lattice cylindrical shell are by filament wound helical and circumferential ribs. Ritz
essentially unidirectional in character; but their strength energy-based approach is adopted in the buckling analysis.
and stiffness properties are affected by the presence of The smeared stiffener model developed along with Ritz
the cross-over zones. Fibre volume fraction of rib unidirectional buckling analysis approach is found to be much faster
composites can be as low as 50 per cent of that of normal than finite element modelling, thus it facilitates trying out
unidirectional composites. (In a lattice cylinder, the crossover several combinations of design parameters, within the
zones would correspond to normal unidirectional composites scope of above said lattice pattern, in an efficient way,
ateither{+6/-0] or [+6/90] or [-6/90] and the rib segments  and thereby, the designer can come to an optimal configuration.
would correspond to rib unidirectional composites at either The rib segments and the crossovers are duly represented
[+6] or [-6] or [90].) Experimental studies carried out in terms of material properties and ply construction in the
elsewhere on specially designed specimens show that rib strain energy formulation, and thus in this model, difference
unidirectional composite properties are distinctly different in rib material structure from crossover material structure
from (lower than) normal unidirectional composite properties. s accounted for. Extensive finite element modelling covering

In this study7 material properties for Carbon/epoxy system different representative sizes have been carried out and,
have been taken as follows: given the intended usage of the model, good comparison

Rib unidirectional composite between finite element results and results of smeared stiffener

E,= 108GPa,E, = 8.0GPa,G, = 4.8GPa, and;,,= 0.21,  Medelling has been obtained.
Normal unidirectional composites
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Strain Energy Formulations—Helical and Circumferential Ribs
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