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NOMENCLATURE
, ,ij ij ijA B D Elements of stiffness matrices , ,A B D

* * *, ,ij ij ijA B D Elements of compliance matrices * * *, ,A B D

,b h Cross-sectional width and depth of stiffening
ribs

, ,D L R Diameter, length, and radius (at mid-plane),

respectively of the shell/lattice cylinder

e Distance between the centreline and load
(applied eccentrically)

1 2 12 12, , ,E E G n 2-D orthotropic material properties

kh z coordinate of the kth ply
,m n Half-wave numbers

, ,x y xyM M M In-plane moment resultants

hN Number of pairs of helical ribs

,N M Vectors of in-plane force and moment

resultants
, ,x y xyN N N In-plane force resultants

, ,x y xP P T Axial compressive force, lateral compressive

force and torque respectively

Q Reduced transformed stiffness matrix of
the composite laminate making the ribs

, ,u v w Displacements at a point (x, y, z)  in the
x, y, z directions, respectively

0 0 0, ,u v w Displacements at a point in the mid-plane

, ,U V P Strain energy, work done by external forces,
and total potential energy respectively of
the shell
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ABSTRACT

Hexagonal lattice pattern formed by helical and circumferential ribs is the most common among different
possible lattice patterns. An energy-based smeared stiffener model (SSM) is developed to obtain equivalent
stiffness coefficients of a composite lattice cylindrical shell with such hexagonal lattice patterns. Using the
equivalent stiffness coefficients, Ritz buckling analysis was carried out. Extensive finite element modelling
covering different representative sizes have been carried out. SSM is validated by comparing the estimated
buckling loads.  Variation of material properties of rib unidirectional composites from those of normal
unidirectional composites is accounted for in the energy formulations.

Keywords: Buckling analysis, smeared stiffener model, SSM, lattice patterns, Ritz buckling analysis

, ,mn mn mnU V W Amplitudes of generalised displacements
, ,

x y xP P TU U U Strain energies under , ,x y xP P T , respectively
, ,x y z Axial, circumferential and radial coordinates

as per cylindrical coordinate system
, ,x y xye e g In-plane normal and shear strains
, ,z xz yze g g Out-of-plane normal and shear strains

0 0 0, ,x y xye e g In-plane normal and shear strains in the
mid-plane

1 1 1, ,x y xye e g Changes in curvatures in the mid-plane

,0 1
å å Vectors of in-plane strains and changes in

curvatures, respectively
, ,x y zs s s Normal stresses at a point

D Surface area
, ,xy yz xzt t g Shear stresses at a point

q Angle of orientation of helical ribs wrt meridian
Subscripts

equ Equivalent shell

rib Rib segments

hco Helical-to-helical crossovers

cco Circumferential-to-helical crossovers

1. INTRODUCTION
Cylindrical shells are used in many weight-sensitive

aerospace and other high-end applications. Buckling behaviour
of such a structure under axial compression is of critical
importance and grid-stiffened composite shells, on account
of their very high specific strength and stiffness properties,
provide an attractive alternative to traditional monolithic
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metallic/composite shells. A special class of such structures
is a lattice structure that comprises a grid of stiffening ribs
without any skin. The stiffening ribs are basically unidirectional
composites made by filament winding and these form an
efficient system of load-bearing elements. Different lattice
patterns such as diamond lattice with helical ribs only,
hexagonal lattice with helical and circumferential ribs, and
hexagonal lattice with helical and meridional ribs, etc can
be designed. Out of the various lattice patterns, hexagonal
pattern with helical and circumferential ribs is the most
common and the study of buckling analysis of lattice composite
cylindrical shell with such hexagonal lattice patterns has
been presented.

There is a growing interest in grid-stiffened composite
shells for their high-buckling resistance capabilities; but
the subject is of relatively recent origin and open literature
is somewhat limited. Three basic methods are used in the
buckling analysis of a stiffened shell. These are:

(i) smeared stiffener model,
(ii) discrete model, and
(iii) branched plate and shell model.
Smeared stiffener approach is efficient in global buckling

analysis and it is based on mathematical models that smear
the stiffening ribs into an equivalent ply. Several authors1-8

have adopted the smearing approach in buckling analysis
of stiffened shells. A general note on the development of
grid-stiffened composite shells, covering design and analysis
procedure as well as issues on manufacturing and testing,
is given by Vasiliev1, et al.. Initial design/analysis is based
on a continuum model where stiffening ribs are smeared,
based on rib spacing, to arrive at an equivalent shell.
Jones2 also used rib spacing in relation to rib cross-sectional
width as the criterion to smear the ribs. Velmurugan3, et
al. have presented a quick and efficient method useful for
parametric studies in the initial design phase of a grid-
stiffened shell. Wodesenbet4, et al. and Kidane5, et al have
presented a global buckling analysis model wherein smeared
stiffener approach is used through force/moment analysis
of a unit cell to determine stiffness contribution of the
stiffeners. Transverse strain and shear strains are neglected.

An improved smeared stiffener model that accounts
for transverse shear flexibility, is used by Jaunky6,7, et al.
and Damodar8, et al. In this model, skin-stiffener interaction
effects are included by considering a neutral surface profile
of the skin-stiffener combination. Smearing criterion is based
on equivalence of strain energies and involves considering
the strain energies of the skin and stiffeners using strain
compatibility equations. Slinchenko9, et al. used the smearing
approach, on the basis of rib spacing, to determine structural
stiffness matrix for finite element analysis of grid-stiffened
structure.

The discrete approach and branched plate/shell approach
are computationally more involved and these methods are
normally used in the final design phase of a grid-stiffened
shell. Several authors have worked in these directions, e.g.
Huybrechts10, et al. and Wang11.

Issues involved in buckling analysis of composite
structures are complex and the subject is still evolving as
is evident from a large number of publications that are
appearing regularly. For example, Jaunky12, et al. have
presented a discussion of shell theories as applied to buckling
of cylindrical laminated composite shell. Similarly, some
simple solutions for buckling behavior of cylindrical shell
are presented by Geier13, et al.

Filament-wound composite grid-stiffened shells throw
up numerous possible design configurations in terms of
various design elements. Once decided to use a particular
lattice pattern (such as hexagonal pattern with helical and
circumferential ribs), the choice of design elements comes
down; but still the designer needs to consider many possible
configurations that involve factors like number of ribs,
cross-sectional details, spacing of ribs, rib orientation,
etc. As a result, in the initial design phase, wherein broad
choice of design elements is made, finite element analysis
(FEA) is time-consuming and also it is more economical
to use a quick tool, such as smeared stiffener model to
find global buckling load.

While several smeared stiffener models are available
in the open literature that account for material property
variation, from the crossover zone to the unidirectional rib
segment is rare. The aim of this study is to evolove a
simple and efficient analytical model, which takes this material
property variation into account, for global buckling analysis
that would be useful in the initial design phase. This model
is intended to be used for narrowing down design choices
involving many possible configurations, so that in the
final design phase, finite element analysis with finer and
local details can be carried out effectively. A cylindrical
composite shell made up of a grid of continuous ribs has
been considered. Smearing the ribs into an equivalent shell
is done by equating the strain energy of the stiffened shell
to that of the equivalent shell and the methodology involved
use of simplified force distribution in the formulation of
strain energy. Ritz buckling analysis of the equivalent composite
shell is carried out to find out the critical buckling load.

2. ANALYTICAL FORMULATION
2.1 Kinematic Relations

Classical laminated shell theory14 (CLST) is based on
the following displacement field
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Displacements and the coordinate directions are defined
in Fig. 1. Following Kirchhoff hypothesis, 0z xz yze = g = g =
and the strain-displacement relations for CLST are given
by:
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The strains are given by
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2.2 Constitutive Relations
The linear constitutive relations as per CLST can be

expressed as
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The vectors and matrices in Eqn (4) are defined as
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2.3 Energy Formulations
The total potential energy of the grid stiffened composite

shell is given by the sum of the strain energy and work
done by external forces as

U VP = +                                             (6)
Strain energy is given by

( )
1

2 x x y y z z xy xy yz yz xz xzU dzdxdy= s e + s e + s e +t g + t g + t gòòò       (7)

In CLST, transverse shear strains are zero and one
obtains the following:

( )0 0 0 1 1 11

2 x x y y xy xy x x y y xy xyU N N N M M M dxdy= e + e + g + e + e + eòò     (8)

Then, using Eqn (4), mid-plane strain and mid-plane
curvatures (changes) are replaced with compliance matrix
elements and force and moment resultants, and one gets
the following:
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A convenient way to express the strain energy for Ritz
buckling analysis is in terms of the generalised strain vector
and stiffness matrix as:
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The work done by in-plane loads15 are given by
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2.4 Smeared Stiffener Model
A representative unit cell is considered such that by

repeating the unit cell the complete system of stiffening
ribs can be obtained. (Fig. 2.)

An equivalent shell represented by its length, radius,
and the orthotropic stiffness/compliance matrices is considered
for buckling analysis. The shell is simply supported at

Figure 1. Coordinate system and displacements.
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the bottom-end and free at the top-end. While the length
and radius of the equivalent shell are readily obtained
from the geometry of the lattice cylinder, the orthotropic
stiffness/compliance matrices are obtained by considering
strain energy.  In line with Eqn (9), under the combined
action of the in-plane loads the strain energy of the equivalent
shell is given by:
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Surface area of the shell in Eqn (12) is given by
2equ equ equR LD = p  whereas the force resultants and moment

resultants are defined in a conventional way and these
correspond to certain load cases stated in Table 1. Using
Eqn (12) and Table 1, strain energy expressions for the
equivalent cylindrical shell under different load cases are
readily obtained. (Each of these expressions has only one
unknown compliance matrix element and the corresponding
applied load).

The load cases considered in the strain energy formulations
of the equivalent shell are also considered in the strain
energy formulations of the stiffening ribs. In each load
case, the load applied on the equivalent shell is also applied
on the lattice cylinder. The load is discretely distributed
in the ribs and a simplified force/moment distribution in
the unit cell is found out.

Thus, the stress resultants in the rib segments and
crossovers in the unit cell are expressed in terms of the
applied load and other geometrical parameters describing
the lattice members. Different material properties are used
for the crossover zones and the ribs and, individual stiffness/
compliance matrix elements for the ribs and crossover
zones are found#.  The compliance matrix elements along
with the applied load and the geometrical parameters are
utilized to obtain the strain energy expressions of the
lattice cylinder under each load case. Total strain energy
is obtained by adding the strain energies of the rib segments,
helical-to-helical crossovers and helical-to-axial cross overs.
Final strain energy expressions are given in Appendix 1.
Strain energy of the equivalent shell under each load case
is equated to that of the lattice cylinder and the corresponding
unknown compliance matrix element of the equivalent shell
is obtained. (Matrix B and *

16equA , *
26equA , *

16equD  and *
26equD are

assumed to be zero.)

Figure 2. Hexagonal pattern–helical and circumferential ribs.

# Material properties and ply details are indicated in the section on rib unidirectional composites.

Load 
Case 

Non-zero 
force/moment 

resultants 
Simulated by 

1 xequN  An axial compressive force xP  distributed on the mid-plane. 

2 xequM  
An axial compressive force and an axial tensile force, each of magnitude xP  distributed 

eccentrically by 2e  and 2e-  respectively wrt the mid-plane. 

3 yequN  A lateral compressive force yP  (by an external pressure p) distributed on the mid-plane. 

4 yequM  
A lateral compressive force (by an external pressure p) and a lateral tensile force (by an 
internal pressure p), each of magnitude yP  distributed eccentrically by 2e and 2e-  

respectively wrt the mid-plane (Fig. 3.). 

5 xyequN  A torque xT  (by circumferential force distributed on the mid-plane at the top). 

6 xyequM  
A torque xT  (by circumferential force distributed eccentrically by 2e  wrt the mid-plane at 

the top) and a torque of the equal magnitude but in opposite direction (by circumferential 
force distributed eccentrically by 2e-  wrt the mid-plane at the top) (Fig. 3.). 

7  and xequ yequN N  Forces described in Case 1 and Case 3 applied simultaneously. 

8  and xequ yequM M  Forces described in Case 2 and Case 4 applied simultaneously. 

Table 1. Load cases
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3. BUCKLING ANALYSIS
Ritz buckling analysis procedure of minimisation

of total potential energy is adopted to determine the
critical buckling load of the equivalent composite shell.
The generalised displacements are expressed as kinematically
admissible expressions for simply supported boundary
conditions2 as follows:

1 1

1 1

1 1
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m n
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                           (13)

where, 
m

L

p
a =  and 

n

R
b =

Strain-displacement relations as per CLST are used
in the energy expressions given in Eqns (10) & (11) and
the expression for total energy of the shell is obtained
by integration. First derivatives of P wrt U

mn
, V

mn
 and

W
mn

 are found. For equilibrium, the total potential energy
has to be minimum for which the above derivatives are
equated to zero and an Eigen value problem is formed.
For different values of a and b different applied loads
satisfy the equilibrium equations out of which the minimum
load is the critical buckling load.

4. FINITE  ELEMENT  VALIDATION
With a view to check the validity of the smeared

stiffener model, finite element modelling of lattice cylinder
of hexagonal lattice pattern with helical and circumferential
ribs was carried out. ANSYS finite element software was
used for modelling as well as obtaining a solution. Twenty
nodded 3-D layered solid elements were used to model
the stiffening ribs (Fig. 4). The number of elements used
across the width and depth of any stiffener is 1 whereas
along the length of the rib segments, different numbers
of elements were used in different models depending upon
the length of the rib segment. Different real constant
tables are used to represent the rib segments, helical-
to-helical crossovers and helical-to-circumferential

crossovers both in terms of material properties as well
as ply construction.

Several representative cases  (Table 2) covering broad
and practical ranges of different parameters, viz., radius,
L

D
 ratio, number of helical ribs and height of ribs, have

been considered.
A comparison of smeared stiffener model results with

finite element results has been made and typical results
are given in Table 3 and Fig. 5. Smeared stiffener models,
in general, are known to estimate buckling load on the
higher side and the present model tends to make estimates
in a similar way for low rib thicknesses. For higher rib
thicknesses, modelling with single element across rib thickness
makes the finite element models too stiff and finite element
estimates are found to be on the higher side than found
in the estimates of smeared stiffener modelling. Deviation
(calculated as percentage of the higher estimate) is the
maximum at low rib thickness. Deviations are attributed
to the fact that while in the finite element analysis, the
ribs are modelled and represented nearly accurately as
3-D discrete structural parts, in the smeared stiffener
modelling, the stiffening ribs are converted into an equivalent
cylindrical shell based on certain simplistic criteria.

Figure 3. Simulation of M
yequ 

and M
yequ

.

Figure 5. Typical comparison of SSM results with FEM results.
Radius of shell=500 mm; No. of helical pair of
ribs=45; L/D=0.73; width of ribs=4 mm.

Figure 4. Typical finite element model.
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5. RIB MATERIAL VERSUS UD COMPOSITE
The ribs in a composite lattice cylindrical shell are

essentially unidirectional in character; but their strength
and stiffness properties are affected by the presence of
the cross-over zones. Fibre volume fraction of rib unidirectional
composites can be as low as 50 per cent of that of normal
unidirectional composites. (In a lattice cylinder, the crossover
zones would correspond to normal unidirectional composites
at either [ ]/+q - q  or [ ]/ 90+q  or [ ]/ 90-q  and the rib segments
would correspond to rib unidirectional composites at either
[ ]+q  or [ ]-q  or [ ]90 .) Experimental studies carried out
elsewhere on specially designed specimens show that rib
unidirectional composite properties are distinctly different
from (lower than) normal unidirectional composite properties.
In this study, material properties for carbon/epoxy system
have been taken as follows:
  Rib unidirectional composite:

1E = 108GPa, 2E = 8.0GPa, 12G = 4.8GPa, and 12n = 0.21.
  Normal unidirectional composites:

1E = 180GPa, 2E = 10.0GPa, 12G = 6.0GPa and 12n = 0.28.

6. CONCLUSION
An energy-based smeared stiffener model has been

developed for global buckling analysis of a composite

lattice cylindrical shell of hexagonal lattice pattern formed
by filament wound helical and circumferential ribs. Ritz
energy-based approach is adopted in the buckling analysis.
The smeared stiffener model developed along with Ritz
buckling analysis approach is found to be much faster
than finite element modelling, thus it facilitates trying out
several combinations of design parameters, within the
scope of above said lattice pattern, in an efficient way,
and thereby, the designer can come to an optimal configuration.
The rib segments and the crossovers are duly represented
in terms of material properties and ply construction in the
strain energy formulation, and thus in this model, difference
in rib material structure from crossover material structure
is accounted for. Extensive finite element modelling covering
different representative sizes have been carried out and,
given the intended usage of the model, good comparison
between finite element results and results of smeared stiffener
modelling has been obtained.
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Appendix 1

Strain Energy Formulations–Helical and Circumferential Ribs
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