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ABSTRACT

An implementation of track fusion using various algorthims has been demonstrated . The sensor measurements
of these targets are modelled using Kalman filter (KF) and interacting multiple models (IMM) filter. The joint
probabilistic data association filter (JPDAF) and neural network fusion (NNF) algorithms were used for tracking
multiple man-euvring targets. Track association and fusion algorithm are executed to get the fused track data
for various scenarios,  two sensors tracking a single target to three sensors tracking three targets, to evaluate
the effects of multiple and dispersed sensors for single target, two targets, and multiple targets. The targets
chosen were distantly spaced, closely spaced and crossing. Performance of different filters was compared and
fused trajectory is found to be closer to the true target trajectory as compared to that for any of the sensor
measurements of that target.

Keywords: Multi-sensor data fusion (MSDF), multiple-target tracking (MTT), data association, interacting multiple
models.

1. INTRODUCTION
Multi- sensor data fusion (MSDF) combines data

from multiple sensors and related information to achieve
specific inferences that may not be possible from a single
sensor or source1.  Multi sensor systems provide operational
benefits to an specific application2, which include robust
operational performance, extended spatial temporal coverage,
reduced ambiguity, improved detection performance, enhanced
spatial resolution, increased system operation reliability,
confidence and dimensionality. In recent years, significant
attention has been focused on MSDF for both military
and industrial applications. Military applications for
information fusion include a wide range of command,
control, communication, and intelligence (C3I) missions
for both tactical and strategic warfare3, like air-to-air
defence, surface-to-air defence, ocean surveillance, battlefield
intelligence and surveillance, target acquisition, strategic
warning and defence1,4. Industrial and commercial applications
of data fusion include automated manufacturing5, medical
diagnostic6, image processing7, remote sensing8, robotics9

and machine intelligence10.
The main concern for multi-target tracking is the data

association which includes observation-to-track association
and track maintenance. The objective of observation-to-
track association is to decide if the new sensor observation
corresponds to an existing track, and that of track maintenance
is to decide the confirmation or the deletion of each existing
track, and the initiation of new tracks. Gating is one of
the most popular methods for data association, used to
narrow the search around a predicted target position for

the next update or measurement, i.e., used to eliminate
unlikely observation-to-track pairings11. Three approaches
to data association within a tracking gate are nearest-
neighbour, global nearest-neighbour and all-neighbours’
method.

 In this paper, target as well as sensor modelling has
been done,  using MATLAB with user-friendly GUI for
model selection, data alignment settings, system parameters
and target model settings, tracking filter settings, simulation
and results plot settings and target trajectory plots window.
After setting the parameters, the user runs the Monte
Carlo simulation to generate the target measurements.
Thereafter track association and fusion algorithm is executed
to get the fused track. The output is a trajectory plot
constituting a comparison of the generated fused track
with the actual target position and the tracks generated
separately by each individual sensor. Measurement to
track allocation is performed local to the sensors, so that
each sensor maintains its own tracks. These tracks are
then associated with each other. Instead of fusing the
sensor tracks to form system tracks, the measurements
allocated to the associated tracks are fused through
measurement fusion.

  Two tracking algorithms have been implemented,
viz., Kalman filter and interacting multiple models (IMM)
filter. The user has the option to select any of the filters
for simulating a sensor while modelling the system. Track-
to-track fusion for two sensors tracking a single target
has been done using simple fusion (SF) and neural network
fusion (NNF). Track-to-track fusion for multiple targets
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tracking with multiple sensors has been done using JPDAF
and NNF.

2. THEORETICAL ANALYSIS
Dynamic targets require continuous or discrete, time

sampled measurement of the target location and the ability
to estimate the kinematics of the target to predict future
positions for continued sensor coverage. This process
requires iterative association of each set of sensor data
with predicted location of the known target tracks to determine
current track, new target or false alarm. In the formulation,
assumptions made are (a)The number of targets is N with
their tracks initialised (b)The targets are detected independently
at each scan (c)All the sensors are synchronised (d) Only
one of the measurements can be target originated, remaining
measurements are assumed due to false alarm or clutter
(e)At each time, a validation region (gate) is set up to
select the measurement to be used for the state update
(f) The number of false measurements obeys a Poisson
distribution with known mean, and (g)The target originated
measurement is Gaussian with mean and covariance.

2.1 Target Modelling
A discrete time-linear dynamic system described by

a vector difference equation with additive white Gaussian
noise that models unpredictable disturbances was used
for modelling the targets12,13. The dynamic equation of
the target is

( 1)  ( ) ( )  ( ) ( ) ( ) x k F k x k G k u k v k+ = + +             (1)

where the state vector at time k, ' ' '
k k k kx(k) = [x   x   y   y  ]

and v(k) denotes the sequence of the zero mean white
Gaussian process noise with covariance

'( )   [ ( ) ( ) ]Q k E v k v k=                                    (2)

The measurement equation is

( )  ( ) ( )  ( )z k H k x k w k= +                                    (3)
where w(k) denotes the sequence of zero mean white
Gaussian measurement noise with covariance

'( )   [ ( ) ( ) ]R k E w k w k=                                 (4)

The matrices F, G, H, Q and R are assumed to be known
and time varying, i.e., the system can be time varying and
the noise non-stationary. The initial state x(0), in general,
is modeled as random vectors, Gaussian distributed with
known mean and covariance. The two noise sequence and
initial states are assumed to be mutually independent. This
constitutes the linear-gaussian (LG) assumption.
• MMSE Estimate of the state if j=k (also called filtered

value)
• MMSE Smoothed (filtered) value of the state if j<k

• MMSE Predicted value of the state if j>k

2.2 Sensor Modelling
Recursive dynamic target tracking is a state estimation

problem that requires (a) A sensor to take the series of

observations upto time t and process the data to estimate
the state vector at time t.(b) A  predictor to take the series
of observations up to time t and process the data to predict
the state vector at time t t+ . The discrete time recursive
solution to the linear, minimum variance estimation problem
is provided by the Kalman filter. Another filter used is the
IMM which switches between multiple filters.

2.2.1 Kalman Filter
A simple Kalman filter target tracker, that has been

implemented, is based on the assumption that the motion
can be modeled as a point target moving in a straight line
with constant velocity14. A noise component is included
in the model to allow for the target motion which is not
constant. The measurements are made in Cartesian coordinates
and the measurement errors are regarded as independent
and normally distributed. It is assumed that the target
behavior is known a priori. The Kalman filter provides a
minimum mean square error estimate (MMSE) of target
position and velocity in this system setup. The estimation
algorithm starts with initial estimate and the associated
initial covariance is assumed to be available.

2.2.2 Interacting Multiple Models Filter
The IMM tracker is used to predict the current state

of the target using two or more different models. For example,
if the target is expected to be a maneuvering target, the
model used could be a straight line motion (SLM) model
and a turning motion model. Other models used could be
turn rate models or climbing/descending models. The number
of models used is application dependent. In this work, a 2-
model IMM is used, where the two models differ only by
the noise term (one for SLM, and one for turning motion)
and are equally probable. Similar to the soft-switching, the
model probabilities are updated at each new measurement,
and the resulting weighting factors are used in calculating
the state, i.e., no gating decision is required for the tracker.
In the IMM approach at time k, the state estimate is computed
under each possible current model using r filters, with each
filter using a different combination of the previous model–
conditioned estimate–mixed initial condition15,16. This algorithm
consists of r interacting filters operating in parallel. The
mixing is done at the input of the filters with the probabilities
conditioned on Zk-1.

IMM Algorithm : One cycle of the algorithm consists
of the following16,17:
(a) Calculation of the mixed probabilities
(b) Mixing (j=1, 2…r)
(c) Mode matching filtering (j=1, 2….r)
(d) Estimate and covariance combination

3. SINGLE  TARGET TRACKING WITH TWO
SENSORS
Sensors are assumed to have an individual measurement

statistics described by the covariance of their respective
track filters. As process noise introduced by the target
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behavior is observed by all sensors observing a common
track, their correlated covariance’s must be considered
in correlation metrics. The issue of track to track correlation18,19

arises when several sensors carry out surveillance over
a certain area and each sensor has its own data processing
system and number of tracks. Singer and Kanyuck20 assumed
the target to be estimated by a Kalman filter. Taking two
sites each with its sensor and data processor, the difference
between the two estimates is tested for the hypothesis
whether the two underlying states are the same. However,
it is tacitly assumed that the estimation errors of the
same target at two sites are uncorrelated. Although, the
measurement noise of the two sensors can be taken as
independent, there is still the same process noise in the
dynamic model. This makes the two estimation errors
correlated. The statistics used is

2

| | | || |
ˆ ˆ( ) ( )( )
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are the same holds if R2 is below a certain threshold
obtained through the Chi Square distribution. The implicit
assumption of the independence of the two estimate errors
is obviously incorrect as the same process noise enters
into the evolution equations of the two estimates if they
belong to the same target. The proposed statistical tests
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to be normalised by its covariance matrix. The covariance
of Eqn.(6) is
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reflects the correlation between the two estimates. The

test statistics that replaces 
|

j

k k
x is therefore

2 1
| | | | || | |ˆ ˆ ˆ ˆ( ) ( ) ( )j ij jii j i i j

k k k k k k k k k kk k k k k kR -¢= - - - - -x x P P P P x x    (10)

3.1 Fusion of the Estimates
If the common origin hypothesis is accepted, then

one can fuse21 the two estimates
|

ˆ
i

k k
x and 

|
ˆ

j

k k
x of  X(k).

Use is made of the static linear estimation equation
1ˆ ( )xz zz

-= + -x x P P z z                                (11)

where the prior mean is mapped into the posterior mean
using the measurement z.  Denoting the information from
sensor i  as the prior data (Di) one has, assuming normal
distribution, omitting the time argument for simplicity.

i i iˆP( | ) =N(  , )x D x P                                     (12)

Then a measurement

ˆ j j= - %x x x                                              (13)

is made, which represents the data Dj . The error j%x  is
zero mean with covariance Pj and cross-covariance Pij

with the error i%x , also normally distributed.

Dependent Tracks
The fusion equation becomes

1ˆ ˆ ˆ ˆ( )( )  ( )i i ij i j ij ji j i-= + - + - - -x x P P P P P P x x       (14)

The equivalent of the covariance updates equation

1
|xx z xx xz zz zx

-= -P P P P P   becomes                                   (15)

1( )( )  ( )i i ij i j ij ji i jiM -= - - + - - -P P P P P P P P P    (16)

which is the covariance of the fused estimate.

Independent Tracks
In the absence of dependence, i.e. if  Pij  = 0, equation

will be

1
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4. MULTIPLE TARGETS TRACKING USING JPDAF
JPDAF implementation of multi-target tracking using

MSDF is shown in Fig. 1.  The association probabilities
for every track with every measurement in the present scan
is computed and subsequently used as weighing coefficients
in the formation of a weighted average measurement for
updating each track. The problem of associating data with
targets in cluttered multi-target environment is discussed
by Tugnait16. The probabilistic data association method17,22,
based on computation of the posterior probability of each
candidate measurement found in the validation gate, assumes
that only one real target is present and all other measurements
are Poisson’s distributed clutter. In JPDA algorithm, the
joint posterior association probabilities are computed for
multiple targets in Poisson clutter. The algorithm is applied
to a tracking problem with multiple targets and sensors.
The initial state is assumed to be Gaussian with mean0|0x̂
and covariances0|0P . The tracked estimate of the target
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state x
k
 at time k, given data up to time i , is |k ix  and the

corresponding estimate of the output z
k 
is |

ˆ
k iz . The error

in the state estimate is | |
ˆ-k i k k ix x x% @  with error covariance

matrix  | | |{ } ¢
k i k i k iEP x x%@ , where E  denotes the expectation.

In the absence of measurement origin uncertainty, the
discrete time filter yields the state estimate and covariance
via the recursions

| | 1 1| 1
ˆ ˆ ˆ - - -= + = +k k k k k k k k k kx x W z Fx W z% %                (19)
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where the innovation vector

| 1
ˆ --k k k kz z z% @                                                       (21)

has the covariance matrix
'

| 1
'{ }  -= +k k k k kES z z HP H R% %@                       (22)

and the filter gain matrix is

' 1
| 1

-
-= kk k kW P H S                                     (23)

The resulting state estimate, under the above assumptions,
is the conditional mean

|
ˆ { | }=k k

k
kEx x Z                                      (24)

where Zk  denotes the set of data vector z
i
 for £i k .

The state estimation is done for each target, but the
measurement to target association probabilities are computed
jointly across the targets. To account for this interdependence,
consider a cluster of targets numbered 1,...=t T  at a given
time k. The set of m candidate measurements associated
with this cluster (i.e. validation gates for targets 1,...T )

is denoted y
j
  1,...=j m as above. Each measurement belongs

either to one of the T targets or to the set of false measurements
which is denoted by target number t = 0. Denoting the

predicted measurement for target t  by the ˆ tz  innovation
corresponding to measurement j   will be

ˆ-
j

t t
jz z z% @                                           (25)
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Figure 1. Flow chart for multiple targets tracking using multi-sensor data fusion.
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and the combined innovation will be

1

m
t t t

j j
j =

= båz z% %                                        (26)

where b t
j   is the posterior probability that measurement

j  originated from target t and 0
tb  is the probability that

none of the measurements originated from target t . Thus,
the JPDAF and the PDA approach utilise the same estimation
equation, the difference being in the computation of association
probabilities. The PDA computes tjb  separately for each
t under the assumption that all measurements not associated
with target  are false (i.e. Poisson distributed clutter)
whereas, the JPDAF computes tjb  jointly across the set
of T  targets and clutter. The key to the JPDA algorithm
is the evaluation of the conditional probabilities of the
following joint association events pertaining to the current
time k

1

k

j
j

m

jt
=

Q = qI                                             (27)

 jtq @

where {measurement j  originates from target t}
 j  =1,2,…….m

k 
; t = 0,1,….…T

where  t
j
 is the index of the target to which measurement

j is associated. For deriving the joint probabilities, each
measurement will be assumed validated for each target,
i.e. every validation gate coincides with the entire surveillance
region. Thus, the PDF of each false measurement will be
uniformly distributed in the entire surveillance region,
yielding simpler expressions for the probabilities of the
events.

5. MULTIPLE  TARGETS  TRACKING USING
NEURAL NETWORK FUSION
The NNF filter uses a feed forward back propagation

network with pure linear transfer function and network
training function TRAINLM that updates weight and bias
values according to “Levenberg-Marquardt” optimisation.
The steps involved in the implementation of ANNs are

Selection of a network structure: (number of hidden
layers, hidden nodes, and connectivity) Feed forward back
propagation network was selected for the multi target tracking
problem using multi sensor data fusion. The number of
hidden layers is one and the number of hidden nodes is
equal to the total number of scans for which the target
is simulated. The input has nodes depending upon the
total number of sensors and output layer has two nodes
for x and y coordinates of the target.

Selection of transfer functions: The input nodes are
connected through a pure linear transfer function to the
hidden nodes and so are the output nodes to the hidden
nodes. This is selected after lot of trials for optimum and
most efficient results.

Define training function: TRAINLM is used as the
training function that updates weight and bias values according

to “Levenberg-Marquardt” optimization.
Train the network: The network is trained for the

given inputs from sensors and the true target data as the
desired output for each of the targets.

Simulate the network: The network is then simulated
with the inputs from sensors and the output for each of
the target is stored.

The implementation of the NNF for multi target tracking
using MSDF is explained with the flowchart in Fig 2.
TRAINLM is a Network training function that updates
weights and bias as per “Levenberg-Marquardt” optimization.
Training occurs according to the TRAINLM’s training
parameters shown below with their set values in this
implementation
net.trainParam.epochs = 10 (Maximumnumber of

epochs to train)

net.trainParam.goal = 1e-2 (Performance goal)

net.trainParam.max_fail = 5 (Maximum
validation failures)

net.trainParam.mem_reduc = 1 (Factor to use for
memory/speed trade
off.)

net.trainParam.min_grad = 1e-10(Minimum
performance
radient)

net.trainParam.mu = 0.001(Initial Mu)

net.trainParam.mu_dec = 0.1 (Mu decrease
factor)

net.trainParam.mu_inc = 10 (Mu increase
factor)

net.trainParam.mu_max = 1e10 (Maximum Mu)

net.trainParam.show = 25 (Epochs between
displays)

net.trainParam.time =  inf (Maximum time to
train in seconds)

6. RESULTS
Various scenarios are generated to evaluate the effects

of multiple and dispersed sensors for single target, two
targets and multiple targets. The targets chosen are distantly
spaced, closely spaced and crossing. The trajectory plots
using Kalman filter for single target using two sensors
with simple fusion (Chi Square statistics) are shown in
Fig. 3. The fused trajectory is closest to the true trajectory.
The trajectory plots using Kalman filter, with Neural Network
Fusion are shown in Fig. 4 and the corresponding position
errors are plotted in Fig. 5. The trajectory plots using
IMM Filter with Neural Network Fusion are shown in Fig.
6 and the corresponding position errors  in Fig. 7. The
fused trajectory with NNF overlaps with the true trajectory
as confirmed by the X and Y position errors plotted in
Figs. 5 and  7, respectively. This shows  that   the NNF
gives more accurate results when compared with the Chi
Square statistics fusion technique for single target tracking
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using two sensors.
The trajectory plots for two crossing targets being

tracked by three sensors and their fused tracks with JPDAF
are shown in Fig. 8. The JPDAF fused trajectory of each
target is found to be closest to the respective true trajectories.
The track switching also does not occur at the crossing
point for the fused tracks. When fused track of sensor one
and two is used for fusion with sensor three, the results
improve as compared to the case where it is assumed that
sensor one is the most accurate and does not miss any
target and is used for fusion with all sensors. The trajectory
plots for the same scenario with NNF are shown in Fig.
9 and the corresponding position errors are plotted in
Fig.10. The NN fused trajectory of each of the targets

Figure 5. Single target position error plots (KF) for neural
network fusion.

Figure 4. Single target trajectory plots (KF) for neural network
fusion.

Figure 3. Single target trajectory plots (KF) for simple fusion.

Figure 2. Flow chart for NNF for MTT-MSDF.

closely follows the respective true trajectory as confirmed
by the X and Y position errors plots.

The trajectory plots for two and three target tracking
using two sensors with JPDAF are shown in Figs 11 and
12. The JPDAF fused trajectory of each target is closest
to the respective true trajectories. The trajectory plots for
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the same scenarios with NNF are shown in Figs 13 and
14 and the corresponding position errors are plotted in
Figs 15 and 16. The NN-fused trajectory of each of the
three targets closely follows the respective true trajectory
as confirmed by the X and Y position errors plots. Thus,
NNF is most accurate tracking technique and gives better
results than JPDAF. In real life the sensors are dispersed

and spatial alignment of the target data needs to be done
before any track to track fusion algorithm is executed to
get the fused trajectories. A single target being tracked
by three dispersed sensors, before spatial alignment, is
plotted in Fig. 17. Initial settings for Sensors tracking the
target are
(a) Location of Sensor-1: [10 10 10]
(b) Location of Sensor-2: [-20 -20 -20]
(c) Location of Sensor-3: [50 50 50]
(d) Target Initial State Vector: [250 5 100 15]

The trajectory of the single target, as tracked by three
dispersed sensors after spatial alignment along with the
true target trajectory, is also plotted in Fig.17. This validates
the data alignment transformations for each sensor. The
NNF algorithm is applied to the data of a single target
being tracked by two sensors in three dimensions23, and
the results are plotted in Fig.18. The position errors for
all three dimensions for the two sensors and the NN fused
track are plotted in Fig.19. As evident from these figures,
the NN fused data give a much better estimate than the
estimate from any individual sensor. This shows that the
NNF technique can be successfully used for tracking targets
in three dimensions as well.

7. CONCLUSION
The Kalman filter performs very well when tracking

non-maneuvering, slow moving, and fixed-site targets. The
Kalman filter does not handle maneuvering targets satisfactorily.
The IMM is the most consistent tracker of the evaluation
set for maneuvering targets. The IMM also performs fairly
well with non-maneuvering targets and slow-moving targets.
Results show that the fused trajectory is always closer to
the true target trajectory as compared to any of the sensor
measurements of that target. It is also observed that the
fusion results of NNF are most accurate and follow the
true trajectory very closely as compared to the JPDAF/
SF trajectory for the same scenario. Also the computation
time for the NNF algorithm is almost half of that taken
by the JPDAF algorithm for the same scenario. The present
work has been designed with great flexibility to allow for

Figure 6. Single target trajectory plots (IMM) for neural
network fusion.

Figure 7. Single target position error plots (IMM) for neural
network fusion.

Figure 8. Two crossing targets plots for JPDAF.

Figure 9. Two crossing targets plots for neural network fusion.



212

DEF SCI J, VOL. 59, NO. 3, MAY 2009

Figure 10. Two crossing targets position error plots for neural network fusion.

Figure 11. Target trajectory plots for JPDAF.

Figure 12. Three targets trajectory plots with JPDAF

Figure 13. Target trajectory plots for NN Fusion.

Figure 14.Three targets trajectory plots with neural network
fusion.
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Figure 15.Position error plots (2 targets & 2 sensors) for NN
Fusion.

Figure 16. Three targets position error plots with neural network fusion.

Figure 17.Trajectory plots of three dispersed sensors (before
& after spatial alignment).

Figure 18.Target trajectory plots in 3-D (single target & 2
sensors) for NN fusion.

Figure 19.Error plots in 3-d (single target & two sensors) for
NN fusion.

future applications and upgrades. To change
parameters, the user can alter the MATLAB code
within the applicable files to produce the desired
output. This program can be used to compare
tracking algorithms in a multiple sensor/multiple
target environment, view the effects of using
dispersed sensors, and also evaluate the effects
of data association algorithms.
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