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1. INTRODUCTION
Recently, particle filters have been introduced and

widely applied in manoeuvring target tracking field1-10. The
first working particle filter has been reported by Gordon1,
et al. The key idea is to represent the required posterior
density function by a set of random samples with associated
weights and to compute estimates based on these samples
and weights. So, particle filtering methods can deal with
nonlinearities in the dynamics and measurements  using
the Monte Carlo (MC) method2,3. Particle filter approaches
for markovian switching systems have also been proposed
by Doucet4 and Sarkka5. These methods propose augmentation
of the state with the mode variable and straightforwardly
apply a particle filter to this augmented state. However,
these methods have two major drawbacks. Firstly, there
is no control over the number of particles in a mode. In
these methods, the number of particles in a specific mode
is proportional to the mode probability, so that if the mode
probability is very low, only a fraction of the total number
of particles resides in that mode. This phenomenon is
known to cause numerical problems. Secondly, particle
filters can become quite inefficient when being applied to
a high-dimensional state space, since a prohibitively large
number of samples may be required to approximate the
underlying density functions with desired accuracy. To
solve this problem, Arnaud Doucet3 proposed a new Rao-
Blackwellized particle filtering. The idea of Rao-Blackwellized
particle filtering is that, sometimes it is possible to evaluate
a part of the filtering equations analytically and the other
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part by Monte Carlo sampling instead of computing everything
by pure sampling. According to the Rao-Blackwell theorem,
this leads to estimators with less variance than what could
be obtained by pure Monte Carlo sampling. Simo Sarkka6

proposed a new Rao-Blackwellized particle-filtering based
algorithm for tracking an unknown number of targets. In
Xu Xinyu7 proposed an adaptive RBPF for surveillance
tracking. In their method, the problem of target tracking
has been partitioned into two separate groups, with the
linear parts being computed by Kalman filter and nonlinear
part being estimated by particle filter.

In this paper, a novel multiple model Rao-Blackwellized
particle filtering (MMRBPF) is proposed for maneuvering
target tracking in a cluttered environment.

2. PROPOSED MULTIPLE MODEL RAO-
BLACKWELLIZED   PARTICLE FILTER
   Given the following jump Markov Gaussian system

( ) ( )1,k k k k kx f x M g M w-= +                          (1)

 ( ),k k k kz h x M v= +                                   (2)

( )1~ |k k kM p M M -                                    (3)

where xn
kx ÂÎ denotes the dynamical state of the system

in mode M
k
, zn

kz ÂÎ denotes the measurements in mode
M

k
, and M

k 
being the model state of the system and can

be modelled as a first-order Markov process. The process
noise and the measurement noise are possibly mode-dependent:
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( )Qwk ,0~ N  and ( )Rvk ,0~ N .
Generally, suppose that one has an estimator

( )mx,h depending upon two variables x and m, the Rao–
Blackwellization theorem reveals that its variance satisfies4,8

( ) ( )( ) ( )( ), , ,Var x m Var E x m x Var E x m mé ù é ùé ùh = h + hë û ë û ë û    (4)

Since ( )( )[ ]xmxEVar ,h  is non-negative, the variance of
the estimator ( )( )mmxE ,' hh = is less than that of the original
estimator ( )mx,h . The formal justification can be found in
8. One can interpret the Rao–Blackwellization theorem by
saying that the estimator obtained by the calculation of
conditional expectation ( )( )mmxE ,h is superior to the original
one ( )mx,h  , and the superiority manifests in the reduction
in the variance of the estimates.

For the manoeuvring target tracking in a cluttered
environment, let X

k
 denote the state to be estimated and

the observation z
k
 , with subscript the time index k. The

key idea of RBPF is to partition the original state-space
into two parts x

k
 ( state variables) and M

k
 (model variables),

such that ( )kkkk zMxxp :1:11:1 ,,| -  is a distribution that can be
computed exactly conditional on the model variables, and
the distribution ( )kkk zMMp :11:1 ,| -  will be estimated using
Monte Carlo methods such as particle filtering. The justification
for this decomposition follows from the factorisation of
the posterior probability8

( )

( )

( )

1: 1 1: 1 1:

1: 1 1: 1 1:

1: 1 1: 1 1:

, | , ,

| , , ,

| , ,

k k k k k

k k k k k

k k k k

p x M x M z

p x x M M z

p M x M z

- -

- -

- -

=
                           (5)

If the same number of particles is used in a regular
particle filter and a RBPF, intuitively, the latter will provide
better estimates for two reasons: first, the

dimension of ( )kkkk zMxMp :11:11:1 ,,| -- is smaller than
( )kkkkk zMxMxp :11:11:1 ,,|, -- ; second, optimal algorithms may

be used to estimate the tractable substructure, such as
PDA filter.The study shows how PDA filter is combined
with particle filtering to facilitate maneuvering target tracking
in a cluttered environment. Figure 1 illustrates one cycle
of the proposed MMRBPF algorithm.

Like regular particle filter, in order to implement the
multiple model Rao-Blackwellized particle filter for target
tracking, one needs to evaluate the likelihood of
measurements( )1: 1 1| , , i

k k k kp z M z M- - and the optimal
importance distribution ( )i

kkk MzMp 1:1 ,| - . Once  the
distributions above is achieved, one can implement the
multiple model Rao-Blackwellized particle filter  as in Fig.1.
Details of the derivation of the algorithmare given below.

2.1 Likelihood Function of Measurement
When there are mk measurements in the kth scan,  the

following mutually exclusive and exhaustive hypotheses
is obtained:

is the target originated measurement 1,2, ,

none of the measurments is target originated, 0
kj k

j

z j m

j

=ìïq = í
=ïî

K

   (6)

Using the total probability theorem [11, 12]

( )

( ) ( )

( ) ( )

1: 1 1

1: 1 1 1: 1 1
0

1: 1 1
0

| , , ,

| , , , , | , , ,

| , , , , |

k

k

i
k k k k k

m
i i

k k k j k k j k k k k
j

m
i

k k k j k k j k
j

p z M m z M

p z M m z M p M m z M

p z M m z M p m

- -

- - - -
=

- -
=

= q q

= q q

å

å
    (7)

where ( )kj mp |q  is the probability of the association
event

jq conditioned only on the number of validated
measurements,( )i

kkjkkk MzmMzp 11:1 ,,,,| --q  is the joint
likelihood of the measurements. Since the measurements
are conditionally independent,

 1. Sequence importance sampling step 
· For Ni ,,1L= , Sample: 

              ( )i
kkk

i
k MzMpM 1:1 ,|~ -  

· For Ni ,,1L= , evaluate the importance weight 

               
( ) ( )

( )i
kkk

i
kk

i
kk

i
kki

k
i
k MzMp

MMpMzMzp
ww

1:1

111:1
1 ,|

|,,|

-

---
- ´µ  

· For Ni ,,1L= , normalize the importance weight 
1

1

-

=
ú
û

ù
ê
ë

é
= å

N

j

j
k

i
k

i
k www  

2. Selection step 
· Multiple/suppress samples i

kM with high/low importance weighti
kw ,respectively, to 

obtainN random samples i
kM approximately distributed according to( )i

kkk MzMp 1:1 ,| - . 

3. Updating step 
· For Ni ,,1L= , use one step of the PDA filter to update the statekx . 

Figure 1. Proposed multiple model Rao-Blackwellized particle filter.
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( )

( )

( )
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1: 1 1
0

1 1
1: 1 1

| , , , ,

| , , , ,

| , , , 1,2, ,

0

k

k

k

i
k k k j k k

m
i

ki k k j k k
i

m i
G lik kj k k k k

m

p z M m z M

p z M m z M

V P p z M z M j m

V j

- -

- -
=

- + -
- -

-

q

= q

ì =ï= í
=ïî

Õ

K
    (8)

where ( )1: 1 1| , , i
lik kj k k kp z M z M- -  is the likelihood of the

measurement z
kj
, upon conditioned on the target model

M
k
, the previous measurements z

1:k–1
 and the previous

state model M
1:k–1

.
  The probabilities of the association events conditioned

only on the number of validated measurements11 are

  
( )

( )
[ ]
[ ]

( )
[ ]
[ ]

( )
[ ]
[ ]

1

1

1
1 , 1, ,

1
|

1 1 , 0
1 1

F k
D G D G D G k

k F k

j k

F k F k
D G D G D G

F k F k

m
P P P P P P j m

m m
p m

m m
P P P P P P j

m m

-

-

ì é ùmï × + - =ê ú
ï m -ê úï ë ûq = í

é ùï m m
- × + - =ê úï

m - m -ê úï ë ûî

K

(9)
where [ ]F kmm  is the probability mass function (pmf) of
the number of false measurements (FAs or clutter) in the
validation region. P

D
 is the probability of detection.

Two models can be used for the pmf [ ]F kmm
Model 1. A Poisson model with a certain spatial

density l

 [ ]
( )

!

km

V
F k

k

V
m e

m
-l l

m =                              (10)

Model 2. A diffuse prior model11

[ ] [ ]F k F km mm = m = d                                                   (11)

Using the (parametric) Poisson model12 yields

( )
( )

( ) ( )

1

1

1 , 1, ,
|

1 1 , 0

D G D G k D G k

j k

D G D G k D G

P P P P m P P V j m
p m

P P V P P m P P V j

-

-

ì é ù× + - l =ï ë ûq = í
é ùï - l × + - l =ë ûî

K

                                                         (12)
Define

( ) ( )1: 1 1| , , , , |i
kj k k k j k k j kp z M m z M p m- -P = q q        (13)

Using (8) and (12) in (13), one gets

( ) ( )

( ) ( )

( ) ( )

( )

1: 1 1

1 1
1: 1 1

1 1

1: 1 1

| , , , , |

1 | , ,

1 1

| , , , 1, 2, ,

, 0

k

k

i
kj k k k j k k j k

m i
D D G k D G lik kj k k k

m
D G D G k D G

i
lik kj k k k

p z M m z M p m

P P P m P P V V p z M z M

P P P P m P P V V

p z M z M j m

b j

- -

- - +
- -

- - +

- -

P = q q

ì é ù× + - lë ûï= í
ï é ù- l + - lë ûî

ì =ï= x ×í
=ïî

K

(14)
Where

( )
1 11 km

D D G k D GP P P m P P V V
- - +é ùx = × + - lë û ,

( )1 D G

D

P P
b

P

- l
=

Using (14) in (7), one gets

( )

( ) ( )

( )

1: 1 1

1: 1 1
0

1: 1 1
1

| , , ,

| , , , , |

| , ,

k

k

i
k k k k k

m
i

k k k j k k j k
j

m
i

lik kj k k k
j

p z M m z M

p z M m z M p m

b p z M z M

- -

- -
=

- -
=

= q q

é ù
= x +ê ú

ë û

å

å
            (15)

Now, the key issue remains unanswered that how to
choose the likelihood ( )i

kkkkjlik MzMzp 11:1 ,,| --  of the
measurement z

kj
. In order to evaluate the likelihood of

measurement z
kj
, suppose M target motion models are

used in this algorithm. It is defined as
1 Constant Velocity Motion at time step k

2 Constant Turn Motion at time step k

Constant Acceleration Motion at time step k

k

k

k

M Denote the

M Denote the

M M Denote the

= Û

= Û

= Û

M

If the measurement z
kj
 related to the target motion m,

the measurement likelihood can be written as follows

( )

( ) ( )

( )( ) ( )( )

1: 1 1

, , 1: 1 1 ,

, 1 1 ,

| , ,

| , | ,

| , , | , ,

i
lik kj k k k

i
kj k k m k m k k k m

i
kj k k k m k k k m

p z M m z M

p z M m x p x z M dx

N z h x M m R N x f x M Q dx

- -

- -

- -

=

= =

= =

ò
ò

                                                    (16)
From the Eqn (16), one sees that the measurement

likelihood is the filter likelihood for target. One gets

( )

( )( )( )
1: 1 1

1 1 ,

| , ,

| , , ,

i
lik kj k k k

i
kj k k k k t

p z M m z M

N z h f x M M m S

- -

- -

=

= = m=1,2,.. . ,M

(17)
where S

k,t
denotes the measurement covariance upon

conditioned on the target model.
Using Eqn (17) in Eqn (15), the joint likelihood of the

measurements can be denoted as

( )

( )( )( )

( )( )( )

( )( )( )

1: 1 1

1 1 ,1
1

1 1 ,2
1

1 1 ,
1

| , , ,

| , , 1 , 1

| , , 2 , 2

| , , ,

k

k

k

i
k k k k k

m
i

kj k k k k k
j

m
i

kj k k k k k
j

m
i

kj k k k k M k
j

p z M m z M

b N z h f x M M S if M

b N z h f x M M S if M

b N z h f x M M M S if M M

- -

- -
=

- -
=

- -
=

ì é ù
x + = =ï ê ú

ï ë û
ï é ùïx + = =ï ê ú= í ë û
ï
ï
ï é ù
ïx + = =ê ú
ï ë ûî

å

å

å

M

(18)
where

( )
1 11 km

D D G k D GP P P m P P V V
- - +é ùx = × + - lë û ,

( )1 D G

D

P P
b

P

- l
=
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2.2 Optimal  Importance Distribution
For each particle i , the optimal importance distribution

is computed by

( )

( ) ( )

( ) ( )

1: 1

1: 1 1 1: 1 1

1: 1 1 1

| ,

| , , | ,

| , , |

i
k k k

i i
k k k k k k k

i i
k k k k k k

p M z M

p z M z M p M z M

p z M z M p M M

-

- - - -

- - -

µ

=
         (19)

where the fact that the model M
k
 does not depend on the

previous measurements 1:1 -kz , and depends only on the
previous model i

kM 1-  has been used.
One can sample from the optimal importance distribution

as follows:
1. Compute the probabilities for each model m=1,2,...,M

( ) ( )1: 1 1 1| , , |i i i i i
m k k k k k kp z M m z M p M m M- - -P = = =

m=1,2,.. . ,M (20)
2. Normalise the importance distribution:

 
1

ˆ
i

i m
m M

i
m

m=

P
P =

På  ,  m=1,2,...,M                                                    (21)

Hence, one can sample the new modeli
k

M  with the
following probabilities:

• Draw 1=i
kM  with the probability i

1P̂

• Draw 2=i
k

M  with the probability i
2P̂

• Draw MM i
k =  with the probability i

MP̂

3. EXPERIMENTAL RESULTS
In this section, a simulation scenario and a real scenario

is presented to illustrate the implementation of the proposed
MMRBPF method. For comparison, a conventional IMM-
PDAF algorithm is also simulated.

 Consider the system

( ) ( )1,k k k k kx f x M g M w-= +                                            (22)

( ),k k k kz h x M v= +                                                        (23)

where the target state is ( )zyxzyxxk ˆ,ˆ,ˆ,,,= ,
{ } 1,3,2,1 =Î mM k corresponds to the constant velocity

motion model m=2, corresponds to the constant turn model
(clockwise), m=2  corresponds to the constant turn model
(counterclockwise)13.

Two passive sensors are located along the x axis with
sensor 1 at x = 5 km and sensor 2 at x = –5 km . Using
the detection fusion architecture14, the azimuth and elevation
angles, a

i
 and b

i
, measured by sensor i , are transmitted

to the fusion node where the measurement vector  (a1,b1,a2,b2)
is formed at each time step. The measurement function is
given by

( )

1

1

1
1

2 2
1 11

2 2

2 2

2

2 2
2 2

arctan

arctan

,

arctan

arctan

k k

y

x

z

x y
h x M

y

x

z

x y

æ öæ ö
ç ÷ç ÷
ç ÷è ø
ç ÷æ öç ÷aæ ö ç ÷ç ÷ç ÷ ç ÷+ç ÷b è øç ÷= = ç ÷ç ÷a æ öç ÷ç ÷ ç ÷ç ÷ ç ÷bè ø è øç ÷
ç ÷æ ö
ç ÷ç ÷
ç ÷ç ÷+è øè ø

          (24)

The model transition matrix is given by

0.9 0.05 0.05

0.1 0.8 0.1

0.1 0.1 0.8

é ù
ê úP = ê ú
ê úë û

                            (25)

The clutter model is assumed to be of uniform distribution
and the number of false measurements (clutters) is assumed
to be of Poisson distribution with known parameter l=1
(number of false measurements per unit of volume (km2)).The
detection probability of the true measurement P

D
 equals

1 and the gate probability P
G 

equals. In order to compare
the performances of two filters, 50 Monte Carlo runs have
been performed.

3.1 Scenario 1: Simulation Trajectory
Trajectory of the target is shown in Fig. 2. In this

scenario, ( ) ( ): 1T t k t k- -   is constant, the initial position
of the target is(2km, 8km, 1 km), and the initial velocity
is( )150m/s, 259.8m/s, 0. The segments are defined as follows.
• 1st segment: Rectilinear flight until the plane is at

( )6.35km, 15.53km, 1km space (from t=0s to t=30s).
• 2nd segment: Circular turn with turn rate 6°/s (from

t=31s to t=50s).
• 3rd segment: Rectilinear flight until the plane is at

 

Figure 2. Target trajectory.
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( )14.31km,10.33km,1km space (from t=51s to t=70s).
• 4th segment: Circular turn with turn rate 4.8°/s (from

t=71s to t=95s).
• 5thsegment: Rectilinear flight until the plane is at

( )21.26km,11.63km,1kmspace (from t=96s to t=100s).
Figure 3 shows the RMS position errors of the IMM-

PDAF and the MMRBPF. While Figure 4 shows the mode
probabilities of the IMM-PDAF and the MMRBPF. It is
apparent from Fig.3 that the result of the MMRBPF is
better than that of the IMM-PDAF. Also, if one looks at
Fig. 4, observed that the mode probabilities of the MMRBPF
method are in accordance with the trajectory, and the
correct model has the largest probability during each segment
and the turns are quickly detected. During the second
segment, it is seen  that the probability of the model 3
rises at the start of the turn, and has a dominant probability.
Once the turn is completed, the model 1 takes over again.
One also sees the probability of model 1 for the IMM-
PDAF method has dominated during all segments, so the
mode probabilities cannot be completely trusted after.

3.2 Scenario 2: Real Trajectory Experiment
In this scenario, the real data experiment has been

carried out to evaluate the performance of  the proposed

MMRBPF algorithm. The real data includes 40 nonperiodic
sampling points, and the target flight time is 107s. As
such, the sampling interval ( ) ( ): 1T t k t k- - is not constant.
Others are the same as in the scenario one. Trajectory of
the target is shown in Fig.5.

Figure 6 shows the estimated target trajectory of the
IMM-PDAF and the MMRBPF. Figure 7 shows the RMS
position errors of the IMM-PDAF and the MMRBPF. Figure

 

 

Figure 3. RMS error statistics. (a) IMM-PDAF, (b) MMRBPF.

Figure 4. Mode probabilities. (a) IMM-PDAF, (b) MMRBPF.

 

Figure 5. Target trajectory.

(a)

(b)

(a)

(b)
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8 shows the mode probabilities of the IMM-PDAF and
the MMRBPF. It is apparent from Figs.6 and 7 that the
result of the MMRBPF is better than that of the IMM-
PDAF. Table 1 also displays the performance comparison
between the IMM-PDA and the MMRBPF methods in
terms of RMS position error for two different clutter densities.
The percentage improvement obtained by using MMRBPF
is calculated as the ratio of the difference between the

RMS position errors of the MMRBPF method and the
IMM-PDAF method to the RMS position error of the IMM-
PDAF method. It is clear from Table 1 that in all cases
the results of the MMRBPF are better than that of the
IMM-PDA method.

The RMS Position error values apparently show that
a significant improvement is obtained on the results of
the IMM-PDAF. When the MMRBPF is used, the average

 

Figure 6. Estimated Target Trajectory. (a) IMM-PDAF, (b)
MMRBPF.

 

Figure 7. RMS error statistics. (a) IMM-PDAF, (b) MMRBPF.

 

Figure 8. Mode probabilities. (a) IMM-PDAF, (b) MMRBPF.

(a) (b)

(a)

(b)

(a)

(b)
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Clutter density   Scenarios       RMS position errors(km)            Percentage improvement  
(l)                      IMM-PDAF        MMRBPF           wrt IMM-PDAF (%) 

1.0            1            0.054             0.044                    17.7 

2            0.090             0.079                    12.1 

2.0            1            0.065             0.052                    19.7 

2            0.096             0.087                     8.9 

 Clutter density   Scenarios                 Probabilities of track loss (%)   
 (l)                                 IMM-PDAF         MMRBPF       

1.0             1                      0                 0 

2                      36                0 

2.0             1                      28                0 

2                      38                2 

percentage improvement with respect to the IMM-PDAF
is 14.9 % for 1.0 clutter density and is 14.3 % for 2.0 clutter
density, respectively.

Finally, Table 2 shows the probabilities of track loss
of the IMM-PDAF method and the MMRBPF method. We
have done 100 runs of the same trajectory with different
clutter density for scenario 1 and scenario 2 have been
performed. In scenario 1, it is seen from Table 2 that the
IMM-PDAF method did not diverge and performed almost
equally well as the MMRBPF method for 1.0 clutter density,
but in 28 runs out of those 100 runs the IMM-PDAF
method diverges for 2.0 clutter density. In scenario 2, it
is clear from Table 2 that the results of the MMRBPF are
better than that of the IMM-PDA method for two different
clutter densities (l=1 or l=2). The reason for these phenomena
is that in the PDAF method the target model is wrongly
estimated. This is due to the model interaction stage in
the PDAF method is not utilised for target measurement,
and results in a bad estimate of the target model. The
MMRBPF method, however, can deal with this situation
and it is seen that the method has a low probability (2
per cent) of track loss for 2.0 clutter density in the scenario
2, and in other cases the probabilities of track loss is 0
per cent.

4. CONCLUSIONS
In this paper, a  novel multiple model Rao-Blackwellized

particle filter (MMRBPF)-based algorithm has been proposed
for manoeuvring target tracking in a cluttered environment.
Rao-Blackwellization allows the algorithm to be partitioned
into target tracking and model selection sub-problems,
where the target tracking can be solved by the probabilistic
data association filter, and the model selection by sequential
importance sampling. The analytical relationship between
target state and model is exploited to improve the efficiency

and accuracy of the proposed algorithm. Extensive
comparative studies using both simulated and real data
have demonstrated the improved performance of the proposed
MMRBPF over the conventional IMM-PDAF.
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