
476

An Efficient Multistage Fusion Approach for Smartphone Security Analysis

Sumit Kumar#,*, S. Indu@, and Gurjit Singh Walia#

#DRDO-Scientific Analysis Group, Delhi - 110 054, India 
@Electronics and Communication, Delhi Technological University, Delhi - 110 042, India 

*E-mail: sumitkr@hotmail.com

AbStrAct

Android smartphone ecosystem is inundated with innumerable applications mainly developed by third party 
contenders leading to high vulnerability of these devices. In addition, proliferation of smartphone usage along with 
their potential applications in diverse field entice malware community to develop new malwares to attack these 
devices. In order to overcome these issues, an android malware detection framework is proposed wherein an efficient 
multistage fusion approach is introduced. For this, a robust unified feature vector is created by fusion of transformed 
feature matrices corresponding to multi-cue using non-linear graph based cross-diffusion. Unified feature is further 
subjected to multiple classifiers to obtain their classification scores. Classifier scores are further optimally fused 
employing Dezert-Smarandache Theory (DSmT). Strength of suggested model is assessed both qualitatively and 
quantitatively by ten-fold cross-validation on the benchmarked datasets. On an average of outcome, we achieved 
detection accuracy of 98.97% and F-measure of 0.9936.

Keywords: Android; Static features; Security analysis; Fusion; Smartphone

Defence Science Journal, Vol. 71, No. 4, July 2021, pp. 476-490, DOI : 10.14429/dsj.71.15077  
© 2021, DESIDOC

1. IntroductIon
Smartphone security analysis primarily deals with the 

fortification of a smartphone from threats and vulnerabilities 
posed by the malicious smartphone applications (apps). Hence, 
smartphone security analysis can mainly be categorised as apps 
security analysis. Smartphone has now become an essential 
part of human life due to its myriad of benefits viz. telephony, 
social networking, banking, e-commerce, messaging, video 
tele conferencing etc. Notwithstanding, smartphones are 
based on different platforms (Android, Windows Phone, iOS, 
and Blackberry OS, Kai OS etc.), Android OS Smartphones 
have captured more than 85.1% of the market share1. With its 
openness, popularity and over reliance, attacks on Android 
OS are also engulfing. As the Android platform permits the 
installation of apps from unconfirmed third-party resources, 
it creates the circumstances more difficult for smartphone 
users. Data kept in a smartphone (such as banking credentials, 
social networking passwords, official documents, contacts etc.) 
provoke assailants to devise methods to obtain this critical 
data illicitly by employing Android malwares such as Trojans, 
backdoors, worm, botnets, spyware, aggressive adware and 
ransomware. 

Generally, malwares are embedded in the popular android 
apps by repackaging techniques42 to pass these malicious 
apps(malapps) as benign apps and making them susceptible to 
malware attacks and security vulnerabilities.  These malapps are 
produced to accomplish diverse attacks like pilfering personal 
info, transferring messages without permission, enticing users to 

malicious sites and posing grave risk to smart phone operators. 
To elude detection, malapps are continuously evolving with 
many variants that further takes a formidable challenge to 
identify them. Also, the hackers are designing the malwares 
in way to evade the Machine Learning(ML) classifiers28. 
As a result, effective and proficient detection methods are 
desperately needed to handle the growing complexity of 
Android malware. To tackle the numerous challenges in 
Android malapps detection, research fraternity has produced 
voluminous work in this arena. There are mainly three types 
of techniques reported in the literature for security analysis of 
android malwares viz. static analysis19,44, dynamic analysis43,44 

and hybrid analysis44. Static analysis approach detects android 
malwares in mobile apps without executing them by simply 
examining the disassembled source code segments. In dynamic 
analysis, smartphone app is executed and the behaviour of 
the app is monitored to extract the dynamic features for app 
identification. Further, the amalgamation of static and dynamic 
analysis results in hybrid analysis which basically combines 
the static and dynamic features for app identification. 

Static analysis for android malapps detection does not 
require a host system environment as the apps are not executed. 
It is also the most economical, proficient and accurate method 
for investigating the apps. The numerous static features18 like 
permissions, app components, filtered intent, API calls etc. 
are reported in the literature. These features are extracted by 
disassembling the apps by APK tool19. Permission usage was 
extensibly exploited for development of solution for android 
malware detection. Investigations grounded on intents and 
permissions of applications are susceptible to false positive 
as benign applications too need sensitive permissions making 

Received : 13 September 2019, Revised : 24 August 2020 
Accepted : 25 February 2021, Online published : 01 July 2021



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

477

them misclassified as malapps. Techniques built on only API 
calls44 frequency are inept to create connections amid the 
API calls to develop the sophisticated behavioural semantics 
of apps, leading to poor detection rate of novel malapps. 
Therefore, choosing multiple complementary features plays a 
significant part in effective detection of malwares.

In this paper, we propose an android based Smartphone 
Security Analysis paradigm using non-linear graph fusion and 
optimal fusion of classifier(s). Multiple complementary features 
are deduced through extensive investigation of benchmarked 
datasets. Complementary features are fused through cross-
iterative graph diffusion. Thus a unified feature is generated 
and fed to optimal classifier for classifying the apps into 
benign or malicious with high detection accuracy. Outcomes 
of our results demonstrates that proposed method has better 
performance in classification and detection accuracy. 

In a nutshell, this manuscript has the following key 
contributions:
(i)  We suggest a static feature approach for smartphone 

security analysis that incorporates multiple feature 
unification through cross iterative diffusion. To our 
awareness, it is the first time that this approach is 
introduced to extract unified android static features.

(ii) Pragmatic and effective app security analysis framework 
is proposed wherein three ML algorithms are exploited 
to evolve a system to detect the malapps on the basis 
of unified feature representation. Further, outcomes of 
the ML algorithms were fused by DSmT16 algorithm to 
improve the accuracy achieved by individual classifiers. 
In addition, we presented a complete investigational 
study based on CICMalDroid202041, AMD40 and Drebin15 

malapps database and comparative experimentations with 
state-of-the-art methods to validate the efficiency and 
proficiency of our approach.
The rest of the research study is orchestrated as follows: 

Section 2, deliberates the smartphone security analysis related 
work in identifying malapps by static analysis approach.  
In Section 3, we expound our proposed framework for android 
malware detection. Section 4 discusses about evaluation of 
framework i.e. about experimental design along with the details 
of the datasets used for training and testing and experimental 
validation of suggested framework using both qualitative 
and quantitative measures. In the Section 5, we confer some 
limitations of the proposed method and concluding remarks 
along with future directions for the proposed work are 
highlighted under Section 6.

2.  rElAtEd WorK 
Contemporarily, there have been plenty of investigations 

in smartphone security analysis, which can be roughly classified 
as dynamic, static and hybrid analysis19,43,44. Although, review 
on android smartphone based security analysis were reported 
in various papers19,43,44. Comprehensive review of recent 
work in the field of static analysis does not exist. hence, in 
this section, we have gleaned the important insights from the 
different research papers based on the static analysis approach 
which will help the reader to gauge the gap in the research. All 
these work can be categorised into two categories as follows: 

2.1 Multiple Features and Single classifier
Significant permission identification based analysis 

considered by li2, et al. for detection of malwares. In this, 22 
significant permissions were identified and SVM algorithm was 
used for the classification. For known and unknown malwares, 
detection accuracy of approximately 93.62% and 91.4% 
respectively was achieved. Ensemble Rotational Forest based 
model3 was proposed that exploits permissions, permission 
rate, sensitive API’s etc. as key features to detect malware with 
accuracy of 88.26%. Significant pairings of the permissions4 
extracted from apps that can be threatening were identified 
leading to a malicious application detection with approx. 
accuracy of 95.44%. approximately. For this, datasets were 
analysed intricately and edge weights are allocated to pairs of 
permission depending on their frequency of occurrence in the 
datasets. MalPat6 was realised by extracting highly sensitive 
permission linked APIs for detecting malware with a high F1 
score of 98.24% using Random Forest(RF) algorithm.

2.2 Multiple Features and Multiple classifiers
An ensemble5 of three detection models based API 

frequency, API calls and API sequence was created to achieve 
detection accuracy of 98.98%. An automated malware app 
detection tool7 with unique ensemble learning method using 
permissions and API calls with naïve Bayes, Decision Tree(DT), 
Random Tree(RT) etc. to detect malwares was reported with the 
detection rate of 99% (approx.) with very low false positives. 
Authors10 generated a feature vector that represents malware 
features having same attributes with benign applications.   
In this, model learning approaches and automatic upgrade 
system for malapps detection using a multimodal deep learning 
method was proposed with accuracy of 98%. Classification 
model FalDroid11 based on shared features automatically 
classifies android malware with detection accuracy of 94.2% 
using frequent subgraphs. Wang12, et al. used multiple features 
and ensemble of classifiers viz. Knn, SVM, nB, CART and 
RF for android based malapps detection through majority vote 
fusion method. Both string features and structural features were 
exploited in Droid Ensemble13 and three ML algorithms viz. 
Support Vector Machine(SVM), K-Nearest Neighbour(KNN) 
and RF were used to achieve detection accuracy of 98.4%.  
A four layered static detection model using MD5, malevolent 
permissions, dangerous permissions and intents was proposed 
by Song14, et al.. Authors20 used API calls abstraction method 
to decrease the number of API calls be used as a feature and 
three ML algorithms (KNN, RF and SVM) were used for 
achieving detection with 98% accuracy. A novel method21 for 
identifying android based malapps to automatically detects 
malware by extracting the multiple static features such as 
API calls, permissions, network addresses, and mapped these 
features into a single feature space vector. Further, Linear 
SVM and DT algorithms were employed to implement the 
multi-label classification. Detection accuracy of 98% and 63% 
was achieved for small size families’ malware and zero day 
malwares respectively. In MalResLSTM22, authors presented 
Long Short Term Memory(LSTM) based method to classify 
malapps. Feature extracted were mapped to vector space and 
processed in the LSTM based deep learning model to achieve the 



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

478

accuracy of 99.32%. Oluwafemi Olukoya23, et al. investigates 
a malware detection model based on sensitive permissions and 
UI based app descriptions. Investigational outcomes establish 
precision of 90%. DroidDomTree24 excavates the tree structure 
of API calls in Android apps for identifying malapps. A tree 
structure of API calls accentuates a path flow and recognizes 
the layout of APIs and hence stresses the prominence of some 
APIs in an app. It accomplished detection rates varying from 
98.1% to 99.3% using eight different classifiers (J48, AD 
Tree, RF, RT, AdaBoost, naïve Bayes, Radial Basis Function 
network, KStar). Although, most of the work exploited either 
multiple classifiers or multiple features for development of 
solution for smartphone security analysis, a comprehensive 
solution exploiting both optimal combination of classifier and 
efficient fusion of multiple features was not investigated.

In another dimension, model based android malware 
detection approach were also investigated. For instance, Roni 
Mateless25, et al. presented a model for malapp detection with 
97.8% detection accuracy. Decompiled source code contains 
API calls, keywords, function names, strings in human format 
etc. Malevolent codes vary from the text because of the syntax 
rules of compilers and to prevent detection. nLP method was 
adapted here to classify the apps. Tian26, et al. investigates a 
method to detect the repackaged apps by code heterogeneity 
analysis. Code structure was divided into various subset 
and each subset was classified based on the features. Each 
subset depicts dependence based region. In this partition 
based detection, False Positive(FP) rate of 2.97% and False 
negative(Fn) rate of 0.35%were obtained. In MAMADROID27, 
a Markov chain based behavioural model for detecting the 
android malware. Sequences of API calls were modelled as 
Markov Chain. Model has achieved the F-measure of 0.87. 
Han28, et al. proposed malicious app detection scheme by using 
irretrievable feature transformations so that the evading of ML 

classifiers by hackers becomes impossible. however, the most 
of these methods could not achieve high accuracy and lack 
adaptivity.

In sum, survey of the closely linked literature revealed 
that most of the above approaches used traditional classifiers 
which can detect malapps using one or more classifiers. 
Multiple classifiers using multiple features gives improved 
overall performance in comparison to the single classifier 
using multiple features. Also, most of work either focussed 
on optimal combination of features or optimal combination 
of classifiers. hence, future direction of smartphone security 
analysis is to take benefit of both feature-level and score-
level fusion. Therefore, we proposed a unified feature based 
on cross iterative diffusion of eight complementary feature 
and optimum fusion of three ML algorithms to enhance the 
detection accuracy. Minutiae of suggested method described in 
the following section.

3.  ProPoSEd FrAMEWorK For 
SMArtPhonE SEcurIty AnAlySIS
In this manuscript, multistage fusion model wherein 

both feature and scores are optimally combined is proposed to 
achieve highly robust Android malware detection. Overview 
of the proposed framework is depicted in Figure 1. For 
this, we have designed three modules viz. multi-cue feature 
extraction, feature unification, and optimal classifier fusion to 
achieve efficient malware detection. For this, semi-automated 
tool (taking the aid of APK tool) was made to extract the 
features from the decompiled Android Package Kit. APK tool 
decompresses, *.apk   files into *.dex  and AndroidManifest.
xml. Features extracted consists of API calls, Permission, 
Intents, App Components, native Code, Op Code, hardware 
Feature, network Address. Each feature is exposed to decision 
tree learning for generating corresponding similarity matrices. 

Figure 1. Proposed smartphone security analysis framework. Stage1 extract complementary information from eight multi-cue to 
obtain unified feature. unified feature is furtherclassified using optimal fusion of three classifiers at stage 2.



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

479

These matrices are subjected to normalisation procedure 
accompanied by filtering out the most weighted similarities 
to generate the sparse matrices. To unify these features, 
unified-graph is created via graph fusion technique based on 
cross-iterative diffusion. This method of enhances the robust 
connections and filters out the weaker ones. Thus, unified set of 
features are generated for further classification. Unified feature 
is further subjected to multiple classifier to make final decision 
about app classification.

Due to multitude of features embedded in the android 
apps, single ML algorithm presents its inability to classify 
these apps effectively43. hence, more than one classification 
algorithms are exploited to detect complex malapp. In the 
proposed framework, we have chosen three ML algorithms viz. 
Random Forest(RF)32, Support Vector Machine(SVM)31 and 
naïve Bayes(nB)33 for classification of android apps. Also, we 
proposed optimal combination of these classifier to accurately 
classify applications into two classes, namely, benign and 
malicious. Classification algorithms are chosen to compensate 
the demerits of the individual classifiers. For instance, RF is 
usually used when there are more number of features than 
observations. Its performance is excellent in spite of having 
noise in the predictor variables and it is also not vulnerable to 
overfitting. Also, RF classifier is preferred for large dataset as 
it is not susceptible to outliers. On the limited dataset, SVM 
performance is optimal for two class problem where the data 
is outlier. For small dataset, NB performs optimally. It is 
simple and speedy to give classification results. In proposed 
classification solution, three classifiers complements each 
other in framework and synergised the performance of resultant 
classifier. Our approach exploits three classifiers in parallel and 
the output scores of all the classifiers are fused to synergised 
the overall performance for detection. Respective classifier 
scores viz. rS for RF, sS for SVM, nS  for NB are further 
transformed into belief masses using Shafer Model17. Masses 
for the three class focal elements are optimally combined 
using PCR-6 Rules17, where classifier’s conflicting mass is 
redistributed in proportion to the mass which is contributing 
to the conflict. Finally, in the decision model,  belief mass

6 ( )pcrm B is compared with the threshold value thrm and test 
app is classified into benign depending on whether 6 ( )pcrm B is 
greater than or equal to the thrm or malign otherwise. Details of 
the proposed Android malapp detection framework is presented 
in the next sub-sections.

3.1 Multi-cue Feature Fusion
Multi-cue feature fusion process consists of multiple 

feature extraction and their fusion using cross diffusion of 
extracted features. Multiple features are extracted for achieving 
the high performance. Cross diffusion of features extract 
complementary information to obtain highly distinct unified 
feature leading to creation of clear and distinct boundary 
between benign and malicious class.

In the proposed framework, we have modelled multi-
cue feature fusion problem as eight graphs and fused them by 
iterative cross diffusion process. 

3.1.1 Multi-cue Feature Extraction
Multiple features are extracted for given test app t 

along with apps from reference dictionary, { , }q C C+ −∈  , C+  
corresponds to benign apps and C−  corresponds to malicious 
app. Reference dictionary apps are updated with time so as 
to incorporate the new apps in the proposed framework to 
enhance its detection capability. In the proposed approach, we 
have extracted eight features namely, API calls, Permission, 
Intents, App Components, native Code, Op Code, hardware 
Feature, network address using from semi-automated tool.

 Description of the eight extracted feature types are as 
follows:

APIs: Android OS has many APIs (Application 
Programming Interface) that are used for interacting with 
Android smartphones. Malwares extensively used APIs to target 
the Android ecosystem.  API’s are present in the *.dex   class of 
an app and can also be found in the Smali Files of the APK.  By 
extensive analysis of the dataset, we have chosen 1k  number 
of API’s listed in Table 1, whose frequency of occurrence 
is taken as a feature value. Feature value is determined  
using Eqn (1)

table 1. details of API, permission and intent feature

Feature Position of Feature (i) Symbol

API

AutoSmsReceiver, BootReceiver, PhoneCallReceiver, abortBroadcast, getCall state, 
getActivenetworkInfo(),getDataActivity(),getDeviceId(),getnetworkType(), getSimOperator(), 
getSimSerialnumber(), getSimState(), getSubscriberId(), classes.dex, entry.loadClass(),ge
tConnectionInfo(), getSupplicantState(), setWiFiEnabled(), exechttpRequest(), Runtime.
exec(), Cipher.getInstance(), sentTextMessage(), getMessageBody(), getSubscriberID(), 
getLastKnownLocation(), com.android.contacts()

 

1iϕ

Permission

Access_network_State, set_Prefered_Application, Access_Wi-Fi_State, Access_Fine_Location, 
Call_Phone, Change_network_State, get_Accounts ,Internet, Install_Packages, read_Contacts, 
Read_Logs, Read_Phone_State, Read_Sms, Receive_Boot_completed, Restart_packages, 
Receive_Sms,Send_Sms, Vibrate, Write_Secure_Settings, Read_history_Bookmarks, Update_
Device_stats, Manage_Documents, Install_Location_Provider

2iϕ

Intents
Boot_Completed, Send_To, Dial, Screen_off, Text, Send, User_Present, Screen_On, Call, Package_
Data_Cleared, Text, Send, Quickboot_Poweron, Time_Changed, Sms_Received, Airplane_Mode, 
Battery_Changed get_Content, Data_Sms_Received

3iϕ



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

480

1

1
1

( )
k

t
A i

i
F f

=

= ϕ∑                           (1) 
      
where, 1( )if ϕ is a function that determines the frequency of 
occurrence of  API, 1iϕ  denotes API positioned at thi  place in 
Table 1 and t

AF  is the API related feature vector of the test app 
t  . Similarly, API feature q

AF for reference dictionary apps are 
extracted for { , }q C C+ −∈ .

Permissions: Android apps requests for permissions from 
smartphone user during the app installation. Permissions are 
essentially required to protect the privacy of the users making 
the permissions the most vulnerable conduit for launching 
attacks in the android smartphones. Arora4, et al. exploited 
numerous permissions for malware identification. Permissions 
are stored in Manifest.xml file of the app source code. In our 
model, we have taken frequency of occurrence of most risky 
permission’s request also as a feature vector. For this, 2k  
number of permissions are chosen considering their frequency 
of call by various malicious apps. Feature vector related to 
permission is determined using Eqn (2). 

2

2
1

( )
k

t
P i

i
F f

=

= ϕ∑                                         (2)
       

where, 2( )if ϕ is a function that determines the frequency of 
occurrence of most frequent permission , 2iϕ  denotes such 
permission positioned at thi  place in Table 1 and t

PF  is the 
permission related feature vector of the test app t .Similarly, 
permission feature q

PF  for reference dictionary apps are 
extracted for { , }q C C+ −∈ .

System Intents: Intent36 is basically a message used 
to kick start activity in apps. Starting a service and activity 
and delivering a broad cast are three basic usage of intents. 
Malware writers are exploiting intents for launching numerous 
attacks. We have chosen 3k  number of intents (listed in Table 
1) that are widely used to segregate the malapps from benign 
apps. Therefore, Intents are taken as feature parameter. Total 
count of these intents is determined using Eqn (3)

3

3
1

( )
k

t
I i

i
F f

=

= ϕ∑                           (3)

where, 3( )if ϕ is a function that determines the frequency of 
occurrence of Intents 3iϕ , positioned at thi place in Table 1 and 

t
IF  is the intent related feature vector of 3k number of intents 

of  app t .Similarly, Intent feature q
IF for initially stored apps 

are extracted for { , }q C C+ −∈ .
APP Component: App components characterise 

applications and they are the conduits though which the user 
or system accesses an app. These components are related by 
the app’s manifest file AndroidManifest.xml that describes the 
components of an app and dictates the interaction mechanism. 
There are 4 main app components lying in Android app i.e. 
Service, Activity, Broadcast Receiver, and Content Provider in 
the app’s manifest file and frequency of these app components 
are taken as feature parameter and is determined using Eqn (4)

( )t
CF f AppComponent=                                               (4)
t

CF is the feature value for test app t . Similarly, app 
component feature q

CF for reference dictionary apps are 
extracted for { , }q C C+ −∈ .

Native code: native code is processor specific code and 
does not run on the emulator. It is used to hide malicious content 
in the app as this code is difficult to understand. Therefore, 
another feature parameter is the total sum of these native codes 
in an application. Native code feature parameter for app t is 
calculated using Eqn (5)  

( )t
NF f NativeCode=                                        (5)

Similarly, native code feature q
NF for reference dictionary 

apps are extracted for { , }q C C+ −∈
OP Code: An opcode or Operation Code is a machine 

language instruction that stipulates the operation to be 
performed with CPU. Frequency of sequence of opcodes 
extracted from the apps can be taken as features for malapp 
identification. Opcodes are exploited by the malware writers 
because of their similarity to app code and frequency of 
these op codes are taken as the next feature parameter and is 
determined using Eqn (6)

( )t
OF f OPCode=                           (6)
t

OF is the feature value for test app t. Similarly, op code 
feature q

OF for reference dictionary apps are extracted for 
{ , }q C C+ −∈
Hardware Feature: Hardware features37 are used by 

Android apps to access hardware of the android smartphone 
and are listed in the AndroidManifest.xml file. hardware 
features are characterised by “android. hardware” in the 
manifest file. In the proposed framework, by extensive analysis 
of dataset, we have chosen55 hardware feature for generating 
feature parameter. The frequency of 55 hardware features in 
the manifest.xml file of an app is taken as feature parameter 
and is determined using Eqn (7)

( . )t
HF f android hardware=                                           (7)
t

HF is the feature value for  test app t . Similarly, hardware 
feature q

HF for reference dictionary apps are extracted for 
{ , }q C C+ −∈
Network Addresses: Malapps designers often wants to 

interact with malapps so as to direct the user’s critical data on 
the smartphone to designated network addresses of the C&C 
server embedded in malapps. So, network address can be taken 
as the feature parameter. The total number of these network 
addresses in an application is the network address based feature 
parameter for test app t is calculated by  Eqn (8) 

( _ )t
WF f network address=                                           (8)
t

WF is the feature value for test app t . Similarly, network 
address feature q

WF for reference dictionary apps are extracted 
for { , }q C C+ −∈ .

In sum, we have constructed eight feature descriptor as 
mentioned in Eqn (1) to Eqn (8) for every test application 
and reference dictionary apps. Similarly, network feature q

WF
for reference dictionary apps are extracted for { , }q C C+ −∈ . 
Feature vectors extracted using Eqn (1) to Eqn (8) are further 
fused to obtain unified feature. A set of C+  number of benign 
and C−  number of malicious apps are stored as a reference 
dictionary. This set is updated with the advent of the new apps 
being subjected for analysis. In feature unification, features for 
test and reference dictionary apps are extracted and subjected 



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

481

for creation of non-linear graph. In the graph, test app feature 
act as one node and reference dictionary apps as other nodes. 
Following this, eight graphs are generated for each test app t .

For each feature descriptor 
{ , , , , , , , }t

A I P C N O H WF F F F F F F F Fφ ∈  of  test app t , we construct 
graphs { , , , , , , , }t

A I P C N O H WU U U U U U U U Uφ ∈  using an edge 
weight described as the similarity between feature descriptors 
of two  apps  t  and  q  where { , }q C C+ −∈ . In this, similarity 
matrices *N NUφ ∈  is constructed by decision tree, where 

1N q= + . For feature pair values ( , )t qF Fφ φ  corresponding to 
t  and q  apps for thφ  feature, similarity parameter ( , )U t qφ is 
calculated by passing them through decision trees using Eqn 
(9) 

(( ( )) ( ( )))
( , ) , [ , , , , , , , ]

t t

t

f L F L F
U t q A I P C N O H W

T
φ φ

φ

∩
= φ∈  

             (9)        
L  above is the set of class labels of trees grown and tT  is 

the total number of decision trees made. Graph generated using 
Eqn (9) are further fused using proposed cross diffusion to 
achieve unified feature.  Details of features unification follows 
in turn.

3.1.2 Multi-cue Feature Unification
Multi-cue features extracted from decompiled source code 

may not be linearly associated and need non-linear based fusion 
technique to combine this complementary info. To integrate 
multi-cues efficiently, non-linear graph based cross-diffusion 
process was introduced by Wang29, et al.  Further, improved 
version30 of this work29 was explored for classification. In this 
work, complimentary info from multi-cue data is extracted 
and non-linear unified graph was generated by cross diffusion 
process. Classification results30 demonstrates that the multi-
cue information unification by non-linear graph method is 
more precise than linear graph methods. Cross diffusion 
approach proposed by Walia38, et al. is employed for feature 
fusion in the proposed framework. This method is better than 
previous methods29,30 and improves the detection accuracy 
because of the iterative normalisation of similarity matrix 
and updated sparse representation. Unique graph unification 
approach accomplishes non-linear feature fusion with iterative 
normalisation. This keeps a robust representation of the apps 
(malicious or benign) and rejects weak features that make the 
classifier vulnerable to unreliable results. 

Similarity matrix generated using Eqn (9) for each 
feature graph is again normalised using Eqn (10) to obtain 
respective normalised matrices , { , , , , , , , }

t
U A I P C N O H Wφ φ∈ . 

Normalisation technique sets the similarity of each app with 
itself as constant ε , and the similarities with rest of the apps 
in the test set to (1- ε ). The first row of the t

U φ comprises the 
edge weights respective to test app t

1

( , )
(1 ) ,

( ( , )( , )

,

N

q

U t q
t q

U t qU t q

t q

φ

φ φ
=


− ε ≠= 


ε =

∑                            (10)

( , )U t qφ above is further used to derive a sparse vector 
depiction of the training app t  to keep the most similar features 
and discard the other using Eqn (11)

( , ), ( ) ( )
0,

k U t q if U t K NN t
V

otherwise
φ φ

φ

 ∈ −= 


                           (11)

We further normalised kVφ as 
k

V φ  vector using Eqn (12)

1

,
1

k
k

N
k
i

i

V
V

V

φ
φ +

φ
=

=

∑
                                                                 (12)

Normalisation further allocates the weights amongst the 
strong links giving robust sparse depiction. Fused feature 
descriptor 1( ) N

TFF t +∈�  is obtained by fusing the different 
feature sparse vectors V φ  by cross diffusion approach, where 
h  is the number of features taken.

{ } ( ), ,, 1
1,

1( ) * * ( ) *
1

h transposek k
i ii

j j
U t V U t V

h
φ φ φφ +

= ≠φ

 
=  

− 
∑

    
  (13)

where, i  is the thi  iteration of cross diffusion process and 
h  =8

To enhance the effectiveness of the diffusion , modification 
of the recursive operation by normalisation of each row 
respective to the test app in the similarity matrix , 1( )iU tφ +  

1N +∈�  obtained after every iteration as

{ }
, 1

, 1

, 1
1

( )
( )

( )

i
i N

i
j

U t
U t

U t

φ +
φ +

φ +
=

=

∑
                                            (14)

Following this, normalised sparse vector , 1n iV φ + is obtained 
from sparse vector , 1n iVφ +  in the next iteration using Eqn(14), 
Eqn(11) and Eqn(12). Lastly, the mean of adjacency list of 
test app for each feature descriptor , ( )TU tφ is taken to find the 
fused feature descriptor ( )TFF t as given in Eqn (15)

( )
8

[ ],
1

( )
( )

8

j T
j

T

U t
FF t

φ

==
∑

                                              (15)

where, T  is the final iteration of the normalisation process of 
cross diffusion and  { , , , , , , , }A I P C N O H Wφ∈ .This ( )TFF t   
is taken as a unified feature and given as  input to train the 
classifier(s). Detail of unified feature classification for test app 
follows in next subsection.

3.2 optimal classifier Fusion
Unified feature for the test app is applied to classification 

module for final decision. For this we subjected the unified 
feature to three trained classifiers in parallel to determine their 
classification scores. Proposed classification model comprises 
of two phases viz. individual training classifier score estimation 
and optimal combination of the individual classifier scores. For 
classification of test app, three  classifier scores viz. Random 
Forest rS and Support Vector Machine sS  , naïve Bayes nS
are determined when unified feature is fed  to these individual 
trained classifier. These classifiers scores can be combined by 
various score fusion approaches16,35,45 available in the literature. 
In the proposed method, respective classifier scores attained are 



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

482

further subjected to classifier score fusion paradigm where the 
obtained scores from the classifiers are converted to respective 
belief masses and the conflicts amongst individual belief is 
redistributed and resolved by means of DSmT based PCR-6 
rules16.

Scores of the different classifiers are fused using Shafer’s 
model. For this, the frame of discernment { }( ),rF B M=
is specified by of two focal elements viz. Benign ( )B   and 
Malicious ( )M  corresponding to whether the app is benign 
or malicious. Each classifier in the model delivers a score 
about classification. The individual belief mass is obtained by 
transforming the classifier score ( ), ,r s nS S S  with the aid of 
Denoeux Belief System17 using  equations (16) and (17):

( ) * ( )j j jm B C S B=                                                      (16)

( ) 1 * ( )j j jm M C S B= −                                                (17)

Where { , , }j r s n∈ and jC  is the confidence factor of individual 
classifier. Further, belief masses are optimally fused by means 
of DsmT-based PCR-6 rules. For this conjunctive consensus is 
determined using Eqn (18) and Eqn (19):

3

1

( ) ( )rsn j
j

m B m B
=

=∏                                                     (18)

3

1

( ) ( )rsn j
j

m M m M
=

=∏                                                   (19)

Where { , , }j r s n∈  and ,B M corresponds to benign and 
malicious app respectively.

Total conflict amongst classifiers is obtained which 
consists of partial conflicting masses of benign and malicious 
scores using Eqn (20):

( ) ( )* ( )* ( ) ( )* ( )* ( )rsn r s n r s nm B M m B m M m M m M m B m M∩ =∅ = +                          

(20)
( )* ( )* ( ) ( )* ( )* ( )r s n r s nm M m M m B m M m B m B+ +

( )* ( )* ( ) ( )* ( )* ( )r s n r s nm B m B m B m B m B m M+ +

Total conflict comprises of six number of partial 
conflicts which are further reallocated amongst benign and 
malicious scores using (21-26) equations, where 1b  to 6b  are 
redistributed conflict masses for the benign focal element and 

1m  to 6m  are redistributed conflict masses for the malicious 
focal element respectively.

( )* ( )* ( )1 1
( ) ( ) ( ) ( ) ( ) ( )

r s n

r s n r s n

m B m M m Mb m
m B m M m M m B m M m M

= =
+ + +

     (21)

( )* ( )* ( )2 2
( ) ( ) ( ) ( ) ( ) ( )

r s n

s r n r s n

m M m B m Mb m
m B m M m M m M m B m M

= =
+ + +

     (22)

( )* ( )* ( )3 3
( ) ( ) ( ) ( ) ( ) ( )

r s n

n s r r s n

m M m M m Bb m
m B m M m M m M m M m B

= =
+ + +

     (23)

( )* ( )* ( )4 4
( ) ( ) ( ) ( ) ( ) ( )

r s n

s n r r s n

m M m B m Bb m
m B m B m B m M m M m B

= =
+ + +

       (24)

( )* ( )* ( )5 5
( ) ( ) ( ) ( ) ( ) ( )

r s n

r n s r s n

m B m M m Bb m
m B m B m M m B m M m B

= =
+ + +

        (25)

( )* ( )* ( )6 6
( ) ( ) ( ) ( ) ( ) ( )

r s n

r s n r s n

m B m B m Mb m
m B m B m M m B m M m M

= =
+ + +

      (26)

The final belief regarding whether the test app is benign 
or malign is derived by adding the redistribution masses and 
corresponding conjective consensus using equations Eqn (27) 
and Eqn (28)      

6 ( ) ( ) 1 2 3 4 5 6pcr rsnm B m B b b b b b b= + + + + + +          (27)

6 ( ) ( ) 1 2 3 4 5 6pcr rsnm M m M m m m m m m= + + + + + +         (28)  

The final belief whether test app t is benign or malicious 
is determined from by 6 ( )pcrm B or 6 ( )pcrm M  . Thereafter, 
decision is taken by comparing the final beliefs with a 
threshold value. If value of 6 ( )pcrm B  is greater than or equal 
to the threshold ( thrm )value,  then  test app t is declared as 
benign otherwise it is declared as  malicious. Algorithm1 sum 
up the pseudocode for proposed framework for Smartphone 
Security Analysis. In the next section, performance evaluation 
of proposed method against other state-of-the-art malware 
analysis methods follows.

Algorithm 1: Proposed Smart Phone Security 
Analysis 

Function: Security Analysis  ( , , )S t C C+ −

For ( )kC C∈  do

      S ← [ , , ]kC C C+ −

 derive { , , , , , , , }t
A I P C N O H WF F F F F F F F Fφ ∈   from 

Eqn(1-8)
         for Fφ  do 
               Derive { , , , , , , , }t

A I P C N O H WU U U U U U U U Uφ ∈  
from Eqn (9)

               normalise Uφ  to U φ using Eqn (10)

     if  ( ) ( )U t k NN tφ ∈ −   then

                    ( , )kV U t qφ φ←
    else
                0kVφ =
    end
                normalise kVφ  to 

k
V φ using Eqn(12)

    repeat
            find , 1 ( )iU tφ +  using ,

k
iV φ  and ( )U tφ from Eqn (13)  

         normalize , 1( )iU tφ +  to , 1( )iU tφ + using Eqn(14)
          
  , , 1( ) : ( )i iU t U tφ φ +=
     until convergence
         end
find ( )TFF t  using , ( )TU tφ Eqn(15)

            find ( ), ,r s nS S S using ( )TFF t

            find ( )jm B and ( )jm M , { , , }j r s n∈  using Eqn (16) 
and Eqn(17)

            find 6 ( )pcrm B  using Eqn(18) to (26) 



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

483

            find ( )rsnm B , ( )rsnm M and ( )rsnm B M∩ =∅   from 
Eqn(18-20)

     find jm and jb from Eqn(21-26) for 1,2,3,4,5,6j =
            find 6 ( )pcrm B    using Eqn(27) 
             if 6 ( )pcr thrm B m≥
                        return (benign)
             else
                         return (malicious)
        end

4. ExPErIMEntAl rESultS And 
dIScuSSIon
Experimental validation includes both qualitatively 

and quantitatively evaluation of proposed framework on 
the chimeric datasets as mentioned in Table 2. Qualitative 
evaluation is done through statistical investigation of extracted 
features of datasets and score-distribution of the classifiers. 
Also, quantitative analysis is done by numerous performance 
matrices viz. Accuracy, Decidability Index(DI), Equal Error 
Rate (EER), F1 Score and sensitivity. We also compared our 
proposed framework with four state-of-art methods employing 
static features HEMD8, MLIF9, DS35 and FGF39. The details of 
the experimental validation follow in turn.

4.1 datasets
For evaluation of proposed framework, Database (DB1 

to DB5) comprising of both benign (B) and malign(M) apps 
datasets is formulated. Benign apps are acquired mainly from 
google Play Store and CICMalDroid2020. After downloading 
the benign apps, we subject them through online Virus-Total 
scanner that has about 70 antivirus scanners in its arsenal. 
Application is tagged as benign if the antivirus scanner 
recognised it as benign, else it is considered as malign or 
malicious. Malicious apps are collected from benchmarked 
datasets viz.  Drebin15 and AMD40 and CICMalDroid202041 

that covers the diverse families of malware. In total, 4000 
apps are collected and rearranged in the form datasets 
(DB1 to DB5) which is detailed in Table 2.  First, four 
group(DB1-DB4) of 1000 apps each from the benign and 
malicious apps is created and consolidated group of all the 
4000 apps is named as DB5.

Further, evaluation of the framework was performed 
on MATLAB 2017b on an i7,2.2 GHz processor having 16 
gB RAM to implement proposed framework. In DB1-DB5, 
we split the dataset of apps into ten equal subsets and select 
a subset of apps randomly for testing and left over subsets 
is used as training apps. To overcome over fitting of results, 

10 fold cross-validation technique is used and mean values 
are reported as results. Next section covers the experimental 
validation where the proposed framework is analysed both in 
terms of qualitative and quantitative analysis. Particulars of 
Qualitative analysis follows in the subsequent sub-section.

 
4.2 Qualitative Analysis

Qualitative performance is evaluated for the proposed 
framework over the datasets. Qualitative performance is 
mainly done by comparing the score distribution analysis of 
different state-of-the-art techniques and frequency analysis of 
extracted features on the datasets. Qualitative analysis results 
are deliberated as follows:

Frequency Distribution Analysis: Frequency of occurrence 
of eight complementary features are determined for different 
datasets. For consolidated dataset DB5, extracted features viz. 
API calls, Permission, Intents, App Components, native Code, 
Op Code, hardware Feature and network Address are plotted 
as bar charts as shown in Fig. 2, for benign and malicious apps, 
wherein benign apps total feature values are presented in blue 
colour and malapps total feature values are depicted as red 
colour bar. From the bar graph, it is apparent that the eight 
chosen features are discriminative and hence provides a great 
performance regarding the classification.

Score Distribution: To evaluate the proposed optimal 
classifier performance, score scatter   distribution plots are 
examined for both benign and malicious apps. The outcomes 
corresponding to DB1 database are shown in Fig. 3. Scores 
for benign and malicious apps are determined and plotted 
against app number resulting in the scatter plot as shown in 

table 2. databases for experimental validation
App category   

 database Malign Apps(M) benign Apps(b) remarks

 db1 500 500 Drebin(M)  googlePlay(B)

db2 500 500 AMD(M) googlePlay(B)

 db3 500 500 CICMalDroid2020 (for both M&B)

db4 500 500 AMD(M) CICMalDroid2020(B)

db5 2000 2000 Consolidated

Figure 2. Frequency distribution analysis for extracted eight features 
for database db5.



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

484

Fig. 3. Figures 3(a, b, c, d) displays scatter distribution plot 
drawn for state-of-the-art methods8,9,35 and the proposed 
method respectively. From the Fig. 3, it is clear that most 
of score are dispersed in the area from 0.4 to 0.6, which is 
marked as conflicting area. Concentration of apps scores 
in this range of conflict is maximum for other state-of-the-
art methods. however , using unified feature UF produced 
by cross iterative diffusion process and proposed optimal 
classifier, apps scores are broaden as depicted in Fig. 3(d). 
hence, proposed classifier is efficient as it has broadened 
the classifier(s) score values corresponding to malicious and  
benign apps.

Score for database DB1 are plotted vs frequency of scores 
value. Overlapping of score values of benign and malicious 
apps to a large extent render the decision model ineffective. 
Overlapping of distribution scores occurs for methods8,9,35 and 
proposed method as shown in Figs 4(a), 4(b), 4(c) and 4(d) 
respectively. Minimum overlapping of scores occurs for the 
proposed method as depicted in the Fig. 4(d).

Furthermore, score distribution for the state-of-the-art 
method and the proposed method are depicted Figure 4. As 
shown, score distribution in the proposed multi-stage fusion 
model in Fig. 4(d), has minimum overlap. It undoubtedly 
shows that the distributed scores of the proposed framework 
can perform better classification. Qualitative analysis further 
strengthened the Quantitative analysis of proposed framework 
follows in the next section.

4.3 Quantitative Analysis
For the suggested method, quantitative investigation is 

achieved via ten-fold cross validation on 5 databases (DB1, 
DB2, DB3, DB4, DB5) of dataset as listed in Table 2. For this, 
evaluation metrics i.e. Sensitivity, Accuracy, F1 Score, equal 
error rate and decidability index are calculated and outcomes 
are compared with the state-of-the-arts methods8,9,35,39.

Decidability determine distance between benign and 
malicious score distribution and determined by Eqn (29).

2 2

2

B M

B M

D
µ −µ

=
σ + σ

                                                        (29)

where, Bµ  and Mµ  are mean and Bσ  and Mσ  are variances 
corresponding of benign and malicious score distributions 
respectively. Sensitivity is percentage of positives which are 
correctly recognised by binary classifier. F1 Score is weighted 
mean of sensitivity and precision. Accuracy measures number 
of correct prediction to the number of predictions or input 
samples. Sensitivity, F1 Score and Accuracy are determined 
using equations 30, 31, and 32 respectively.

TPSensitivity
TP FN

=
+

                                                (30)

21
2

TPF Score
TP FP FN

=
+ +

                                         (31)

Figure 3. Scatter plots for db1 dataset: (a) MlIF9  (b) hEMd8 (c) dS35 and (d) Proposed method.



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

485

TP TNAccuracy
TP FP TN FN

+
=

+ + +
                                (32)

where, TP, Tn, FP, Fn are True Positives, True negatives, False 
Positives, and False negatives respectively. greater value of the 
decidability index indicates better classification. Decidability 
index corresponding to database DB1, for various methods 
are calculated and tabulated in Table 3. Average decidability 
indexes for are calculated as 2.95448, 3.35519, 2.793435 and 
4.1015239. Proposed framework attained avg. decidability value 
of 5.4328 and same is validated by least overlapping of plots 
in Figure. 4(h). This comparatively higher value of decidability 
of the proposed framework in Table 3 is attained largely due to 
nonlinear feature fusion through cross iterative diffusion and 
optimal combination of classifiers score.

Receiver Operating Characteristic (ROC) curves have 
been determined for proposed method, and four state-of-the-art 
methods8,9,35,39. The results are depicted in Fig. 5. ROC 
determined the performance of a classifier as its decision 
threshold is varied. It is evident from the Fig. 5, for low 
False Acceptance Rate, proposed method achieves very 
high False Rejection Rate or in other terms very high 
true acceptance rate. There is also radical drop in false 
acceptance rate for state-of-the-art methods. Among 
ROC curves of the state-of-the-arts methods, method9 
outperformed methods8,39,35. It is apparent from the ROC 
curves that proposed framework is extremely precise and 
proficient.

Proposed method has also been compared with other state-
of-the-art methods by calculating the Equal Error Rate (EER) 
using the ROC curves. Proposed framework achieved very 
low average EER of 1.0408, whereas other methods attained 
comparatively higher EER of 7.85628, 3.78009, 8.302635 and 
5.954439. Performance enhancement is attributed mainly to the 
non-linear graph fusion of eight feature vectors and optimal 
fusion of classifier scores by DSmT-based proportional conflict 
redistribution (PCR-6) rules where concurrent scores are 
enhanced and discordant scores are suppressed. 

In addition, we determine the sensitivity, accuracy and F1 
Score for other state-of-art method and proposed method and 
results are tabulated in Table 5.

On evaluation over datasets as listed in Table 2, avg. 
detection accuracy of 91.8%8, 96.3%9, 95.38%35 and 93.89%39 
has been accomplished. Likewise, average detection accuracy 

Figure 4. Score-distribution plots for db1: (a) MlIF9 (b) hEMd8 (c) dS35 and (d) Proposed method. 

table 3. decidability Index for different Methods

dataset         hEMd8 MlIF9  dS35 FGF39 Proposed Method

db1 2.9699 3.5197 2.5298 4.1384 5.63

db2 2.9167 3.3807 2.8906 4.1264 4.461

 db3 2.9373 3.3455 2.9636 4.0071 5.820

db4 2.9671 3.0686 2.7068 4.0814 5.265

db5 2.9812 3.4612 2.8765 4.1543 5.985



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

486

of 98.97% was attained for proposed method. In order to 
gauge the real time application of proposed method, we have 
determined time and space complexity of proposed method. 
On an average, proposed method needs 5.5 sec to evaluate test 
app. Also, proposed method extracts dimensionality reduced 
feature as unified feature. Realisation of proposed method is 
achieved in few KBytes of memory. 

Overall performance of the proposed framework versus 
details of the state-of-the-art methods chosen for comparison, 
discussed in the next section.

4.4 overall Performance 
Proposed smartphone security analysis framework 

outperforms the other comparable state-of-the-art methods viz. 
HEMD8, MLIF9, DS35 and FGF39 both in terms of qualitative 
and quantitative analysis when evaluated over datasets 

comprising of benign and malicious apps as tabulated in Table 
2. Improvement for average accuracy of the proposed method 
by 7.14%8, 2.63%9, 3.59%35 and 5.08%39 has been achieved. 
An average accuracy of 98.97% was attained for the proposed 
method. Our framework handles the limitations posed by 
the state-of-the-art methods by conflict resolution amongst 
classifiers and redistribution of conflicts to produce improved 
set of fused scores with better scattering as can be seen in the 
scattering plots in Fig. 3. Score distribution plots in Fig. 4 
clearly depicts that the overlapping of malicious and benign 
scores is reduced to a great extent. Significant improvement 
in the average decidability index values of proposed model 
to 5.4328 as compared to 2.9548, 3.3559, 2.79335 and 4.10139 
further reinforces our claim for the better performance of the 
proposed method. This improved value of decidability index 
of the proposed framework is attained mainly due to nonlinear 

table 4. Evaluation of average equal error rate for different methods 

dataset         hEMd8 MlIF9  dS35 FGF39 Proposed Method

db1 6.9860 3.4000 9.7804     5.9940 1.2012

db2 8.5828 3.5000 7.0858 5.7942 0.8008

db3 8.1836   3.4000 6.7864 5.9940 1.1010

db4 7.1856 4.4000 8.6260 5.9940 1.0010

db5 8.3434 4.2000 9.2344 5.9962 1.1000

Figure 5. comparison of roc curves for state-of-the-art method and proposed method (a) db1, (b) db2, (c) db3, (d) db4.

(a)

(c) (d)

(b)



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

487

feature fusion through cross iterative diffusion and optimal 
combination of classifiers score values. Feature fusion process 
used in the proposed framework exploits complementary info 
from the eight individual features.  

Zhu8, et al. uses a set of 4 features viz. permission rate, 
permission, sensitive API, system events to detects malwares 
in the apps with a single RF classifier. here, low accuracy is 
attributed to lack of feature and score fusion in the model. 
In Mlifdect9, authors employ parallel machine learning and 
information fusion approach. Normal vector based feature 
transformation was employed along with DS theory and 
probability for malapps detection. here any conflict arising 
between the classifier score is not resolved. Authors35 proposed 
a multi classifier (SVM, J48, Bayes net) and fusion method to 
identify malapps. Jiang39, et al. proposed a static feature (native 
code, intent filter, reflection, root, permissions) based malapp 
framework using four ML classifiers (Knn, nB, SVM, J48). 
This method also achieved low detection accuracy due to lack 
of feature fusion and optimal classifier fusion.

In a nutshell, the proposed multistage fusion framework 
for smartphone security analysis outclass other state of the art 
techniques. It is suitable for classifying test app as malicious or 
benign with high detection accuracy by feature fusion through 
cross iterative graph diffusion method and optimal fusion of 
classifier scores. Quantitative performance enhancement is 
attributed to extraction of multiple features and their fusion 
through cross diffusion. Also, our smartphone security analysis 
framework outperforms numerous limitations of state-of-
the-art methods mainly due to extraction of complementary 
information and optimal fusion of classifiers to create clear and 
distinct boundary between the benign and malicious classes.

5.  lIMItAtIonS
In this manuscript, smartphone security analysis 

framework is proposed wherein optimal classification of multi-

cue is achieved. Performance is evaluated both qualitatively and 
quantitatively over the benchmarked dataset and we achieved 
significant improvement in performance. however, proposed 
method could not detect self-altering malware and zero-day 
attack. Performance is hindered by bytecode encryption. Apart 
from this, examining the malicious application is restricted 
by anti-reverse engineering methods such as obfuscation as it 
forestalls the access of system API calls.

6.   concluSIon And FuturE dIrEctIon
Challenges faced in the identification of malapps in 

the smartphones, motivated us to develop an efficient multi-
fusion based android malapp detection method based on 
static analysis. In our methodology, eight static features are 
exploited for development of solution. Our multi-fusion 
technique is a two stage fusion approach. In first stage, deduced 
static features are fused into a single unified robust vector 
through extraction of the complementary information from 
eight features using non-linear graph unification. In second 
stage, optimal classifiers are used for classification of an app. 
Proposed framework has been designed to make classification 
robust to noise and hence help in drastically improving the 
score distribution. Classification is performed by training RF, 
SVM, and nB classifiers followed by classifier scores fusion 
using PCR-6 rule that resolved conflicts amongst classifiers 
besides redistributing the conflicts efficiently. Qualitative 
investigations of outcomes disclosed that proposed optimal 
classifier broadened the score-distribution of malign and 
benign apps. Moreover, our method has attained average 
accuracy of 98.97%, average equal error rate of 1.04%, 
average F1 score value of 0.9936 and average sensitivity value 
of 0.9905 when evaluated over datasets as listed in Table 2. 
Quantitative analysis of suggested method vs. state-of-the-art 
techniques reveal that proposed method outperforms all of 
them.

table 5. comparison of performance metrics namely sensitivity, accuracy and F1 Score for different comparable methods

dataset         hEMd8 MlIF9  dS35 FGF39 Proposed method

db1 Sensitivity 0.9281 0.9660 0.9002 0.9381 0.9880
Accuracy 0.9271 0.9650 0.9481 0.9380 0.9880

F1 Score 0.9627 0.9827 0.9474 0.9680 0.9939

db2 Sensitivity 0.9201 0.9600 0.9102 0.9401 0.9920
Accuracy 0..9191 0.9590 0.9531 0.9400 0.9919

F1 Score 0.9584 0.9796 0.9529 0.9691 0.9959

db3 Sensitivity 0.9122 0.9660 0.9301 0.9381 0.9880
Accuracy 0.9112 0.9650 0.9630 0.9380 0.9889

F1 Score 0.9541 0.9827 0.9638 0.9681 0.9939

db4 Sensitivity 0.9241 0.9640 0.9102 0.9401 0.9900
Accuracy 0.9231 0.9630 0.9531 0.9400 0.9899

F1 Score 0.9606 0.9817 0.9529 0.9691 0.9949

 db5 Sensitivity 0.9064 0.9794 0.9583 0.9544 0.9945
Accuracy 0.9110 0.9650 0.9520 0.9385 0.9898

F1 Score 0.8220 0.9645 0.9521 0.9360 0.9898



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

488

In future, we will extend the proposed method for 
different types of malware. Main reason for misclassification is 
non-inclusion of dynamic features and structure related static 
features in our model. Therefore, we will extend our framework 
to hybrid analysis to improve the detection efficiency by 
including the dynamic analysis to static analysis framework. 
Also, training on more datasets covering the different families 
of malware from diverse sources will solve under-fitting and 
overfitting problems in detection.  

rEFErEncES
1. IDC, https://www.idc.com/promo/smartphone-market-

share/os (visited on 20 Sep,2020)
2.  Li, J.; Sun, L.; yan, Q.; Li, Z.; Srisaan, W & ye, h. 

Significant Permission Identification for Machine-
Learning-Based Android Malware Detection. IEEE T Ind 
Inform., 2018, 14(7), 3216-3225. 

 doi: 10.1109/TII.2017.2789219
3.  Zhu, hui-Juan & you, Zhu-hong & Zhu, Zexuan & Shi, 

Wei-Lei & Cheng, Li. DroidDet: effective and robust 
detection of Android malware using static analysis along 
with rotation forest model. Neurocomputing, 2018, 272, 
638-646. 

     doi:10.1016/j.neucom.2017.07.030
4. Arora, Anshul; Peddoju, Sateesh Kumar & Conti, Mauro. 

PermPair: Android Malware Detection Using Permission 
Pairs. IEEE T Inf Foren, 2019, 15, 1968-1982.

     doi: 10.1109/TIFS.2019.2950134.v  
5.  Ma, Z.; ge, h.; Liu,y.; Zhao, M & Ma,J. A Combination 

Method for Android Malware Detection Based on Control 
Flow Graphs and Machine Learning Algorithms, in IEEE 
Access, 2019, 7, 21235-21245.

      doi: 10.1109/ACCESS.2019.2896003
6. Tao, g.; Zheng, Z.; guo, Z and Lyu, M. R .MalPat: Mining 

Patterns of Malicious and Benign 
     Android Apps via Permission-Related APIs in IEEE T 

Reliab, 2018,67(1),355-369.
      doi: 10.1109/TR.2017.2778147
7.  yerima, S. y. ; Sezer,S and  Muttik, I. high accuracy 

android malware detection using ensemble learning, in 
IET Inform secur, 2015,9(6),313-320.

      doi: 10.1049/iet-ifs.2014.0099
8.  Zhu, hui-Juan & Jiang, Tong-hai & Ma, Bo & you, 

Zhu-hong &Shi, Wei-Lei & Cheng, Li. hEMD: a 
highly efficient random forest-based malware detection 
framework for Android. Neural Comput Appl, 2018, 30, 
3353-3361.

      doi:10.1007/s00521-017-2914-y
9.  Wang, guanxin & Zhang, Dafang & Su, Xin & Li, 

Wenjia. Mlifdect: Android Malware Detection Based on 
Parallel Machine Learning and Information Fusion. Secur 
Commun Netw. 2017, 2017(1), 1-14.

      doi: 10.1155/2017/6451260
10. Kim,T.; Kang,B.; Rho,M.;  Sezer, S and  Im, E.G. A 

Multimodal Deep Learning Method for Android Malware 
Detection Using Various Features. IEEE T Inf Foren Sec, 
2019, 14(3), 773-788. 

       doi: 10.1109/TIFS.2018.2866319

11. Fan, Ming.;  Liu, Jun.;  Luo, Xiapu.;  Chen, Kai.;  Tian, 
Zhenzhou.;  Zheng, Qinghua & Liu, Ting. Android 
Malware Familial Classification and Representative 
Sample Selection via Frequent Subgraph Analysis, IEEE 
T Inf Foren Sec,2018,13(8),1890-1905,

      doi: 10.1109/TIFS.2018.2806891
12. Wang, Wei.; Li yuanyuan.; Wang,Xing.; Liu, Jiqiang & 

Zhang, Xiangliang. Detecting Android malicious apps 
and categorizing benign apps with ensemble of classifiers, 
Future Gener. Comput. Syst. 2018, 78(3),987-994. 

 doi: 10.1016/j.future.2017.01.019
13. Wang, Wei.;Gao, Zhenzhen; Zhao, Meichen.; Li, Jiqiang; 

Liu, Jiqiang & Zhang, Xiangliang. DroidEnsemble: 
Detecting Android Malicious Applications with Ensemble 
String and  Structural Static Features. IEEE Access, 2018, 
6, 31798-31807.    

       doi:10.1109/ACCESS.2018.2835654
14.  Song, Jun.; hana ,Chunling.; Wang, Kaixin.;  Zhaoa, 

Jian.; Ranjanb ,Rajiv & Wang, Lizhe. An integrated static 
detection and analysis framework for  android. Pervasive 
Mob. Comput. 2016, 32, 15-25.  

 doi: 10.1016/j.pmcj.2016.03.003
15.  Arp , Daniel.; Spreitzenbarth, Michael.; hubner, Malte.; 

gascon, hugo & Rieck, Konrad.  DREBIn: Effective 
and Explainable Detection of Android Malware in your 
Pocket. In: nDSS, 2014.   

 doi: 10.14722/ndss.2014.23247
16. Smarandache, Florentin & Dezert, J : Advances and 

Applications of DSmT for Information Fusion, American 
Research Press, 2015. 506p.

17.  Denoeux, T. & Masson, M. h. (2010) Dempster-Shafer 
Reasoning in Large Partially  Ordered Sets: Applications 
in Machine Learning. In: huynh, Vn.; nakamori, y & 
Lawry J. Inuiguchi M. (eds) Integrated Uncertainty 
Management and Applications. Advances in Intelligent 
and Soft Computing, 68. Springer, Berlin, Heidelberg.

       doi:10.1007/978-3-642-11960-6_5
18. Wang, Wei.;  Zhao, Meichen.;  Gao, Zhenzhen.;  Xu, 

Guangquan.;  Xian, Hequn.; Li, yuanyuan & Zhang, 
Xiangliang. Constructing Features for Detecting Android 
Malicious Applications: Issues, Taxonomy and Directions,  
in IEEE Access, 2019, 7, 67602-67631. 

        doi: 10.1109/ACCESS.2019.2918139
19. Faruki, Parvez.;  Bharmal, Ammar.;  Laxmi, 

Vijay.; Ganmoor, Vijay.;  Gaur, Manoj  Singh.; Conti, 
Mauro & Rajarajan , Muttukrishnan. Android Security: 
A Survey of Issues,  Malware Penetration, and Defenses, 
IEEE Commun Surv Tut, 2015, 7(2),998-1022.

        doi: 10.1109/COMST.2014.2386139
20.  Zhang, h.; Luo, S.; Zhang, y & Pan, L. An Efficient 

Android Malware Detection System Based on Method-
Level Behavioural Semantic Analysis. IEEE Access, 
2019, 7, 69246- 69256.

 doi: 10.1109/ACCESS.2019.2919796
21.  Qiu, Junyang.;  Zhang, Jun.; Luo, Wei.; Pan, Lei.;  Nepal, 

Surya.; Wang,yu & Xiang, yang. A3CM: Automatic 
Capability Annotation for Android Malware, in IEEE 
Access, 2019, 7, 147156-147168



KUMAR, et al.: An EFFICIEnT MULTISTAgE FUSIOn APPROACh FOR SMARTPhOnE SECURITy AnALySIS

489

 doi: 10.1109/ACCESS.2019.2946392
22.  Alotaibi, A. Identifying Malicious Software Using Deep 

Residual Long-Short Term Memory,  IEEE Access, 2019, 
7, 163128-163137.  

 doi: 10.1109/ACCESS.2019.2951751
23.  Olukoya, Oluwafemi & Mackenzie, Lewis & Omoronyia, 

Inah. Security-Oriented View of App Behaviour using 
Textual Descriptions and User-granted Permission 
Requests. Comput Secur, 2019, 89, 101685.   

 doi: 10.1016/j.cose.2019.101685
24.  Alam, Shahid & Alharbi, Soltan & yildirim, Serdar. 

nested Flow of Dominant APIs for Detecting Android 
Malware. Comput Netw, 2020, 167, 107026. 

       doi: 10.1016/j.comnet.2019.107026
25.  Mateless, Roni & Rejabek, Daniel & Margalit, Oded & 

Moskovitch, Robert. Decompiled APK based malicious 
code classification. Future Gener Comput Syst. 2020, 110, 
135-147     

      doi:10.1016/j.future.2020.03.052
26. Tian, Ke; Danfeng, yao; Barbara, g. Ryder; gang, Tan 

& guojun, Peng. Detection of Repackaged Android 
Malware with Code-heterogeneity Features. IEEE T 
Depend Secure, 2020,17, 64-77.

       doi:10.1109/TDSC.2017.2745575  
27.  Onwuzurike, Lucky & Mariconti, Enrico & Andriotis, 

Panagiotis & De Cristofaro, Emiliano & Ross, gordon 
& Stringhini, gianluca, MaMaDroid: Detecting Android 
Malware by  Building Markov Chains of Behavioural 
Models, ACM Trans. Priv. Secur, 2017, 22(2), 1-34.

       doi: 10.1145/3313391.
28.  Q. han, V. S. Subrahmanian and y. Xiong. Android Malware 

Detection via (Somewhat) Robust Irreversible Feature 
Transformations, IEEE T Inf Foren Sec,2020,15,3511-
3525.

      doi: 10.1109/TIFS.2020.2975932.
29. B. Wang, J. Jiang, W. Wang, Z. Zhou & Z. Tu. Unsupervised 

metric fusion by cross diffusion,2012. In IEEE Conference 
on Computer Vision and Pattern Recognition, Providence, 
RI, 2012, 2997-3004.  

 doi: 10.1109/CVPR.2012.6248029.
30. Tong, Tong & gray, Katherine & gao, Qinquan & Chen, 

Liang & Rueckert, Daniel. Multi-Modal Classification 
of Alzheimer’s Disease Using nonlinear graph Fusion, 
Pattern Recogn.   2017,63,171-181. 

      doi: 10.1016/j.patcog.2016.10.009.
31. Vapnik, Vladimir n.  In The Nature of Static Learning 

Theory, Springer, 2000. pp.123-216.        
      doi:10.1007/978-1-4757-3264-1
32. Breiman, L. Random forests. Mach. Learn, 2001, 45 (1). 

5–32.  
       doi:10.1023/A:1010933404324
33. Webb, g. I., Keogh, E., Miikkulainen, R., Miikkulainen, 

R. & Sebag, M. In Encyclopedia of Machine Learning, 
Springer, 2011.pp. 713–714. 

 doi:10.1007/978-0-387-30164-8_576
34. Xiao, Fuyuan. Multi-sensor data fusion based on the belief 

divergence measure of evidences  and the belief entropy. 

Information Fusion, 2019, 46, 23-32.  
       doi: 10.1016/j.inffus.2018.04.003
35. Du, yao & Wang, Xiaoqing & Wang, Junfeng. A static 

Android malicious code detection method based on multi-
source fusion. Secur Commun Netw, 2015, 8(17), 3238-
3246.    

        doi:10.1002/sec.1248
36. Xu, K.; Li, y & Deng, R. h. ICCDetector: ICC-based 

malware detection on Android, IEEE T Inf Foren Sec. 
2016, 11(6), 1252–1264.  

 doi:10.1109/TIFS.2016.2523912
37. hardware Features, https://developer.android.com/

guide/topics/manifest/uses-feature-element#hw-features  
(visited on Sep 20,2020)

38. Walia, g. S.; Ahuja, h. ; Kumar, A. ; Bansal, n & Sharma, 
K. Unified graph-Based Multicue Feature Fusion for 
Robust Visual Tracking, in IEEE T Cybernetics, 2020, 
50(6),2357-2368.

       doi: 10.1109/TCyB.2019.2920289
39.  Jiang, Xu.;  Mao, Baolei.;  guan, Jun & Xingli, huang. 

Android Malware Detection Using Fine-grained 
Features, Scientific Programming, 2020, 2020,1-13.

        doi: 10.1155/2020/5190138
40.  Wei, F.; Li, y.; Roy, S.; Ou, X & Zhou, W. Deep 

ground Truth Analysis of Current Android Malware. 
In Polychronakis, M & Meier, M. (eds) Detection of 
Intrusions and   Malware, and Vulnerability Assessment. 
2017. Lecture notes in Computer Science, 2017, 10327. 
Springer, Cham. 

 doi:10.1007/978-3-319-60876-1_12
41. Mahdavifar, S. ; Kadir, A. F. Abdul .; Fatemi, R.; Alhadidi, 

D and Ghorbani, A. A. Dynamic Android Malware 
Category Classification using Semi-Supervised Deep 
Learning, In IEEE Intl Conf on Dependable, Autonomic 
and Secure Computing(DASC),2020,515-522.

 d o i : 1 0 . 1 1 0 9 / D A S C - P I C o m - C B D C o m -
CyberSciTech49142.2020.00094

42. Rastogi, Sajal & Bhushan, Kriti & gupta, B B. Android 
Applications Repackaging Detection Techniques for 
Smartphone Devices. Procedia Comput Sci, 2016,78, 26-
32.    

        doi:10.1016/j.procs.2016.02.006
43. Kumar, S.; Indu, S.; Walia, g.S. Smartphone Traffic 

Analysis: A Contemporary Survey of  the State-of-
the-Art. In Proceedings of the Sixth International 
Conference on  Mathematics and Computing. Advances 
in Intelligent Systems and Computing, 2020, 1262, 325-
343, Springer, Singapore. 

 doi:10.1007/978-981-15-8061-1_26
44.  Kumar S.; Indu S.; Walia, G.S. Recent Advances in 

Android Malware Detection- A Survey. In 1st International 
Conference on Communication, Computing and Signal    

       Processing, 2020.
45. Xiao, Fuyuan. A new divergence measure for belief 

functions in D–S evidence theory for multisensor data 
fusion. Information Sciences, 2020, 514, 462-483.

        doi: 10.1016/j.ins.2019.11.022



DEF. SCI. J., VOL. 71, nO. 4, JULy 2021

490

contrIbutorS

Mr Sumit Kumar received his BE(ECE) and ME(ECE) from 
Delhi College of Engineering, University of Delhi, Delhi. he is 
presently working as a senior scientist at DRDO laboratory in 
Delhi.  His current area of research interest includes smartphone 
security, machine learning and artificial intelligence. He is also 
a member of CRSI and IEEE.
In the current study, he conceived the framework, carried out 
the literature survey and completed the investigational work 
by evaluating the proposed framework both qualitatively and 
quantitatively. 

Prof. S. Indu did her PhD in the area of Visual Sensor networks 
from University of Delhi, Delhi, India. She Joined Electronics 
and Communication Engineering Department of Delhi College 
of Engineering in 1999. Currently she is working as Dean 
(Student Welfare) and Professor of ECE Department of Delhi 
Technological University. She has published around 200 papers in 
reputed Journals and National and International conferences. Her 
area of research interest is Computer Vision, Sensor networks 

and Image Processing. She received Commendable research 
award, 2018 and 2019, of Delhi Technological University. She 
has completed three DST sponsored project and currently she 
is PI of two DST sponsored projects.
In the current study, she reviewed the incremental work and 
provided many valuable inputs.

dr Gurjit Singh Walia received his PhD in the field of 
computer vision from Delhi Technological University (Formerly 
Delhi College of Engineering), new Delhi, and the ME in 
electronics from Punjab Engineering College, Chandigarh. he 
is working as a Senior Scientist with Defence Research and 
Development Organisation, new Delhi. his current research 
interests include machine learning, pattern recognition, and 
information security. He has published over 40 research papers 
in international journals and conferences. He is reviewer of 
various IEEE transactions, Elsevier and Springer journals.
In the current study, he has corrected the final manuscript and 
provided expert guidance for conducting study.


