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ABSTRACT

Separating a reentry vehicle into warhead, main body, and debris is a conventional and efficient means of
producing a huge decoy and increasing the kinetic energy of the warhead. This procedure causes the radar to track the
main body and debris, which radar cross section are large, and ignore the warhead, is the most important part of the
reentry vehicle. The warhead is difficult to identify after separation using standard tracking criteria. This study
presents a novel tracking algorithm by integrating input estimation and modified probabilistic data association filter to
identify warhead among objects separation from the reentry vehicle in a clear environment. The proposed algorithm
provides a good tracking capability for the warhead ignoring the radar cross section. Simulation results reveal that the
errors between the updated and warhead trajectories are reduced to a small interval in a short time. Therefore, the
radar can generate a beam to illuminate the right area and keep tracking the warhead all the time. This algorithm is
worthy of further study and application.
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NOMENCLATURE

C Ballistic coefficient for the RV (kg/m2)
C

i
Ballistic coefficient for the i-th object (kg/m2)

C
D0

Zero-lift drag coefficient
e

i
Length of the normalized innovation in position
for the i-th candidate

g Gravity (m/s2)
G(i) 6´6 gain matrix
I
n´n

n´n identity matrix
K(n+1) 6́ 6 Kalman gain matrix

( 1)v
iK n+ 6´6 Kalman gain matrix with the estimated input

for the i-th object
N Number of objects separation from the RV
P(k+l+ 1|k+l) 6´6 covariance matrix of the predicted states for

the EKF with no input
P

z
6´6 variance matrix of ̂ ( )Z k l+

Q 6´6 covariance matrix of process noise
Q

i
6´6 covariance matrix of process noise for the
i-th object

R 6´6 covariance matrix of measurement noise
S Reference area of the RV (m2)
V(i) 6´6 covariance matrix of the estimated input
W Weight of the RV (kg)
ˆ ( )Z k l+ Unmodeled inputs in X

R
, Y

R
 and Z

R
, respectively

(m/s2)
, ,ix iy izu u u Unmodeled inputs in X

R
, Y

R
 and Z

R
, respectively

for the i-th object (m/s2)
v, v

i
Total velocities for the RV and the i -th
object (m/s)

v
x
,v

y
,y

z
Velocity components (m/s)

x, y, z Positions (m)
Z(n+1) Measurements at t = (n+1)Dt
ˆ ( )Z k l+ Measurement residual for the EKF formation with

inputs
Zn+1 Measurement vector collecting the measurements

from t = 0 to t = (n+1)Dt
0

n´n
n´n zero matrix

Dt Sampling period (s)
r Air density  (kg/m3)
z 6´1 process noise vector
z

i
6´1 process noise vector for the i-th object

e 6´1 measurement noise vector
g

1
, g

2
Elevation and flight path angles for the RV,
respectively

g
i1
, g

i2
Elevation and flight path angles for the i-th object,
respectively

1. INTRODUCTION
Separation of the reentry vehicle (RV) into several objects,

including the warhead, main body, and debris during the reentry
phase, is an effective means of confusing radar by generating
many sets of measurements from a radar beam. The radar
estimates and predicts the target trajectory at the next sampling
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period from the measurement with the highest signal-to-noise
ratio and forms a beam to illuminate it. The body or debris is
then tracked and intercepted first, since its radar cross section
is inevitably larger than that of the warhead. The warhead, which
is the most significant part of the RV, then becomes a new track
or is completely disregarded. This problem is hard to solve unless
the standard tracking criterion is modified.

Two issues, estimation of warhead trajectory and
origination of measurements, have been introduced to solve this
problem. If a warhead does not alter its trajectory in separation,
then it typically follows the original trajectory closely. However,
the body and debris fall down faster than the warhead in random
directions. Then, the residual wrt the warhead, given by the
difference between the estimated and real warhead trajectories,
is smaller than that wrt the other objects. An online precision
trajectory estimation approach is required. Data association
technique can be adopted to solve the origination problem.

The main problems with the online estimation of the RV
trajectory relate to model validation, owing to model error
between the mathematical model and the physical system. The
model error is normally the result of the simplifying assumptions,
manoeuvring and unpredictable external forces during flight or
parameter uncertainty. The extended Kalman filter (EKF) is a
well-known and helpful state estimation scheme for a nonlinear
dynamic system, but fails to reach the required accuracy in a
short time. Input estimation (IE) provides a good solution to
this problem. IE has been successfully employed to estimate
inputs for solving tracking1-4, inverse heat conduction5-7 and
initial leveling problems8,9. Lee and Liu proposed a filter
associating the EKF with IE to handle model validation
problems, and provided an accurate trajectory estimation
approach for the RV10-14. Their proposed filter has lower
estimation errors than the original EKF, and is helpful for this
problem.

Bar-Shalom designed a suboptimal Bayesian algorithm,
probabilistic data association filter (PDAF)15,16, for tracking a
single target in a cluttered environment. It combines the states
of all radar returns weighted by a posteriori probability, known
as association probability, to form the combined states of the
target. The PDAF has been successfully utilised in sonar and
radar systems to increase their tracking capacity17,18. A modified
PDAF (MPDAF) with a new defined association probability
has also been developed. MPDAF links with the EKF and IE to
create a tracking algorithm for clarifying warhead between two
objects split from the RV in a clear environment19. This algorithm
enables the radar to identify the warhead in a few seconds
following separation, and could be used to track warhead in a
complex situation.

This investigation presents a novel algorithm by inserting
an identification procedure on the MPDAF to detect the warhead
among more than two objects split from the RV in a clear
environment.

2. DYNAMIC  EQUATIONS
Define the radar Cartesian coordinate system to be centred

at the radar site O
R
 with three axes downrange X

R
, off-range Y

R
,

and altitude Z
R
.

Figure 1 shows a vehicle in the reentry phase over a flat
and nonrotating earth. Assume the RV is a point mass with
constant weight following a ballistic trajectory in which two
significant forces, drag and gravity, act on the RV. Extra forces
are induced by model error when assumptions are violated or
the RV undertakes a manoeuvre. The RV trajectory model can be
written as20
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r stands for air density and is a function of altitude20

/ 30000( ) 0.002378 zz er -= for 30000z ft< (4)

/ 22000( ) 0.0034 zz er -= for 30000z ft³ (5)

 The well known normal gravity g model is extensively
used21. Among these parameters, C is the key parameter and
is the only parameter unknown to radar. To estimate RV's
position and velocity, the EKF with augmented state C may
solve this problem. However, C is unmeasurable from a radar
and would worsen the estimation results seriously. C is thus
be  assumed to be a constant during entire operating envelope
for simplicity.

Let the state vector be

Figure 1. Reentry vehicle flight geometry

 

RX  

RY  RO  

g 
v 

Drag 

RV 

y 

Downrange 

A
ltitud

e 

Offrange 

RZ  

1g  
2g  

x 

z 

yv  

xv  
zv-  



115

LIU & CHEN: TRACKING THE WARHEAD AMONG OBJECTS SEPARATION FROM THE REENTRY VEHICLE

[ ]1 2 3 4 5 6( )
T

T

x y z

X t x x x x x x

x y z v v v

=

é ù= ë û
(6)
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The precision phased array radar, i.e., a digital radar is
used in tracking, and is the only instrument in the system for
detecting RV. The detected elevation, azimuth, and range are
transferred into position in Cartesian frame. Since the detected
velocity measured from pulse Doppler did not meet the
accuracy needs, the velocity obtained by a specific filter in
radar is taken as the measurements to improve estimation
accuracy. If the filter is taken into account, a nonlinear
measurement equation is invloved and becomes too
complicated to be accomplished. For simplicity and being
implemented easily, the effect of nonlinearity induced by
filtering is ignored and left to the future study. The linear
measurement equation for the RV is then given by

( ) ( ) ( )Z t X t te= + (8)

where e denotes the measurement noise vector, which is assumed
to be normally distributed with mean zero and variance R.
Equations (7) and (8) are the dynamic equations for the RV during
reentry.

The RV separates into N objects, including the warhead,
body and debris, at t = ts. The warhead generally flies along a
slightly different trajectory from that of the original RV if no
action is conducted. The body and debris then deviate from the
original  RV trajectory, and fall on their own. Equations of motion
for each object with the ballistic coefficient Ci, i = 1,2,...,N, after
separation can be expressed as
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with position initial conditions ( ), ( ), ( )i s i s i sx t y t z t and velocity
initial conditions ( ), ( ),ix s iy sv t v t  and ( )iz sv t  in X

R 
, Y

R
 and Z

R

respectively.
Let the state vector for the i-th object to be

1 2 3 4 5 6( ) [ ] [ ]T T
i i i i i i i i i i ix iy izX t x x x x x x x y z v v v= = (12)

The nonlinear state equation can be written as

( ) ( )i i i iX t F X uj z= + +& t > t
s

(13)

where [0 0 0 ]Ti ix iy izu u u u=

The measurement equation for the i-th object is then given by

( ) ( ) ( )i iZ t X t te= + t > t
s

(14)

3. EXTENDED KALMAN FILTER WITH INPUT
ESTIMATION
The input estimation algorithm estimates unknown inputs

in state equations from pseudo-residuals. At st t£ , the predicted
and updated state vectors of the RV by the EKF from t n t= D  to

( 1) , 0,1,2,...,t n t n= + D = under input vector ( )u n at
t n t= D are given by, respectively22

ˆ ˆ( 1| 1) ( 1| ) ( 1)X n n X n n K n+ + = + + + (15)

ˆ ˆ( 1| 1) ( 1| ) ( 1)X n n X n n K n+ + = + + +

( )ˆ( 1) 1|Z n X n né ù+ - +ë û (16)

where tj jD = D  and le t  ( )1 1)X n n= + +  deno te  the
updated state for the EKF with no input at t = (n+1)Dt.
For simplicity, let ( ) ( )ˆ ˆ1 1 1X n X n n+ = + + and

( 1) ( 1| 1)X n X n n+ = + + . Define

[ ]( 1) ( 1) ( )M n I K n nf+ = - + (17)

[ ]( 1) ( 1)N n I K n fD+ = - + (18)

Assume that the abrupt deterministic inputs are applied
during ( )k t t k s tD £ £ + D ,

0 , ( ) , 0

( ) ( ) 0,1,2,...,

t k t t k s t k s
u

u k l k t t k s t l s

< D > + D >ì
= í + D £ £ + D =î

(19)

where u(k + l) is a constant vector over the sampling interval.
Then, ˆ ( ) ( )X k X k=  during t k t£ D . The difference induced
by the abrupt inputs between these two formations during

( )k t t k s tD £ £ + D can then be written as

ˆ( ) ( ) ( )X k l X k l X k lD + = + - +

( ) ( 1) ( ) ( 1)M k l X k l N k l u k l= + D + - + + + -     (20)

Define the measurement residual for the EKF formation
without and with inputs to be ( ) ( ) ( )Z k l Z k l X k l+ = + = +
and ˆ ˆ( ) ( ) ( )Z k l Z k l X k l+ = + = + , respectively. The recursive
least-squares input estimator can be derived as10

ˆ ˆ( 1) ( 2) ( )u k l u k l G k l+ - = + - + +

ˆ ˆ( ) ( ) ( 2)Y k l N k l u k lé ù+ - + + -ë û (21)

where

ˆ ˆ( ) ( ) ( ) ( 1)Y k l Z k l M k l X k l+ = + - + D + -
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ˆ ˆ ˆ( 1) ( ) ( 2) ( ) ( 2)X k l M k l X k l N k l u k lD + - = + D + - + + + -
1( ) ( 1) ( ) zG k l V k l N k l P-+ = + - +

( 1) ( 2) ( 2) ( )TV k l V k l V k l N k l+ - = + - - + - +

1
( ) ( 2) ( )T

ZN k l V K l N k l P
-

é ù´ + + - + +ë û

( ) ( 2)N k l V k l´ + + -

( 1| )ZP R P k l k l= + + + +

In Eqn. (19), k and k+s respectively denote the starting
and stopping indices of the system input, which can be obtained
by testing. Two hypotheses, existence and absence of inputs,

are set. Each normalised estimated input at time k+l–1 locates
on the confidence interval [–t

st
, t

st
] if the first hypotheis is

satisfied. Otherwise, the input is absent. The confidence interval

can be obtained from the cumulative normal distribution table
for a certain preset confidence level 1-a10.

Once the input is estimated, the EKF is corrected with the

estimated input at the same time. By incorporating the on-line
input estimator into the EKF, the predicted and updated states
at time interval ( )k t t k s tD £ £ + D  are given by

ˆ ˆ( 1| 1) ( 1) ( 1| 1)v vX k k l k l X k l k lf+ + - = + - + - + -

ˆ( 1)u k ljD+ + - (22)

ˆ ˆ( | ) ( | 1) ( )v v vX k l k l X k l k l K k l+ + = + + - + +

ˆ[ ( ) ( | 1)]vZ k l X k l k l+ - + + - (23)

The Kalman gain becomes
1( ) ( | 1)] ( | 1) ]v v vK k l P k l k l P k l k l R -+ = + + - + + - +   (24)

with the covariance matrices at ( )k t t k s tD £ £ + D  being

( | 1) ( | 1)vP k l k l P k l k l+ + - = + + -

( 1) ( ) ( 1)Tk l L k l k lf f+ + - + + -

( 1) TV k lj jD D+ + - (25)

( | ) [ ( )] ( 1| 1)v v vP k l k l I K k l P k k l+ + = - + + + - (26)

where

( ) 0L k l+ = ( 2) ( 2) ( ) ( 2)TL k N k V k N k+ = + +

( 1) ( 1) ( 1) ( 1)T
kL k M k l L k l M k l+ = + - + - + -

For time beyond the interval t k t< D  and ( )t k s t> + D ,
state estimation can be also based upon the original EKF. Note
that the initial states and covariance matrices at ( )t k s t> + D
are reinitiated by ˆ ( | )vX k s k s+ +  and  ( | 2)vP k s k+ + .
Figure 2 schematically depicts the proposed filter.

At  t > t
s
, measurement Z

i
 is sensed. The estimated input

ˆiu is then calculated using Eqn. (21) if Z is replaced by Z
i
.

Substituting ˆiu  into Eqns. (22) and (23) yields the predicted
and updated states ˆ ( | 1)v

iX k l k l+ + - , ˆ ( | )v
iX k l k l+ +  for the

i-th object.

4. IDENTIFICATION   ALGORITHM
The MPDAF with the EKF and IE was presented to identify

the warhead between two objects separation from the RV in a
clear environment19 with clutter free. The major difference
between MPDAF and the original PDAF is that the MPDAF
considers the two real objects being tracked, but not random
clutter. This section defines an algorithm associated with the
MPDAF to track the warhead among N measured objects when
t > t

s
.
The proposed method comprises two steps. Selecting two

candidates from N objects based on a certain criterion is the
first, and then the MPDAF is used to compute the combined
updated state from these two candidates.

4.1 Selection of Candidates
Assume N objects to be detected by a phased array radar

with detection probability 1 during  t > t
s
. The predicted and

updated states of the i-th object using the EKF with IE are,
respectively,

ˆ ˆ ˆ( 1| ) ( 1) ( | ) ( )v v
i iX n n n X n n u nf jD+ = + + (27)

ˆ ˆ( 1| 1) ( 1| ) ( 1)v v v
i i iX n n X n n K n+ + = + + +

ˆ[ ( 1) ( 1| )]v
i iZ n X n n+ - + (28)

with covariance matrices ( 1| )v
iP n n+ .

For more accurate choosing candidates, residual based on
the updates states is adopted. Define the measurement residual
of object i at ( 1)t n t= + D  as

ˆ( 1) ( 1) ( 1| 1)v
i i iv n Z n X n n+ = + - + + (29)

Increasing the accuracy of the model reduces the distance
between the measurement and predicted state in position.
Restated, if the i-th object measurement Z

i
(n+1) is the target-

originated measurement, then the length of the normalised
residual in position is the smallest among all objects. Two
candidates are chosen who are with the smallest values of the
length of the normalised residual in position among N objects.
These two candidates are sent to the MPDAF to calculate the
association probabilities and combined updated state.

4.2 The MPDAF
Two candidates are selected based on the normalised

residual defined in Eqn. (29). The MPDAF needs to compute
the combined state from these two objects which may contain
the warhead or just body and debris. Let 

1
ˆ ( 1| 1)v

cX n n+ +  and

Figure 2. The mechanism of the proposed filter scheme.
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2
ˆ ( 1| 1)v

cX n n+ +  to be the updated states of two candidates
corresponding to measurements 1( 1)cZ n+  and 2( 1)cZ n+ ,
respectively, at time ( 1)t n t= + D . Define the events to be

1( 1)nq + = { 1( 1)cZ n+  is the target-originated

measurement) (30)

2( 1)nq + = { 2( 1)cZ n+  is the target-originated

measurement) (31)
with association probabilities conditioned on 1nZ +

{ }1( 1) Pr ( 1) | n
i in n Zb q ++ = + 1,2i = (32)

The association probabilities should satisfy

1 2( 1) ( 1) 1n nb b+ + + = (33)

The updated state for the EKF with input estimation at time
( 1)t n t= + D  can be regarded as

1ˆ ( 1| 1) [ ( 1) | ]v nX n n E X n Z++ + = + (34)

Using the total probability theorem, ̂ ( 1| 1)vX n n+ + ,
known as the combined updated state, becomes16

1 1
1( 1) | ( 1) | ( 1)]n nE X n Z E X n n Zq+ +é ù é ù+ = + +ë û ë û

{ }1 1
1 2Pr ( 1) | ( 1) | ( 1),n nn Z E X n n Zq q+ +é ù+ + + +ë û

{ }2Pr ( 1) | nn Zq + (35)

then one gets

1 1
ˆ ˆ( 1| 1) ( 1) ( 1| 1)v v

cX n n n X n nb+ + = + + +

2 2
ˆ( 1) ( 1| 1)v

cn X n nb+ + + + (36)

The problem then focuses on the determination of ib  by
means of  Z

i
.

As previously mentioned, trajectory of the warhead is closer
to the original than of the body and debris. The innovations of
the warhead are smaller than of other objects if an accurate
estimation method is adopted. The larger association probability
should be assigned to an object whose innovation is the smaller
one between two objets. Thus, the association probabilities of
the i-th object is inversely proportional to its length of the
normalized innovation in position and can be defined as19

2
1

1 2

( 1)
e

n
e e

b + =
+ (37)

1
2

1 2

( 1)
e

n
e e

+ =
+

b (38)

where e
i
 is the length of the normalised innovation in position

for the i-th candidate. Substituting Eqns. (37) and (38) into Eqn.
(36) yields the combined updated state of the object in track at
t=(n+1)Dt. This estimated trajectory should be close to the
warhead trajectory, such that the radar beam covers the warhead
to maintain the track. Figure 3 shows the flow chart of the
proposed algorithm combining the EKF with IE and the
identification algorithm.

5. SIMULATION  ANALYSIS
The performance of the proposed algorithm was evaluated

by inspecting the estimation error wrt the warhead, which
signifies the difference between the estimated and actual warhead
trajectories. The proposed algorithm should have a small
estimation error w.r.t. the warhead to ensure that the warhead is
constantly tracked. IE plays an important role in the proposed
algorithm that provides accurate residuals. To indicate the
importance of IE to tracking problem, the simulation results of
the proposed algorithm were compared with those of the EKF
with identification algorithm only. Denote the proposed
algorithm as Method I and the EKF with the identification
algorithm but without IE as Method II. The following study
cases are with N

MC
 =50 Monte Carlo runs.

Consider an RV in the reentry phase with C = 2500 kg/m2

and initial values of x(0) = 300 m, y(0) = 300 m, z(0) = 30500 m,
v(0) = 1500 m/s, g

1
(0) = 65o, and g

2
(0) = 15o. The RV separates into

the warhead, body, and two debris with the ballistic coefficients
C

1
 = 2000 kg/m2, C

2
 = 3000 kg/m2, C

3
 = 3500 kg/m2 and C

4
 = 4000

kg/m2, respectively, at t
s
 = 5 s . Equations (1) ~ (9) simulate the

trajectories of the warhead, body, two debris, and the original
RV without separation. Measurement noises are generated by
following the standard normal distribution. Figures 4 to 9 display
the measured trajectories with measurement noises. The

Figure 3. Flowchart of the proposed algorithm.
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1û  

v
1X̂  

1b  

2X  

2û  
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sampling period of the radar is Dt = 0.1s. The flight times of the
original RV, warhead, body, and two other debris are 36 s, 42 s,
33 s, 31 s, and 29 s, respectively. The body and two debris are
falling down faster than the warhead. The purpose of the
proposed algorithm is to identify the warhead among these four
objects.

The ballistic coefficient was set to a constant of C = 2500
kg/m2 in entire estimation. Let the confidance level 1–a to be
0.95. The initial conditions of R, Q, V, and Pv(0|0)were I

6´6
, I

6´6
,

500I
6´6

, and 500I
6´6

, respectively. R and Q remain constants in
entire estimation  The first detection Z(0) is taken as initial state
ˆ (0 | 0)vX .

Figures 10 and 11 show the relative association probability
evolution by Methods I and II, respectively. The association
probability of Method I for the warhead reached 1 within 2s.
Restated, the estimated trajectory followed the warhead, and
was never affected by the measurements of the body and debris
in 2s after separation. However, Method II assigned the same
probabilities to the warhead and another object. The radar beam

Figure 4. The measured position of objects in downrange.

Figure 5. The measured position of objects in offrange.

Figure 6. The measured position of objects in altitute.

Figure 7. The measured velocity of objects in X
R 

.

Figure 8. The measured velocity of objects in Y
R 

.
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thus denoted the location with the same distance to warhead as
to another object. This implies that the radar lost the track if all
objects have a large enough separating distance. Figure 12
shows the norms of estimation error for Method I wrt. the
warhead. The error norms induced by Method I were limited to
5m in position and 9 m/s in velocity. The small estimation error
ensures that the warhead  located in the radar beam and was
tracked all the time. The body and two debris were thus no
longer in the same radar beam. Figure 13 displays the norm of
the estimation error generated by Method II w.r.t. the warhead
that were almost up to 1500m in position and 450m/s in velocity
and larger than those induced by Method I. Figures 14 -17 depicts
the standard deviations (SD's) of the estimated position and
velocity for Methods I and II that converged to an acceptabel
range in a certain time. The SD of Method I was slight greater
than those of method II because of involvement of IE.

Case 1: Manuvering Warhead:
Maneuvering is generally undertaken after separation to

Figure 9. The measured velocity of objects in ZR .

Figure 10. Association probabilities of warhead and other objects
for Method I.

Figure 11. Association probabilities of warhead and other objects
for Method II.

Figure 12.Norm of estimation errors wrt the warhead for Method I.

Figure 13.Norm of estimation errors wrt the warhead for Method II.



120

DEF SCI J, VOL. 59, NO. 2, MARCH 2009

Figure 14. SD of errors in position wrt the warhead for Method I.

Figure 15. SD of errors in velocity wrt the warhead for Method I.

Figure 16. SD of errors in position wrt the warhead for Method II.

Figure 17. SD of errors in velocity wrt the warhead for Method II.

change warhead trajectory. Consider the case that 3G, 3G, and -
3G lateral accelerations with duration 3 s along three axes at 2 s
after separation are undertaken by the warhead. Figures 18 and
19 show the corresponding association probability evolution
formed by methods I and II, respectively. The association
probability of method I to warhead  reached 1 in 2 s as in the
nonmanoeuvring case, but fluctuated after maneuvering, and
died out rapidly after termination. Nevertheless, method II gives
the same probabilities to the warhead and another object as the
nonmaneuvering case. The proposed algorithm assigned higher
probabilities to the warhead than to another object that led the
radar to track the warhead as well as the nonmaneuvering case.
The IE estimates the unknown input terms and helps
identification algorithm to select the right target and keep in
track. Figure 20 demonstrates the norms of estimation error for
Method I that were restricted to 27 m in position and 5 m/s in
velocity. The small error made the radar to track warhead well.
Figure 21 shows the norms produced by method II that were
much larger than those produced by method I. Figures 22~25
depict the SD's of these two methods that both converged to a
certain interval. This case measures the robustness property of
Method I to model error generated by maneuvering.

Case 2: Parameter Uncertainty:
This case evaluates the robustness of the proposed

algorithm to ballistic coefficient, initial values of state and its
covariance, and confidence level by inspecting the root mean
square (RMS) of estimation error for real time. The RMS is
defined as23

1 1

1 1
RMS [ ( ) ( )] [ ( ) ( )]

MC PN N
T

j j j j
j jMC P

v i v i v i v i
N N= =

ì ü
= - -í ý

î þ
å å (39)

where ( )jv i and ( )jv i denote the estimation error and its mean,
respectively, at the j-th run and N

p
 is the total  number of samples.

The ballistic coefficient is the critical parameter for the
RV dynamic equations and is unknown for the defender. One
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Figure 18.Association probabilities for Method I under
manoeuvring case.

Figure 20. Norm of estimation errors wrt the warhead for Method I
under maneuvering case.

Figure 21. Norm of estimation errors wrt the warhead for M ethod
II under manoeuvring case.

Figure 23. SD in velocity wrt the warhead for Method I under
manoeuvring case.

Figure 19.Association probabilities for Method II under
manoeuvring case.

Figure 22. SD in position wrt the warhead for Method I under
manoeuvring case.
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should assign a constant to the ballistic coefficient before
estimating and tracking.  If the assigned ballistic coefficient is
far away from the true value, the model error increases and the
estimated trajectory might become unreliable. Table 1 lists the
RMS of estimation errors for non-manoeuvring and manoeuvring
cases in different assigned ballistic coefficients. This indicates
that only a little change for mehtod I was achieved and confirms
that the proposed approach is robust to the ballistic coefficient.

Tables 2 and 3 summarise the RMS of estimation error
induced by varying initial state and covariance, respectively.
For initial state, the estimation errors produced by Method I
were larger than the original especially in Z

R
. Taking Z(0) as an

initial is simple and is suggested. From Table 3, Method I
provided a slight difference and an acceptable errors due to
Pv(0|0) variation. Although Method II also had a slight change,
its estimation errors were unacceptable. Covariance of process
noise, Q, is another critical parameter for EKF. Q is assigned to
be a constant matrix in entire estimation procedure for both
non-manoeuvring and manoeuvring cases. Table 4 lists the RMS

for methods I and II in different Q. The RMS's for method I were
small and almost the same. However, the RMS's offered by
method II were much greater than those by mehtod I. According
to these two tables, robustness of the proposed algorithm to
Pv(0|0) and Q was validated.

Confidence level relates input duration l and confidence
interval means a threshood to detect inputs during estimation.
Lower confidence level, implying larger l, allows more estimated
inputs to join into the estimation procedure. Table 5 summarises
the RMS of estimation error generated by Method I for different
confidence levels or window lengths. The RMS's were almost
the same for cases of confidance levels 0.9, 0.85, and 0.8. This
reveals that the proposed method is robust to confidence level
because errors induced by unreal inputs can be corrected by
the estimated input at next sampling period.

6. CONCLUSIONS
This study presents an accurate algorithm for tracking a

warhead that has separated from a reentry vehicle in the reentry

Figure 24. SD in position wrt the warhead for Method II under
manoeuvring case.

Figure 25. SD in velocity wrt the warhead for Method II under
manoeuvring case.

Table 1. RMS of the estimation error for non-manoeuvring (above) and manoeuvring (below) cases in different assigned C

Assigned Position in Position in Position in Velocity in Velocity in Velocity in
C (kg/m2) X

R 
(m) Y

R
 (m) Z

R 
(m) X

R 
(m/s) Y

R 
(m/s) Z

R 
(m/s)

1500 1.09 1.12 1.4 0.91 1.98 4.14
(754.16)* (227.03) (1677.2) (188.8) (123.5) (180.09)

3.33 9.66 13.02 1.83 1.52 4.42
(830.53) (352.49) (1522.6) (255.91) (147.15) (323.89)

3500 0.56 0.53 0.85 0.54 1.17 2.28
(300.07) (27.63) (567.75) (105.72) (100.46) (125.79)

3.64 8.54 12.86 1.24 1.06 2.93
(301.31) (235.52) (573.62) (95.31) (83.87) (187.4)

5000 0.46 0.46 0.79 0.48 1.04 1.97
(346.73) (506.42) (1587.8) (89.3) (108.71) (163.55)

6.16 10.64 10.15 0.92 1.24 2.23
(309.94) (136.73) (1704.1) (106.22) (56.64) (169.02)

* Value in (.) means the RMS from Method II.
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Table 4.  RMS of the estimation error for non-manoeuvring (above) and manoeuvring (below) in different Q

Q Position in Position in Position in Velocity in Velocity in Velocity in
XR (m) YR (m) ZR (m) XR (m/s) YR (m/s) ZR (m/s)

0.3I6´6 0.7 0.68 0.92 0.65 1.39 2.77
(512.07)* (213.98) (1292.9) (135.51) (112.55) (155.14)

2.93 8.96 12.42 1.08 1.05 2.97
(225.92) (207.82) (1670.3) (105.43) (38.92) (193.58)

3I
6´6

0.69 0.67 0.96 0.64 1.39 2.76
(140.25) (132.59) (453.38) (105.01) (105.58) (139.45)

3.22 8.97 12.76 1.08 1.21 2.62
(304.45) (259.71) (1375.3) (78.92) (63.22) (179.12)

10I
6´6

0.69 0.67 0.95 0.64 1.39 2.76
(168.01) (558.22) (1380.4) (81.28) (93.38) (140.72)

10.87 7.51 28.4 1.02 2.79 3.38
(344.5) 133.14) (692.76) (94.62) (39.45) (219.07)

* Value in (.) means the RMS from Method II.

Table 3.  RMS of the estimation error for nonmanoeuvring (above) and manoeuvring (below) in different initial covariance

Pv(0|0) Position in Position in Position in Velocity in Velocity in Velocity in
X

R 
(m) Y

R
 (m) Z

R 
(m) X

R 
(m/s) Y

R 
(m/s) Z

R 
(m/s)

10I
6´6

0.69 0.67 0.95 0.64 1.38 2.78
(457.39)* (95.95) (609.63) (148.52) (120.04) (146.2)

2.93 8.96 12.42 1.08 1.05 2.97
(830.53) (352.49) (1522.6) (255.91) (147.15) (323.89)

100I6´6 0.67 0.67 0.95 0.65 1.38 2.77
(456.57) (95.61) (609.01) (148.24) (119.82) (146.05)

3.22 8.97 12.76 1.08 1.21 2.62
(233.61) (210.17) (1676.6) (105.69) (38.57) (197.83)

1000I6´6 0.69 0.67 0.95 0.64 1.39 2.76
(456.48) (95.58) (608.9) (148.21) (119.79) (146.04)

10.87 7.51 28.4 1.02 2.79 3.38
(234.32) (210.05) (1677.0) (105.62) (38.79) (197.65)

* Value in (.) means the RMS from Method II.

Table 2.  RMS of the estimation error for non-manoeuvring (above) and manoeuvring (below) in initial state variation

ˆ (0 | 0)vX Position in Position in Position in Velocity in Velocity in Velocity in
X

R 
(m) Y

R
 (m) Z

R 
(m) X

R 
(m/s) Y

R 
(m/s) Z

R 
(m/s)

0.5Z(1) 8.94 8.94 890.33 4.91 18.23 40.4
(456.25)* (96.02) (1078.4) (148.21) (121.1) (201.15)

10.51 10.27 890.44 5.05 18.25 40.44
(234.92) (209.4) (1898.6) (105.46) (43.14) (151.46)

2Z(1) 17.83 17.83 1780.7 9.75 36.37 80.75
(457.39) (97.07) (1882.2) (148.66) (125.29) (168.65)

19.3 18.81 1780.8 9.83 36.42 80.77
(192.69) (278.27) (1800.7) (114.58) (98.24) (166.9)

* Value in (.) means the RMS from Method II.

phase. The proposed method comprises an extended Kalman
filter, an input estimator, and an identification algorithm. The
extended Kalman filter associated with input estimation can
accurately predict the trajectory. The identification algorithm

selects candidates and offers a precision combined updated
state for the warhead from all measured objects. Simulation
results monitor the performance of the recommended method
by inspecting the estimation error corresponding to the warhead,
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which should be minimised. Robustness of the proposed
algorithm to critical parameters in the model is also evaluated by
simulation. This investigation thus concludes that the proposed
algorithm is worthy of further study and applications. The effects
of a nonlinear measuement equation, when a filter for estimating
velocity is invloved, will be concerned. Ballistic coefficient
estimation is another future study issue for increasing the
accuacy more.
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