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1. INTRODUCTION
In this technologically advancing world, microwave 

absorbing materials play a very significant and instrumental 
role in the areas of health care, electronic instruments 
reliability and national defence. Minimizing the radiation 
problems, electromagnetic pollution problems and reducing 
the radar cross-section of the military units are the major 
focus areas where the applicability of microwave absorption 
arises. The importance of microwave absorbing materials in 
the modern society has prompted the researchers to develop 
high-performance microwave absorbers with characteristic 
features of high absorption, wider bandwidth, low density and 
less thickness1. Different approaches to develop microwave 
absorbers have been tried such as variation in particle size 
of absorber2, doping3, process parameters4,5, secondary phase 
dispersion6,7, multi layering8 and implementation of frequency 
selective surfaces9. Since its inception, ceramics and ferrites 
based composite materials have been extensively used as 
microwave absorbing materials. However, the traditional 
ceramics and ferrites based absorbers do not possess broadband 
characteristics to satisfy the modern requirement and also 
light-weight criteria at the same time. This has led to the 
emergence of hierarchical core-shell materials in recent times 

with superior absorption characteristics. The materials having 
core-shell structure have attracted the attention of researchers 
around the globe in view of their superior properties such as 
high interfacial polarisation, greater impedance matching, and 
synergistic effect. Therefore, researchers around the globe 
are developing core-shell structured materials for EM wave 
absorption. Recently, a large number of core-shell materials 
have been developed which makes the selection of a particular 
absorber quite difficult. Therefore, in order to judiciously 
address the problem of material selection and subsequently save 
the valuable resources used for development of new materials, 
the multi-criteria decision making methods such as TOPSIS 
and VIKOR can be employed10,11. The present work, elucidates 
a novel effort to highlight the utility of TOPSIS and VIKOR 
approaches by ranking available core-shell based absorbers 
from literatures. Till date, no open literature is available for the 
selection of EM wave absorbers using TOPSIS and VIKOR 
approaches. Therefore, this paper presents an idea to rank the 
absorbers according to their merit for their judicious selection 
in practical applications.

2. RESEARCH METHODOLOGY
2.1 Selection of Material Attributes

In this study, the material database consisting of 14 
numbers of core-shell based EM absorbers have been created 
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from different research articles as shown in Table 1 which 
serves as the decision matrix and ranked using TOPSIS and 
VIKOR approaches. 

The attributes for selection process has been selected 
on the basis of most influencing parameters for EM wave 
absorption. 

The modulus of reflection co-efficient (|RC|), absorber 
thickness (t), effective absorption bandwidth (EAB) 
corresponding to -10 dB and deviation from the central 
frequency (∆) i.e. (10 GHz) were decided to be the selection 
criteria which are important parameters for deciding a better 
absorber. An efficient EM wave absorber will have a high value 
of |RC|, large EAB in a given frequency range, small t for cost-
effectiveness and small ∆ for an effective absorber functioning 
in X and Ku bands. Also, small ∆ ensures that the absorber 
can be easily tuned to operate in either the X or Ku band by 
varying the materials composition or absorber thickness. The 
research methodology for material selection has been depicted 
in Fig. 1.

2.2 Analytic Hierarchy Process based Weight 
Assignment to the Attributes
The analytic hierarchy process (AHP) method is used 

to assign weights to the selected attributes in hierarchical 
multi-criteria based decision-making problems. In AHP, a 
comparative judgment between the attributes is done and each 
attribute is assigned a certain weight based on the comparative 
judgment. The steps followed in AHP are:

Step 1: Construction of a comparison matrix.
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where Aij denotes the attributes. A scale of digits between 1 
and 9 describes the relative importance between two attributes. 
The digit ‘1’ denotes “equal importance”, ‘3’ denotes “slightly 

higher importance”, ‘5’ denotes “much higher importance as 
compared to the other”, ‘7’ denotes “very important” and ‘9’ 
denotes “extremely important”26.

Step 2: The comparative weights are calculated using the 
eigenvalues from the matrix as in Eqn. (2).

max( ) 0A I w− λ =                                                             (2)
where, maxλ  represents the largest eigenvalue with w as the 
eigenvector.

Step 3: Checking the consistency and accuracy of the 
calculated weights by Eqns (3-4).

max( ) ( 1)CI r r= λ − −                                        (3)
where, the index for consistency is denoted by CI and r 
represents the number of selected attributes.

CICR
RI

=                                                       (4)

where, CR and RI represents the consistency ratio and random 
index respectively. The value of RI is decided on the basis of 
number of attributes is given in Table 227. The comparison 
between the attributes is acceptable only if CR< 0.1. In this 
case, reliable results can be obtained.

Table 2. Value of RI according to the number of attributes

No. of attributes 2 3 4 5 6 7
RI 0.00 0.58 0.90 1.12 1.24 1.35

2.3 TOPSIS based ranking method
The following steps are involved in TOPSIS based ranking 

approach26:
Step 1: Normalisation of the numerical values of the 

attributes in the decision matrix using Eqn. (5).
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Step 2: Columns of the normalised matrix is multiplied by 
assigned weights as in Eqn. (6)

Table 1. Material database representing the numerical values of the attributes

Materials Material 
code

Reflection Co-
efficient ‘|RC|’ (dB)

Effective absorption 
bandwidth ‘EAB’ (GHz)

Absorber thickness 
‘t’ (mm)

Deviation from 
central frequency 

i.e. 10 GHz (∆)
Ref.

CoFe2O4@CNT M1 32.80 5.70 2.00 1.70 [12]
CoFe2O4@Graphene M2 42.00 4.59 2.00 2.90 [13]
FeSn2@onion-like C M3 48.60 3.20 3.50 1.84 [14]
SiC@SiO2 M4 32.72 5.32 3.50 3.84 [15]
Cu@Ni M5 32.20 1.60 2.00 1.80 [16]
Ni0.5Co0.5(OH)2@PANI M6 39.80 3.10 2.50 3.60 [17]
Graphene@NiO@PANI M7 37.50 4.90 3.50 3.40 [18]
SiC@C M8 39.20 8.00 1.5 6.40 [19]
Fe@ZnO M9 22.33 4.00 2.43 8.00 [20]
FeCo@C M10 40.00 13.40 2.50 0.80 [21]
Co3Fe7@C M11 44.40 3.20 1.60 3.00 [22]
FeNi3@SiO2@Rgo M12 49.40 3.38 3.80 1.36 [23]
ZnO@C@Co3ZnC M13 62.90 5.50 2.20 3.90 [24]
Co@C M14 42.00 11.31 3.00 0.56 [25]
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ij ij iG k w=                                                                       (6)
Step 3: Determination of ideal and worst solutions using 

Eqns. (7) and (8), respectively.
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where, K represents beneficial criteria set and K' represents 
cost criteria (non-beneficial) set.

Step 4: Euclidean distances from the ideal and worst 
solutions are calculated using Eqns. (9) and (10), respectively.
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Step 5: The relative closeness to the ideal solution is 
calculated using Eqn. (11) and represented by Qj. For good 
rank, the value of Qj  should be high.
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2.4 VIKOR-based Ranking Method
The VIKOR method is a compromise solution method 

to rank the alternatives. The following steps are involved in 
VIKOR approach26:

Step 1: (Aij)max and (Aij)min representing the best and worst 
values are calculated from the decision matrix.

Step 2: Eqns (12) and  (13) are employed to calculate the 
values of Xj  and Yj, respectively.
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Step 3: The VIKOR index Zj is calculated for ranking 
using Eqn (14) with the value of v taken as 0.5. A smaller value 
of Zj  indicates better rank.
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3. RESULTS AND DISCUSSION
This section shows the utility of AHP based TOPSIS and 

VIKOR approaches in ranking the core-shell based EM wave 
absorbers in the 2-18 GHz frequency range.

The above algorithms for weights determination and 
subsequently ranking using TOPSIS and VIKOR were applied 
to the EM wave absorber selection problem.

3.1 AHP Derived Weights
The AHP algorithm has been used to assign the weights of 

the attributes. The matrix for pairwise attributes comparison is 
depicted in Table 3. The matrix has been utilised for calculating 
the corresponding weights.

Figure 1. Flowchart showing the research methodology for ranking the EM absorbers.
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Table 3. Matrix for pairwise attributes comparison

|RC| EAB t Δ
|RC| 1 1 2 7
EAB 1 1 2 7

t 1/2 1/2 1 5
Δ 1/7 1/7 1/5 1

The calculated CI and CR values are 4.016 and 0.006 
respectively. The calculated CR value is less than 0.1, therefore, 
the AHP approach is reliable in the assignment of the weights 
to the attributes. The AHP derived weights has been given in 
Table 4.

Table 4. AHP derived weights

Selection criteria |RC| EAB t Δ

Weights 0.373 0.373 0.205 0.049

3.2 TOPSIS and VIKOR based Ranking Results
TOPSIS and VIKOR ranking algorithms were implemented 

using the AHP derived weights and the results are shown in 
Table 5. The comparison of the TOPSIS and VIKOR ranking 
approaches has been shown in Fig. 2.

From Fig. 2, it can be deduced that FeCo@C and Co@C 
have been ranked as an efficient and cost-effective absorber 
by the TOPSIS and VIKOR approaches. The reason for their 
efficient absorption characteristics may be due to their good 
impedance matching and attenuation characteristics which 
allows the incident EM signals to enter into the interior of 
the absorber material and suffer multiple scatterings and 
reflections resulting in enhanced EM wave absorption. Cu@Ni 
and Fe@ZnO have been ranked as the worst absorbers owing 
to their small bandwidth, large thickness and larger deviation 
from the central frequency. The closeness between the two 
ranking systems has been calculated using the Spearman rank 
correlation co-efficient (δ) as given in Eqn. (15)28.
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where, δ is the Spearman rank correlation co-efficient, s denotes 
the number of material available, DR denotes the numerical 
difference between TOPSIS and VIKOR ranks. Spearman rank 
correlation coefficient (δ) of TOPSIS and VIKOR has been 
found to be 0.974 which indicates that both the methods yield 
comparably the same result.

4. CONCLUSIONS
In the present work, the AHP method has been successfully 

employed to determine the weights of the various attributes 
by subjective judgments. Both the TOPSIS and VIKOR 
methods used in this literature have predicted close results 

Table 5. Comparison of TOPSIS and VIKOR ranking approaches

Material 
code

TOPSIS Analysis VIKOR Analysis

Pj
+ Pj

- Qj Rank Xj Yj Zj Rank

M1 0.140974 0.081344271 0.365891 5 0.572051 0.276623 0.50428 6

M2 0.147325 0.078209238 0.346773 6 0.5305 0.278368 0.467618 5

M3 0.168402 0.071660689 0.298508 11 0.640571 0.322288 0.699012 11

M4 0.151873 0.065353093 0.300853 10 0.732735 0.277358 0.666769 9

M5 0.199163 0.049132363 0.197879 14 0.707773 0.372843 0.90595 13

M6 0.172045 0.057189807 0.249481 12 0.647024 0.325448 0.714195 12

M7 0.152321 0.065604319 0.30104 9 0.699171 0.268573 0.608956 8

M8 0.104022 0.118018075 0.531518 3 0.427003 0.217806 0.196754 4

M9 0.179484 0.046890009 0.207135 13 0.801957 0.372843 1 14

M10 0.058734 0.193060081 0.766738 1 0.301244 0.210454 0.050839 1

M11 0.165935 0.07610471 0.31443 7 0.517342 0.322288 0.575958 7

M12 0.166938 0.074641546 0.308972 8 0.651123 0.316601 0.693817 10

M13 0.125025 0.120503989 0.490794 4 0.33412 0.249615 0.191987 3

M14 0.067361 0.162168534 0.706525 2 0.391918 0.192073 0.090545 2

Figure 2. Comparison of core-shell EM wave absorbers using 
TOPSIS and VIKOR approaches.
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in the ranking of the EM wave absorbers in 2-18 GHz range. 
Spearman’s correlation coefficient (δ) has been found to be 
0.974 indicating a nearly perfect association between the two 
ranking methods. Therefore, the present work successfully 
highlights the importance of AHP based TOPSIS and VIKOR 
approaches in the selection of efficient and low-cost EM wave 
absorbers.
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