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ABSTRACT

The extremely challenging nature of passive acoustic surveillance makes it a key area of research in Naval 
Non-Co-operative Target Recognition especially in Anti-Submarine Warfare systems. In shallow waters, the 
complex acoustics due to the highly varying ambient background noise as well as the multi-modal propagation in 
the surface-bottom bounded channel makes surveillance even difficult. In this work, an ensemble of Convolutional 
Neural Networks and Bidirectional Long Short Term Memory stages employing soft attention is used to effectively 
capture the spectro-temporal dynamics of the target signature. In order to alleviate the overall computational cost 
associated with the optimal model search in the extensive hyperparameter space, a recursive model elimination 
scheme, making frugal use of the available resources, is also proposed. Experimental analysis on acoustic target 
records, collected from the shallows of Arabian Sea, has yielded encouraging results in terms of model accuracy, 
precision and recall.
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1. INTRODUCTION
With the emergence of many asymmetric forces, 

stealthier platforms, proliferation of unmanned surface and 
submerged platforms, the naval conflict zones have mostly 
shifted from deep ocean towards the littoral zones during 
the past two decades1. However, in shallow waters, reliable 
target recognition is formidably hard, manifested by the rather 
complex acoustics, multi-modal propagation in the surface-
bottom bounded channel, complex hydro-meteorological 
conditions, highly varying ambient background noise as well 
as comparatively low source levels2,3. Various spatio-temporal 
inhomogeneities in the shallow water medium makes it a 
dispersive stochastic filter, which can often mask the signals 
of interest beyond the detection threshold4. The cacophony 
of marine biologics produced by large schools of marine life 
such as snapping shrimps in the littorals of tropic and subtropic 
waters could easily overpower even a medium scale frigate’s 
radiated noise in near fields. 

Detection of envelope modulation on noise (DEMON) 
as well as low frequency analysis and recording (LOFAR) are 
canonical examples of spectral features exploited in open ocean 
target detection and classification. However, the prevalence of 
non-target contacts and the mutual interference of broadband 
components due to surface-bottom interactions can jeopardize 
the success rates of classifiers based on such features, while 
operating in shallow waters. Das5, et al. proposed a cepstral 

features based classifier to reduce these distortion effects. 
Kuperman6, et al. suggests developing methods that make use 
of the data themselves in order to alleviate these challenges 
while confronting shallow water acoustics. 

Recent developments in artificial intelligence (AI) and 
machine learning (ML) have enabled end-to-end learning, 
often referred to as deep learning7, a special variant of 
artificial neural networks (ANN). While classical multi-layer  
perceptrons (MLPs) have a single hidden representation 
layer, deep neural networks (DNNs) create multiple levels 
of hierarchical abstraction within the network itself, yielding 
better invariant representations at the higher layers. DNNs 
often eliminate the requirement of intrinsic hand engineered 
features8. Instead, the network learns from the raw data or from 
an intermediate representation that well preserves the latent 
structures in the data.

In this paper, a machine learning based naval non-
co-operative automated target recognition (NCATR) 
system is proposed, which can effectively mitigate several 
adversarial effects presented by the shallow water acoustics 
in performing target recognition. The system utilises a deep 
convolutional neural network8 (CNN) for supervised feature 
learning, in conjunction with a bidirectional long short term 
memory9 (BLSTM) employing soft attention10 mechanism. 
A recursive model elimination strategy is also proposed, 
which can effectively minimise the model space introduced 
by the excessive number of hyperparameters involved in the  
network design.Received : 08 September 2020, Revised : 21 December 2020 

Accepted : 23 December 2020, Online published : 01 February 2021



DEF. SCI. J., VOL. 71, NO. 1, JANuARy 2021

118

2. SYSTEM IMPLEMENTATION
The passive sonar listens to the radiated target signatures 

in its vicinity using an array of hydrophones. The raw acoustic 
signal captured by the wet end of the sonar is transformed into 
a time-frequency (TF) representation such as spectrogram in 
order to make the spectral as well as temporal dynamics of 
the signal more explicit. The salient spectral region of targets 
of interest spans low frequencies ranging from a few hertz 
to 5 kHz approximately11. Hence, in addition to using raw 
spectrogram (spgm) as the basis representation, a log-scaled 
spectrogram (logspgm) is also employed in order to make the 
low frequency spectrum more dilated and to expose the hidden 
subtle tonals. This is quite evident in Fig. 1, which depicts the 
spectrogram and log-scaled version of the same, corresponding 
to an observed target signature.

2.1 The Proposed Network Architecture
The architecture of the network is as depicted in Fig. 2. 

CNNs are a specific variant of the ANNs, introducing the 
concept of receptive fields, weight reuse and local pooling of 
features. Hence, CNNs are used as the spectro-temporal feature 
learners at the initial layers in order to ensure invariance both 
in time and frequency. A multi-filter convolution approach is 
used at the input layer, with varying temporal and spectral 
dimensions in order to better capture the different temporal 
and spectral dynamics of the target signature. A non-linear 
activation function given by max (0, a), often termed as rectified 
linear unit12 (ReLu), can be applied at the CNN pre-activation 
a to yield the activation map. In the current work, either of the 
two variants of ReLu, known as the Leaky ReLu (LReLu) 
and the Parametric ReLU (PReLU), which offers a better flow 
of gradients, is utilised as the activation function. 

A non-parametric operation known as pooling13 is often 
used in conjunction with the convolutional layer to reduce the 
number of parameters as well as to improve the invariance by 
estimating either the maximum or average under local patches 
of the activation map. In this work, a symmetric max pooling 

is used across all pooling layers. During the gradient descent 
process, the internal weight distribution can be severely altered, 
leading to internal covariate shift. A batch normalisation14 layer, 

Figure 2. The proposed network architecture.

Figure 1. Spectrogram and log-spectrogram corresponding to 
a target’s acoustic signature.
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which normalises the weights by their mean and covariance, is 
employed throughout the network to reduce such adversarial 
effects. 

The spectro-temporal features learned by the CNN alone 
might not be able to encode the fine sequential temporal 
dependencies present in the observed target signature. The 
extreme variabilities and several adversarial phenomena in 
shallow waters demand the exploitation of latent temporal cues 
also, in order to improve the classifier performance. Recurrent 
Neural Network (RNN) provides a way to learn sequential 
dependencies in the signal by virtue of its structure. Long 
Short Term Memory (LSTM) is a special kind of RNN that 
ameliorates the vanishing gradient problem over long temporal 
steps. However, a conventional unidirectional LSTM cell 
makes prediction only in the context of past spectro-temporal 
representations. Since the acoustic signature of an underwater 
target has quite complex sequential dependencies, it will be 
advantageous to compute backwards also so as to make the 
latent sequential relationships in the data more explicit. This 
can be achieved with the help of bidirectional LSTMs, having 
forward and backward recurrent units in two separate hidden 
layers, for the forward as well as backward computation 
respectively. 

Since the acoustic signature of an underwater target 
has quite complex sequential dependencies, a BLSTM with 
peephole architecture15 is employed as the temporal sequence 
learner. In order to reduce the effects of spurious and sporadic 
variations as well as to focus on significant spectro-temporal 
features, a soft attention module is also incorporated in the 
BLSTM stage. The attention function is implemented as a 
separate importance weighted network, which is differentiable 
against the cost function, so that it could be easily trained with 
Stochastic gradient Descent (SgD). In the fully connected 
output layer, a softmax activation is used in order to express 
the network output as a multi-nomial distribution over all 
known classes. 

The hierarchical spectro-temporal feature learning 
is performed in a supervised manner using the deep CNN 
with error back propagation. Cross entropy16 or the negative 
log-likelihood between the prediction and the true target is 
employed as the cost function. The classifier is optimised using 
a modern variant of SgD, known as the Adaptive Momentum17 
(ADAM) optimiser, since it provides better numerical stability 
by adoptively regulating the learning rate during the gradient 
descent process.

3. EXPERIMENTAL SETUP
3.1 Dataset

The field data required for the training and evaluation of 
the classifier system have been collected from the shallows 
of Arabian Sea, the north-western part of Indian Ocean, 
in the vicinity of international shipping lane off Cochin. 
Through several expeditions of the research vessel Sagar 
Sampada and using various hired platforms such as 
survey boats, multiple custom-built buoys together with 
horizontal line arrays have been deployed for carrying 
out the acoustic recordings. The raw observations have 
been made at 96 ksps and 24 bps using up to five omni-

directional hydrophones having input sensitivity of -180 dB re 
1 V/µPa with lateral as well as vertical separation of few meters 
in order to introduce limited but beneficial spatial variance. 
Recordings have been taken in different sea states and at 
various locations with diverse depth profiles ranging from 6 m 
to 50 m and the proximity of the transshipment port has helped 
in gathering many target records in different ambient noise 
conditions as well. The constant crackling and other biologics 
present in the shallows have been removed manually during 
pre-processing. The acoustic records have been normalised 
and down sampled to 44.1 ksps as no significant features were 
observed in the spectrogram above 20 kHz. 

Most of these recordings have been made at the point of 
transit of the target platforms along the shipping lane at various 
cruising speeds ranging from 2 kn to 15 kn with the Closest 
Point of Approach (CPA) of about a few hundred meters. From 
the repertoire of the collected acoustic records, a set of 31 targets 
belonging to 10 broad categories including biologics, has been 
chosen for evaluating the classifier. The acoustic records have 
been partitioned into three disjoint sub sets, the training set, the 
validation set and the test set with randomly selected partitions 
from the time domain having 60%, 20% and 20% of the total 
duration of the records correspondingly. Altogether the target 
records have an on-disk size of 31 GB approximately.

3.2 Recursive Model Elimination 
Apart from the parameters trainable through 

backpropagation, a neural network has a multitude of non-
trainable parameters, often termed as hyperparameters 
such as the number of layers, LSTM nodes, kernel size, 
regularisation factor, learning rate, activation function and 
optimisation algorithm to name but a few. The permutations 
and combinations of these parameters in effect are staggeringly 
high, which makes it a combinatorial search problem and is 
often expensive in terms of computational resources. Hence 
a recursive model elimination scheme is proposed here for 
effectively reducing the number of model configurations. The 
parameters chosen for optimisation are listed in Table 1, where 
nCNN represents the number of convolutional feature learning 
layers, nLSTM denotes the number of LSTM layers, Reg 
indicates whether regularisation is used, Attn indicates whether 
a soft attention layer is employed, BS is the batch size, TF is 
the time-frequency representation used, LR is the learning rate 
and Act is the type of activation applied. 

Considering 1 2, ,..., nρ ρ ρ  as the hyperparameters to be 
optimised and P1, P2, … , Pn as their respective domains, the 
corresponding number of configurations in the hyperparameter 
space can be defined as,

Table 1. Hyperparameters for optimisation

nCNN nLSTM Reg Attn BS TF LR Act

2 1 True True 256 spgm 1e-3 relu
3 2 False False 512 logspgm 1e-4 lrelu

both 1e-5 prelu
P13 = 2 P14 = 2 P15 = 2 P16 = 2 P17 = 2 P18 = 3 P19 = 3 P20 = 3

P = 864
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n
i iP P== ∏                                                                      (1)

so that the model space M={m1, m2, …, mP}. In the current 
scenario, P = 864. The optimisation problem for a model mi on 
a set of examples S, which can be either training or validation 
instances sampled from a latent probability distribution Dx, can 
be expressed as,

ˆ arg min [ ( ; ( ) )]
xP x D iL x m Sρ∈ ∼ ρρ = Ε                               (2)

The optimisation is carried out recursively in multiple 
passes to minimise the expected loss L. The maximum 
validation accuracy for each model in the entire training 
epochs, evaluated for all the models after each pass j, can be 
expressed as,

{ }max( ( ) ) ; 1...validj j m s
i e

acc m i j n
∈

η = ∀ =                      (3)

where acc denotes the accuracy and n is the number of passes. 
Models with j Tη < η  are eliminated after each pass, where Tη  
= 90% and 94% respectively for j = 1, 2. The model parameters 
for the top 10 models obtained after pass 1 of 50 epochs, along 
with their corresponding accuracies for pass 2 and 3, sorted 
based on validation accuracy, are shown in Table 2. It is 
observed that the models which do not employ regularisation 

have a clear tendency to overfit after 150 epochs. Hence these 
models are also eliminated in pass 3 even though they have 
sufficiently high accuracies. The entire process of model 
training and elimination has been performed on an NVIDIA 
gPu cluster with an aggregate computational capability of 80 
TFLOPS approximately. Python together with CuDA18 has 
been used for developing the classifier models. 

4. RESULTS AND DISCUSSIONS
After all the elimination passes, three models, viz., Model 

3, Model 2 and Model 4 have been identified as the candidates 
for deployment. Although the margin of improvement obtained 
by the soft attention module isn’t quite noticeable on accuracy, 
it has consistently performed better throughout the entire model 
elimination passes and has hence remained in the list of final 
candidates. It is still interesting to note that for Model 3 and 
Model 4 having the soft attention module, the classification 
accuracy for the worst performing class i.e. class 23, is 
considerably better than the classifier without attention. This 
can be clearly observed in the per class accuracy plot depicted 
in Fig. 3. The training, validation and test accuracies along 
with their corresponding losses for these three models are 
plotted in Fig. 4. The test accuracies of the respective models 
are observed to be 94.29%, 94.42% and 94.32%.

Figure 3. Normalised per class test accuracy for the 31 member classes of the final candidate classifiers.

Table 2. Models selected after elimination pass 2 and 3

Model Input Parameters Network Parameters Accuracies (%)

TF
Dim nCNN Reg Attn

Pass 2:
Epochs=150

Pass 3:
Epochs=250

spgm logspgm Train Val Train Val
1   64 x 64 3 × × 99.28 94.96
2   64 x 128 2  × 93.24 94.95 95.95 94.95
3   64 x 128 2   93.24 94.93 93.95 95.21
4   64 x 64 3   93.84 94.92 94.48 94.84
5   64 x 128 2 ×  99.33 94.91
6   64 x 128 2 × × 99.32 94.91
7   64 x 64 2 ×  99.34 94.89
8 ×  64 x 128 2 ×  99.37 94.83
9   64 x 128 3 ×  99.25 94.79
10   64 x 64 2 × × 99.34 94.75
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It is quite evident from Fig. 3 that most of the targets 
achieve a success rate of over 90%, while certain classes fall 
short, class 23 for instance. This may be due to the proximity 
of the embeddings that persist in the feature space learned by 
the network, which leads to perplexities in the decision space. 
This can be observed in Fig. 5, where the entangled classes 
are confused with each other, with class 23 being mostly 
misclassified as class 7.

Despite the fact that the models have good performance 
in terms of accuracy, it can be often misleading in the case 
of a target classifier because a model that classifies all targets 
as friendly/neutral generally will have an exceedingly high 

accuracy even if the few true contacts are misclassified. 
Especially in the territorial waters, where the overwhelming 
majority of acoustic sources are either friendly or neutral, and 
the adversarial targets being sparse, the accuracy alone cannot 
be a reliable metric for assessing the model performance. False 
alarms can be  triggered by two scenarios, one in which a true 
contact may be misclassified as neutral and the other in which 
a neutral target may be misclassified as adversarial. Hence, the 
classifier performance has also been analysed in the light of 
other metrics such as precision and recall that can take into 
account the situations of such false alarms. 

Recall expresses the ability of the classifier to find the 
few but all the potentially hostile targets from a set of acoustic 
sources, whereas precision refers to the ratio of targets 
recognised as hostile that were actually hostile. In the context 
of a shallow water target classifier, recall may be slightly more 
important, as even if the predicted class is a false positive, 
it can be confirmed on further investigations using other 
modalities if possible. A false negative, on the other hand, 
does not give a chance for this detailed analysis. Precision-
Recall Curve (PRC) is an often-recommended metric while 
classifying severely unbalanced observations and in situations 
where true negatives i.e. the neutral targets, are not much of 
a concern.

The PRC for the candidate classifier Model 3 is plotted 
in Fig. 6, from which it can be observed that the Area under 
the Curve (AuC) is comparatively low for class 15 and up to a 
certain extent for class 7, 9, 13 and 31. It is found that class 23 
is the worst performing class, which is in quite agreement with 
the results presented in Fig. 3 and Fig. 5. The plot also indicates 
that the F1 scores for the majority of classes are concentrated 
around the area spanned by F1 = 0.8, which suggests that 
there is an appreciable balance between precision and recall. 
Hence the probability of the classifier to miss a hostile target is 
extremely low, which makes it a justifiable choice.Figure 5. Normalised confusion matrix of Model 3 on test set.

Figure 4. Performance summary of the best candidate models after pass 3.
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5. CONCLUSIONS
In this work, CNN based feature learning layers followed 

by temporal sequence learning BLSTMs with a differentiable 
soft attention module have been employed for NCATR task 
in shallow waters. All the models have been trained with the 
archived acoustic target signatures collected from the littorals. 
In order to reduce the exhaustive model space rendered by large 
number of hyperparameters, a resource-aware recursive model 
elimination scheme has been employed. Along with accuracy, 
measures such as precision, recall and F1 score have also been 
utilised to evaluate the final candidate models’ performance. 
From the PRC, it has been found that almost all the classes 
have good AuC with an average PR value of 0.96, which is 
quite promising. This further confirms the reliability of the 
proposed classifier model.
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