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1. INTRODUCTION
Microencapsulation1 is a technique by which solid,

liquid or gaseous active ingredients are packaged within
a second material for the purpose of shielding the active
ingredient from the surrounding environment. Thus the
active ingredient is designated as  the core material whereas
the surrounding material forms the shell. This technique
has been employed in a diverse range of fields from chemicals
and pharmaceuticals to cosmetics and printing. For this
reason, widespread interest has developed in
microencapsulation technology. Preparation of microcapsules
dates back to 1950s when Green and Schleicher 2,3 produced
microencapsulated dyes by complex coacervation of gelatin
and gum arabic, for the manufacture of carbonless copying
paper. To this day, carbonless copy paper is one of the
most significant products to utilize microencapsulation
technology, and is still produced commercially. The technologies
developed for carbonless copy paper have led to the
development of various microcapsule products in later years.

In the 1960s, microencapsulation of cholesteric liquid
crystal by complex coacervation of gelatin and acacia was
reported to produce a thermosensitive display material. J.
L. Fergason developed nematic curvilinear aligned phase
(NCAP), a liquid crystal display system by microencapsulation
of nematic liquid crystal4. Encapsulation technology has
provided the enlargement of display areas and wider viewing
angles.

 In defence applications this technology is used for
fabrication of self-healing composites5-10 which form an
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integral part of aerospace structures. Microencapsulation
is also used for designing special fabrics for military personnel
for their enhanced chemical protection against chemical
warfare11. Thus, since the mid of 1970s, microencapsulation
has become increasingly popular in pharmaceutical industry
as well as for many other products and processes in daily
use.

2. CLASSIFICATION
Microcapsules can be classified on the basis of their

size or morphology.

2.1 Micro/Nanocapsules
Microcapsules range in size from one micron (one

thousandth of a mm) to few mm. Some microcapsules whose
diameter is in the nanometer range are referred to as nanocapsules
to emphasize their smaller size.

2.2 Morphology Microcapsules
Microcapsules can be classified into three basic categories

as monocored, polycored and matrix types as shown in
Fig. 1. Monocored microcapsules have a single hollow
chamber within the capsule. The polycore microcapsules
have a number of different sized chambers within the shell.
The matrix type microparticle has the active ingredients
integrated within the matrix of the shell material. However,
the morphology of the internal structure of a microparticle
depends largely on the selected shell materials and the
microencapsulation methods that are employed.
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3. IMPORTANT FEATURE OF MICROCAPSULES
The most significant feature of microcapsules is their

microscopic size that allows for a huge surface area, for
example, the total surface area of 1mm of hollow microcapsules
having a diameter of 0.1 mm has been reported to be about
60 m2. The total surface area is inversely proportional to
the diameter. This large surface area is available for sites
of adsorption and desorption, chemical reactions, light
scattering, etc. More detailed features of microcapsules
are summarised in books by Gutcho12 and Arshady13.

4. REASONS FOR MICROENCAPSULATION
Microencapsulation of materials is resorted to ensure

that the encapsulated material reaches the area of action
without getting adversely affected by the environment

through which it passes. Amongst the principal reasons
for encapsulation are:
1. Separation of incompatible components
2. Conversion of liquids to free flowing solids
3. Increased stability (protection of the encapsulated

materials against oxidation or deactivation due to reaction
in the environment)

4. Masking of odour, taste and activity of encapsulated
materials

5. Protection of the immediate environment
6. Controlled release of active compounds (sustained or

delayed release)
7. Targeted release of encapsulated materials

5. TECHNIQUES OF MICROENCAPSULATION
Although a variety of techniques have been reported

for microencapsulation 14-24, they can broadly be divided
into two main categories (Table 1)25-83. The first category
includes those methods in which starting materials are
monomers/prepolymers. In these methods chemical reactions
are also involved along with microsphere formation. The
second category consists of those methods in which starting
materials are polymers.  Hence, in these methods no chemical
reactions are involved and only shape fabrication takes

Figure 1. Different types of microcapsules.

MONOCORE         POLYCORE           MATRIX

Microencapsulation methods  Materials Investigated Shell[core] Applications Refere-nces 

Chemical methods     

Suspension Polymerization  Poly(styrene)[PCM]  Textile 25, 26 

Emulsion Polymerization  Poly(alkyl  acrylate)s[insulin] Drug delivery 27, 28 

Dispersion  Poly(2-hydroxyethyl-co-glycidyl 
methacrylate)[ferrofluid] , Poly (N-vinyl á-
phenylalanine)[fluorescein isothiocyanate] 

Biosciences  29, 30 

Interfacial  Polyurea[insecticides, catalysts], 
Polyamide[oils], Polyurethane  
[insecticides], polyester[protein] 

Crop protection, 
Catalysis, drug 
delivery  

31-49 

Physical/Mechanical  methods    

Suspension crosslinking 

 

Protein, Albumin[doxorubicin, magnetite], 
Polysaccharides  

Drug delivery 50-52 

Solvent evaporation/extraction Poly(Lactide),Poly(Lactide-co-glycolide) 
[Drugs] 

Drug delivery 53-61 

Coacervation/phase separation  

 

Protein, Polysaccharides, Ethyl cellulose, 
gelatin[Drugs] 

Drug delivery 62-66 

Spray drying Polymers[Food ingredients] Food Technology 67-70 

Fluidized bed coating Gelatin, carbohydrates, lipids Food Technology 71-73 

Melt solidification  Polyanhydride[insulin] Food Technology 74 

Precipitation   Phenolic polymers [enzymes] Biocatalysis 75 

Co-extrusion Polyacrylonitrile[hepatocytes] Biomedical 76, 77 

Layer by Layer deposition Polyelectrolytes[organic compounds] Biosensor 78,79 

Microencapsulation methods  Materials Investigated Shell[core] Applications Refere-nces 

Supercritical fluid expansion Poly(ethylene glycol)[felodipine] Drug delivery 80, 81 

Spinning disk Paraffin Food engineering 82, 83 

 

Table 1. Major Microencapsulation methods
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place.
Generally the choice of the microencapsulation method

depends on the nature of the polymeric/monomeric material
used. Thus appropriate combination of starting materials
and synthesis methods can be chosen to produce
microencapsulated products with a wide variety of
compositional and morphological characteristics. For example,
poly (alkyl cyanoacrylate) nanocapsules are obtained by
emulsion polymerisation27, whereas reservoir type nylon
microcapsules are usually prepared by interfacial
polymerisation48-49. Similarly albumin microcapsules are
prepared by suspension crosslinking51, polylactide
microcapsules by solvent evaporation/solvent extraction53

and gelatin and related products by coacervation63. Some
of the important and most common microencapsulation
techniques are discussed in detail below.

5.1 Emulsion polymerisation
According to this technique28 the monomer (alkyl acrylates)

is added dropwise to the stirred aqueous polymerisation
medium containing the material to be encapsulated (core
material) and a suitable emulsifier. The polymerisation begins
and initially produced polymer molecules precipitate in the
aqueous medium to form primary nuclei. As the polymerisation
proceeds, these nuclei grow gradually and simultaneously
entrap the core material to form the final microcapsules.
Generally lipophilic materials (insoluble or scarcely soluble
in water) are more suitable for encapsulation by this technique.
Insulin loaded poly (alkyl cyanoacrylate) nanocapsules27

have  been synthesised by using this technique. In addition
to the entrapment of drug during microcapsule formation,
drug loading can also be accomplished by incubation of
cyanoacrylate nanocapsules (empty nanocapsules) with
the dissolved or finely dispersed drug.

5.2 Interfacial polycondensation
As the term "interfacial" implies, this technique involves

the polycondensation (condensation polymerization) of
two complementary monomers at the interface of a two
phase system 31-34. For the preparation of microcapsules,
this two-phase system is mixed under carefully-controlled
conditions to form small droplets of one phase (dispersed
phase) in the other one (continuous phase/suspension
medium). The material to be encapsulated must be chosen
in such a way as to be present (dissolved or dispersed)
in the droplets. It is also necessary to use a small amount
of a suitable stabilizer to prevent droplet coalescence or
particle coagulation during the polycondensation process
and capsule formation. Interfacial polycondensation can
be utilized to produce both monocore type or matrix type
microcapsules, depending on the solubility of the
polycondensate in the droplet phase. The two basic mechanisms
leading to the formation of both types of microcapsules
are schematically depicted in Fig. 284. Thus if the polymer
is soluble in the droplets, matrix type microcapsules are
formed. On the other hand, if the polymer is not soluble,
it precipitates around the droplets and leads to the formation
of monocore type microcapsules. Preparation of microcapsules
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Figure 2. Mechanism of matrix type or monocore type microcapsule formation by interfacial polymerization (X and Y are bifunctional
monomers).
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by interfacial polycondensation is applicable to a large
number of polymers including polyamides 35-37, polyureas 38-41,
polyurethanes42-45 and polyesters 46,47. In either case, the
process can be adopted to produce micrometer or nanometer
size particles. Polyurea microcapsules encapsulating osmium
tetroxide have been synthesised by using this technique39.

5.3 Suspension crosslinking
Suspension crosslinking is the method of choice for

the preparation of protein and polysaccharide micro-capsules50,51.
Microcapsule formation by this technique involves  dispersion
of an aqueous solution of the polymer containing core
material in an immiscible organic solvent (suspension/dispersion
medium) in the form of small droplets. The suspension
medium contains a suitable stabilizer to maintain the individuality
of the droplet/microcapsules. The droplets are subsequently
hardened by covalent crosslinking and are directly converted
to the corresponding microcapsules. The crosslinking process
is accomplished either thermally (at >500 C) or by the use
of a crosslinking agent (formaldehyde, terephthaloyl chloride,
etc). Suspension crosslinking is a versatile method and
can be adopted for microencapsulation of soluble, insoluble,
liquid or solid materials, and for the production of both
micro and nanocapsules. Albumin nanocapsules containing
doxorubicin and magnetite particles have been synthesised
by using this technique52.

5.4 Solvent Evaporation/Solvent Extraction
Microcapsule formation by solvent evaporation/solvent

extraction 53-60 is very similar to suspension crosslinking,
but in this case the polymer is usually hydrophobic polyester.

The polymer is dissolved in a water immiscible volatile
organic solvent like dichloromethane or chloroform, into
which the core material is also dissolved or dispersed. The
resulting solution is added dropwise to a stirring aqueous
solution having a suitable stabilizer like poly (vinyl alcohol)
or polyvinylpyrrolidone, etc. to form small polymer droplets
containing encapsulated material. With time, the droplets
are hardened to produce the corresponding polymer
microcapsules. This hardening process is accomplished
by the removal of the solvent from the polymer droplets
either by solvent evaporation (by heat or reduced pressure),
or by solvent extraction (with a third liquid which is a
precipitant for the polymer and miscible with both water
and solvent). Solvent extraction produces microcapsules
with higher porosities than those obtained by solvent
evaporation. Figure 3 shows a schematic representation
of microencapsulation by solvent evaporation technique.
Solvent evaporation/extraction processes is suitable for
the preparation of drug loaded microcapsules based on the
biodegradable polyesters such as polylactide, poly (lactide-
co-glycolide) and polyhydroxybutyrate61.

5.5 Coacervation/Phase separation
Coacervation 62 (or phase separation) is widely employed

for the preparation of gelatin63,64 and gelatin-acacia65

microcapsules, as well as for a large number of products

based on cellulose derivatives and synthetic polymers66.
Phase separation processes are divided into simple and
complex coacervation. Simple coacervation involves the
use of a single polymer such as gelatin or ethyl cellulose,
in aqueous or organic media, respectively. Complex coacervation
involves two oppositely charged polymeric materials such
as gelatin and acacia, both of which are soluble in aqueous
media. In both the cases, coacervation is brought about
by gradual desolvation of the fully solvated polymer molecules.
Microencapsulation by coacervation is carried out by preparing
an aqueous polymer solution (1-10 %) at 40-50 °C into
which the core material (hydrophobic) is also dispersed.
A suitable stabilizer may also be added to the mixture to
maintain the individuality of the final microcapsules. A
suitable desolvating agent (coacervating agent) is gradually
introduced to the mixture, which leads to the formation of
partially desolvated polymer molecules, and hence their
precipitation on the surface of the core particles. The coacervation
mixture is cooled to about 5-20 °C, followed by the addition
of a crosslinking agent to harden the microcapsule wall
formed around the core particles. Gelatin microcapsules
loaded with carboquone64 as well as gelatin acacia microcapsules
loaded with sulfamethoxazole65 have been produced by
coacervation.

5.6 Other Techniques
In addition to the microencapsulation techniques described

above, microencapsulation can also be carried out by spray
drying67-70, fluidised bed coating71-73, melt solidification74,
polymer precipitation75, co-extrusion76, 77, layer-by-layer
deposition78, 79, supercritical fluid expansion80,81, and spinning
disk82,83.

Microencapsulation by spray drying is a low cost
commercial process, which is mostly used for the encapsulation
of fragrances, oils and flavors. In this process, an emulsion

Aqueous surfactant solution 

Organic solvent + polymer 

Shell formation by 
solvent evaporation 

Material to be encapsulated 

 

Figure 3. Schematic representation of microencapsulation by
solvent evaporation technique.
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is prepared by dispersing the core material, usually an oil
or active ingredient immiscible with water, into a concentrated
solution of wall material. The resultant emulsion is atomized
into a spray of droplets by pumping the slurry through
a rotating disc into the heated compartment of a spray
drier. There the water portion of emulsion is evaporated,
yielding dried capsules containing core material. Lycopene
has been microencapsulated inside gelatin microcapsules
by using this technique70.

Fluidised bed coating71-73 is used for encapsulation
of solid core materials including liquids absorbed into porous
solids. This technique is used extensively to encapsulate
pharmaceuticals. Solid particles to be encapsulated are
suspended in a jet of air and then covered by a spray of
liquid coating material. The capsules are then moved to
an area where their shells are solidified by cooling or solvent
vaporization. The process of suspending, spraying and
cooling is repeated until the capsule walls are of the desired
thickness. Ascorbic acid has been microencapsulated in
polymethacrylate as well as ethyl cellulose by using this
technique72.

Biodegradable microcapsules are also produced by
the solidification of molten polymer droplets74 or by polymer
precipitation75. A dispersion of the drug in molten polymer
is stirred in silicone oil to produce small droplets of the
polymer drug mixture. The suspension mixture is then cooled,
and the resulting solidified microcapsules are separated
from the oil. Insulin has been microencapsulated in
polyanhydride74  by using this technique. In the polymer
precipitation process, an aqueous solution of the polymer
containing the drug is dropped into a stirred solution,
which acts as the precipitating medium. Here, the polymer
droplets precipitate immediately and are thus converted
into the drug loaded microcapsules. Enzymes have been
encapsulated in conjugated phenolic polymers by using
this technique75.

The co-extrusion process76,77 also possess a number
of commercial applications. In this process a dual fluid
stream of liquid core and shell materials is pumped through
concentric tubes and forms droplets under the influence
of vibration. The shell is then hardened by chemical crosslinking,
cooling or solvent evaporation. Hepatocytes have been
encapsulated in polyacrylonitrile77 by using this technique.

One important method of microencapsulation is layer-
by-layer deposition 78,79. In this process polyelectrolyte
multilayers are prepared by sequentially immersing a substrate
in positively and negatively charged polyelectrolyte solutions
in a cyclic procedure. Core shell particles with tailored size
and properties are prepared using colloidal particles as the
core material that serves as a template onto which multilayers
are fabricated. Hollow capsules of organic, inorganic or
hybrid particles can be obtained by dissolving the core
material. This technique is both versatile and simple, with
the multiplayer film thickness being controlled precisely
by varying the total number of layers deposited. In this
way the final properties can be tuned. Glucose oxidase has
been microencapsulated by alternate deposition of

polyallylamine and polystyrene sulfonate layers78.
Microencapsulation has also been carried out by rapid

expansion of supercritical fluid80,81. Supercritical fluids are
highly compressed gases that possess several advantageous
properties of both liquids and gases. Most widely used
ones are supercritical CO

2
, alkanes (C

2
 to C

4
) and nitrous

oxide (N
2
O). Supercritical CO

2
 is widely used for its low

critical temperature value in addition to its non-toxic and
non-flammable properties. It is also readily available, highly
pure and cost effective. It has found applications in
encapsulating active ingredients by polymers. Different
core materials such as pesticides, pigments, pharmaceutical
ingredients, vitamins, flavors and dyes have been encapsulated
by using this method. A wide variety of shell materials that
either dissolve (paraffin wax, acrylates, polyethylene glycol)
or do not dissolve (proteins, polysaccharides) in supercritical
CO

2
 are used for encapsulating core substances. In this

process, supercritical fluid containing the active ingredient
and the shell material are maintained at high pressure and
then released at atmospheric pressure through a small nozzle.
The sudden drop in pressure causes desolvation of the
shell material, which is then deposited around the active
ingredient (core) and forms a coating layer. Felodipine has
been encapsulated in poly(ethylene glycol) by using this
technique81.

In the spinning disc82,83 method the microencapsulation
of suspended core materials is carried out by using a rotating
disc. Suspensions of core particles in liquid shell material are
poured into a rotating disc and due to the spinning action
of the disc, the core particles become coated with the shell
material. The coated particles along with the excess shell
material are then cast from the edge of the disc by centrifugal
force, after which the shell material is solidified by external
means (usually cooling). This technology is rapid, cost effective,
simple and has high production efficiencies. Paraffin microbeads
have been synthesized by using this technique82.

6. RELEASE MECHANISMS
Different release mechanisms of encapsulated materials

provide controlled, sustained or targeted release of core
material. Generally there are three different mechanisms by
which the core material is released from a microcapsule -
mechanical rupture of the capsule wall, dissolution or melting
of the wall, and diffusion through the wall. Less common
release mechanisms include ablation (slow erosion of the
shell) and biodegradation. The release mechanism depends
on the nature of application, for example, carbonless copy
paper, scratch and sniff perfumes, and self healing structures
rely on mechanical rupture of shell to release the core
contents. The rupture may be caused by pressure as in
case of carbonless copy paper and scratch and sniff perfumes
or due to propagation of cracks as for self-healing structures.
In the self-healing structures microcapsules act as means
of storing and delivering an in situ glue, to prevent the
spread of cracks. Thus a microencapsulated healing agent
and a catalyst known to trigger polymerization in the chosen
agent is embedded in a composite matrix. Rupture of any
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microcapsules by an approaching crack defect releases the
healing agent into the crack plane by capillary action.
When the released healing agent comes in contact with
the catalyst, the resulting polymerization bonds the crack
face closed, stopping the defect in its track. For example
urea formaldehyde microencapsulated dicyclopentadiene
(DCPD) healing agent and Grubb's Ru catalyst have been
incorporated into an epoxy matrix to produce a polymer
composite capable of self healing 85.

Detergent industry utilises dissolution of shell wall
of powder detergents for release of encapsulated protease
enzyme in order to remove bloodstains from the clothing.
In food industry baking mixes encapsulated in fat are released
after shell melting (when proper temperature is reached)
to react with food acid to produce leavening agents, which
gives baked goods their volume and lightness of texture.
In food industry some ingredients such as nutrients are
encapsulated to mask taste, and flavorings are encapsulated
due to their volatile nature, that would other wise evaporate
out and be lost as in chewing gum.

Pesticides are microencapsulated to be released over
time, allowing farmers to apply the pesticides less often
rather than requiring very highly concentrated and toxic
initial applications. Similarly, in pharmaceutical industry
microencapsulated products are designed for sustained/
controlled release by either biodegradation of the shell,
or by diffusion through the shell. Aspirin, for example
provides effective relief from fever, inflammation and arthritis,
but direct doses of aspirin can cause peptic ulcers and
bleeding. The drug is, therefore, encapsulated in ethyl
cellulose or hydroxypropylmethyl cellulose and starch. In
this way the aspirin diffuses through the shell in a slow,
sustained dose rather than being released all at once. Insulin
has also been encapsulated in biodegradable polylactic
acid microcapsules for its controlled release into the body86.

One of the important diffusion controlled defence
application is novel clothing fabric, which contains
microcapsules composed of chemical decontaminants
encapsulated within semipermeable polymers.  The polymer
being selectively permeable to toxic chemical agents but
impermeable to the decontaminating agents, thereby allowing
the toxic chemicals to diffuse into the microcapsules where
they undergo irreversible detoxifying chemical reactions11.

7. APPLICATIONS
7.1 Agriculture

One of the most important applications of microencapsulated
products is in the area of crop protection87-93. Nowadays
insect pheromones are becoming viable as a biorational
alternative to conventional hard pesticides. Specifically, sex-
attractant pheromones can reduce insect populations by
disrupting their mating process. Hence small amounts of
species- specific pheromone are dispersed during the mating
season, raising the background level of pheromone to the
point where it hides the pheromone plume released by its
female mate91,93. Polymer microcapsules, polyurea92, gelatin

and gum arabic93 serve as efficient delivery vehicles to deliver
the pheromone by spraying the capsule dispersion. Further,
encapsulation protects the pheromone from oxidation and
light during storage and release.

7.2 Pharmaceutics
One of the major applications area of encapsulation

technique is pharmaceutical/ biomedical for controlled/sustained
drug delivery94-103. Potential applications of this drug delivery
system are replacement of therapeutic agents (not taken
orally today like insulin)104,105, gene therapy106-109 and in
use of vaccines for treating AIDS110-112, tumors113,114, cancer115

and diabetes116-118. Protein such as insulin, growth hormone119,120,
and erythropoietin121,122 (used to treat anemia) are example
of drugs that would benefit from this new form of oral
delivery. The delivery of corrective gene sequences in the
form of plasmid DNA123 could provide convenient therapy
for a number of genetic diseases such as cystic fibrosis124,125

and hemophilia126. The spheres are engineered to stick
tightly to and even penetrate linings in the gastrointestinal
track before transferring their contents over time into circulatory
system127.

Based on this novel drug delivery technique, Lupin
has already launched in the market worlds first Cephalexin
(Ceff-ER) and Cefadroxil (Odoxil OD) antibiotic tablets for
treatment of bacterial infections. Aspirin controlled release
version ZORprin CR tablets are used for relieving arthritis
symptoms. Quinidine gluconate CR tablets are used for
treating and preventing abnormal heart rhythms. Niaspan
CR tablet is used for improving cholesterol levels and thus
reducing the risk for a heart attack. Glucotrol (Glipizide SR)
is an anti diabetic medicine used to control high blood
pressure.

7.3 Food Industry
Currently there is a trend towards a healthier way of

living, which includes a growing awareness by consumers
for what they eat and what benefits certain ingredients
have in maintaining good health. Preventing illness by diet
is a unique offering of innovative so called "functional
foods", many of which are augmented with ingredients to
promote health. However simply adding ingredients to food
products to improve nutritional value can compromise their
taste, colour, texture and aroma. Sometimes they slowly
degrade and lose their activity, or become hazardous by
oxidation reactions. Ingredients can also react with components
present in the food system, which may limit bioavailability.
Microencapsulation is used to overcome all these challenges
by providing viable texture blending, appealing aroma release,
and taste, odour and colour masking 128-133. The technology
enables food companies to incorporate minerals, vitamins,
flavours and essential oils. In addition, microencapsulation
can simplify the food manufacturing process by converting
liquids to solid powder, decreasing production costs by
allowing batch processing using low cost, powder handling
equipment. Microcapsules also help fragile and sensitive



88

DEF SCI J, VOL. 59, NO. 1, JANUARY 2009

materials survive processing and packaging conditions
and stabilize the shelf life of the active ingredient134.

7.4 Energy Generation
Hollow plastic microspheres loaded with gaseous

deuterium (a fusion fuel) are used to harness nuclear fusion
for producing electrical energy135. The capsules are multilayered.
The inner layer, which compresses the fuel, is a polystyrene
shell about 3 mm thick. Next is a layer of poly(vinyl alcohol)
about 3 mm thick, that retards diffusion of deuterium out
of the capsule. The outer layer (the ablator) is about 50
mm thick and consists of a highly crosslinked polymer
made from 2-butene. During the fusion experiments, energy
from high powered laser beams is absorbed by the surface
of the microcapsule shell. As the outside of the shell (called
ablator) burns off, the reaction force accelerates the rest
of the shell inward, compressing and heating the deuterium
inside. This results in high densities and temperature in
the centre of the capsule leading to the fusion of deuterium
nuclei to give tritium, helium and other particles releasing
an enormous amount of energy. This process has been
named as inertial confinement fusion (ICF). Such ICF targets
made of organic microcapsules have been in use since
1980s.

7.5 Catalysis
Transition metal based catalytic processes are of vital

importance to pharmaceutical, agrochemical and fine chemical
industries. A vast proportion of such catalytic metal species
are often expensive and toxic, thereby making operational
handling potentially hazardous. Microencapsulation has
recently been recognized as a useful alternative strategy
to enable safe handling, easy recovery, reuse and disposal
at an acceptable economic cost. Polyurea microcapsules
due to their insolubility in aqueous and organic solvents,
and resistance towards degradation have been used for
encapsulation of different catalysts. Metal species such
as palladium (II) acetate and osmium tetroxide have been
encapsulated in polyurea microcapsules and used successfully
as recoverable and reusable catalysts without significant
leaching and loss of activity39,40. It is thought that the urea
functionality, which forms the backbone of the polymer,
ligates and retains the metal species with in the polymeric
matrix. Futuristic trend is towards incorporation of other
chelating and ligating functional groups within the polyurea
framework to study rate enhancement in such reactions,
and trying other polymers for encapsulation.

7.6 Defence
One of the important defence applications of

microencapsulation technology is in self-healing polymers
and composites136-142. They possess microencapsulated healing
agents embedded within the matrix and offer tremendous
potential for providing long-lived structural materials. The
microcapsules in self-healing polymers not only store the
healing agent during quiescent states, but provide a mechanical
trigger for the self-healing process when damage occurs

in the host material and the capsules rupture. The microcapsules
posses sufficient strength to remain intact during processing
of the host polymer, yet rupture when the polymer is damaged.
High bond strength to the host polymer combined with
a moderate strength microcapsule shell are required. To
provide long shelf life the capsules must be impervious
to leakage and diffusion of the encapsulated healing agent
for considerable time. These combined characteristics are
achieved with a system based on the in situ polymerisation
of urea-formaldehyde microcapsules encapsulating
dicyclopentadiene healing agent143. The addition of these
microcapsules to an epoxy matrix also provides a unique
toughening mechanism for the composite system. Such
microcapsules have tremendous application in aerospace
area for making self-repairable spacecrafts. Such self-healing
spacecrafts open up the possibility of longer duration
missions by increasing the lifetime of a spacecraft.

Microencapsulation is also used for designing special
fabrics for military personnel, for their enhanced chemical
protection against chemical warfare11. For this purpose
special reactive microcapsules have been developed which
can be applied to fabrics or finished garments to provide
reactive sites for neutralisation of chemical reagents. This
involves microencapsulation of conventional decontamination
chemicals that are currently effective for deactivation of
toxic mustard blistering agents (H agents) and toxic nerve
agents known conventionally as G agents, for example
isopropylmethyl phosphonofluoridate (GB, sarin) and the
V agents, and formulation of the microcapsules in a resin
finish that can be uniformly applied to fabric substrates.
The preffered microcapsules containing a decontaminating
agent were obtained by organic phase separation with
ethyl cellulose microcapsules containing a solid
decontamination agent consisting of sym-bis (N-chloro-
2,4,6-trichlorophenyl) urea and ZnO. The microcapsules
were then bonded to the fabric with an acrylic binder emulsion.
The very thin walls (1 to 10 microns) of microcapsules
allow for rapid agent permeation for optimum decontamination
and thus protect the wearer from toxic chemical agents.

8. STATUS OF MICROENCAPSULATION
RESEARCH IN DMSRDE

Defence Materials and Stores Research and Development
Establishment, Kanpur is actively working in this area since
last four years and has developed expertise in
microencapsulation technology by using two techniques.
One is solvent evaporation and the other one is interfacial
polymerisation. Characterisation of all the synthesised
microcapsules was done by using optical microscope (OM,
Leica) and scanning electron microscope (SEM, Zeiss).

Polymethylmethacrylate (PMMA) was selected as the
polymer for encapsulation using solvent evaporation technique.
Different materials like carbon nanotubes (CNTs), polyaniline,
carbon microcoils (CMCs) and magnetic nanoparticles have
been successfully encapsulated inside PMMA microcapsules.
In a typical synthesis for encapsulation of  polyaniline,
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PMMA was first dissolved in a low boiling solvent like
dichloromethane/chloroform with the help of magnetic stirring.
Polyaniline was added into the stirring solution. This solution
was then added dropwise to a stirring emulsifier (polyvinyl
alcohol/polyvinyl pyrrolidone) solution. The mixture was
kept stirring till the evaporation of the solvent. After that,
the polyaniline encapsulated PMMA microcapsules were
collected by filtration, washed with water and dried.  Figure 4
shows the optical micrograph of polyaniline encapsulated

PMMA microcapsules. The formation of microcapsule is
clearly evident from the micrograph. A perfect sphere is
seen with the presence of green polyaniline inside the
sphere. Using the same procedure microencapsulation of
other materials was also carried out.

For microencapsulation of materials by utilising interfacial
polymerisation technique, polyamide was selected as the
polymer. Two types of materials, ferrofluid coated ZnO
nanostructures and ferrofluid were encapsulated inside
the polyamide microcapsules. For carrying out the
microencapsulation, terephthaloyl chloride was dissolved
in toluene followed by addition of the core material. This
mixture was then added dropwise to a stirring polyvinyl
alcohol emulsifier solution. After 15 min. the diamine/triamine
monomer diluted with water was added to initiate the
polymerisation. Few drops of NaOH solution was added,
which acts as acid scavenger and neutralises the liberated
HCl. The reaction was complete within 4 to5 h. After completion
of reaction the microcapsules were filtered, washed with
water and freeze dried. The optical and SEM micrographs
(Fig. 5) show clearly the presence of material inside the
microcapsules as well as the formation of spherical microcapsules
respectively.  In addition to carrying out the microencapsulation
of various materials inside polyamide microcapsules, hollow
polyamide microcapsules were also synthesized by using
the same technique of interfacial polymerisation144.

9. CONCLUSIONS
The research in the area of microencapsulation has

huge potential to give raw materials advantageous traits
resulting in superior products. Periodically new developments
in this area have led to new products,  e.g. the first remarkable
product was carbonless copy paper, the second was controlled
release of drugs. At present, paper-like displays, self- healing
structures and chemical decontaminating fabrics are receiving
much attention.
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