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Backward-Wave Oscillation Criterion in a Step-Tapered
Helix Travelling-Wave Tube
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ABSTRACT

Analysis of backward-wave oscillation criterion is one of the essential steps for designing a broadband
travelling-wave tube (TWT) amplifier. In this paper, a methodology for the analysis of the backward-wave
oscillation criterion in a helix travelling-wave tube has been proposed with emphasis on its usage as a design
tool. The analysis is also extended for a slow-wave structure having distributed RF loss and a closed-form
equation has been proposed for calculating the critical interaction length. The analysis is further extended for
a step-tapered TWT with distributed circuit loss included in the analysis. The method is finally applied to
design a typical slow-wave structure used in an X-Ku band TWT having a step-tapered output circuit.

Keywords: Backward-wave oscillation, helix travelling-wave tube, slow-wave structure, step-taper circuit, TWT,
amplifier design, travelling-wave tube.

NOMENCLATURE
a Helix tunnel radius
a

0
Maximum growth-rate of the device

a
n

Growth-rate of the nth taper section
b Radius of the electron beam
b

0
Propagation constant of a uniform circuit

b
0n

Propagation constant of the nth taper section
b

e
Beam propagation constant

b
p

Plasma propagation constant
b

q
Reduced plasma propagation constant

C Pierce’s gain parameter
CN Normalised circuit length
(CN)

critical
Normalised critical length of the circuit  for oscillation
to start

D Normalised taper strength
e0 Permittivity of free-space
h

e
Charge-to-mass ratio of an electron at rest

G Backward-wave gain of the device
I
b

Beam current
I

critical
Critical current for oscillation to start

nI% Modified Bessel function of first-kind of order

n
IST Critical current for a tapered circuit for oscillation

to start
I

SNT
Critical current for a non-tapered uniform circuit
for oscillation to start

K
0

Interaction impedance for forward space-harmonic
mode

1K- Interaction impedance for backward space-harmonic
mode

nK% Bessel function of second-kind of order n
L Total interaction length
L

critical
Critical length of the circuit for oscillation to
start

L
dB

Total loss of the circuit in decibel
L

n
Length of the nth taper circuit

le Electronic wavelength
l

g
Guided wavelength in the circuit

m Taper ratio L
1
/L

p Helix pitch
QC Pierce’s normalised space-charge parameter
R Plasma frequency reduction factor
r

0
Charge density of the un-modulated electron beam

u
0

Electronic velocity of the un-modulated electron
beam

Vb Beam voltage
w Operating frequency in radians
w

p
Plasma frequency in radians

w
q

Reduced plasma frequency in radians

1. INTRODUCTION
Helix traveling-wave tubes are unmatched due to their

broadband capabilities.  However, one of the limiting factors
of broadband operation is the occurrence of backward-
wave oscillation (BWO) near the upper band-edge, where
the slow space-charge wave experiences a p-phase per
period leading to positive backward-feedback1-4. Thus, BWO
suppression is essential for achieving multi-octave bandwidth
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in a helix TWT.  Backward-wave oscillation instability is
conventionally managed in three ways: (i) suitably tailoring
the circuit phase velocity to couple the backward-wave
with the fast space-charge wave, (ii) providing frequency
selective high attenuation at the oscillation frequency (e.g.
meander-line), and (iii) providing a phase-velocity taper
in the circuit for lowering the gain of backward2 wave.
Providing a phase velocity taper is the most popularly
used method, not only for suppressing the BWO, it primarily
helps in enhancing the efficiency at upper band-edge frequencies
and reducing second harmonic power output at the lower
band-edge frequencies as well.  Most popular technique
of phase velocity taper has been a step-taper (Fig. 1), with
two different helix pitches that split the slow-wave structure
(SWS) into two different phase velocity regions.  The
present study brings out as to how phase-velocity taper
in a helical SWS helps in combating the BWO.
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Here, u
0
 is the unperturbed (DC) electronic velocity.

The reduction of the plasma frequency occurs due to the
presence of conducting boundary at the vicinity of the
electron beam, the reduction factor given as7
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Here, nI
~

 and nK
~

 are the modified Bessel functions
of first- and second- kinds, respectively, of order n, b is
the beam radius and a is the tunnel radius through which
the electron beam traverses.  However, the effect of distributed
loss is not included in the computation of the critical length.
This has been introduced by the present authors by a
curve fitting to Johnson’s results3 following Grow and
Gunderson8 as
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The Eqns. (2) and (4) can be used to compute the
critical length of the interaction structure for a uniform
loss-less and lossy structure, respectively.  Now, a method
for computing the critical length for a step-tapered SWS
with two sections having different phase velocities has
been proposed.  For analysing the backward-wave gain
of such a tapered SWS, recourse of the two-wave approach
of Nilsson5,6 et al. has been taken.  The analysis approach
is a linear one based on Eulerian hydrodynamical modelling
of the electron beam and suits well for BWO analysis, as
the BWO interaction is primarily a linear phenomenon where
electron overtaking is a rare occurrence6-7, 9.  For the sake
of simplicity, loss-less case has been considered, and the
backward-wave gain for the tapered circuit is obtained as
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Figure 1. Schematic of a step-tapered slow wave structure
showing two step-tapers having lengths L1 and L2

with total circuit length of L.

2. ANALYSIS
The BWO is a spontaneous phenomena and the onset

of the BWO takes place inside the interaction region (away
from the input to a distance known as critical interaction
length) towards the input (opposite to the direction of
electronic flow) that follows a co-sinusoidal pattern having
peak at the input with the zero location at the starting
point3, 5, 7.  The co-sinusoidal pattern defines the oscillation
criterion under no-loss, corresponding to the maximum
gain (at the maximum growth rate a

0
) for an interaction

length L
critical

 (the starting point of oscillation), as
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The Eqn. (1) is further simplified to give the critical
length for oscillation to start as
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Here, b
q
(=Rw

p
/u

0
) is the reduced plasma propagation

constant, a
0is 

the Pierce’s maximum growth parameter, and
D=|Db

0
|L is the normalised taper strength.

For probable backward-wave instability, the gain must
shoot up making the denominator of Eqn. (5) as zero, in
which case the BWO start condition is obtained from the
first zero of the real part of the denominator (A
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This equation is solved in a digital computer for the
first root of a

0
L for a given value of normalised taper

strength D=|Db
0
|L. The lengths of the tapered sections L

n

are considered as L
1
 = mL and L

2
 = (1–m)L with m defined

as the ratio of taper lengths.
The first root of this equation a

0
L as obtained is then

interpreted for a parameter (2a
0
L/p), which depends on

BWO start oscillation current as5.
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Here, I
ST

 is the start oscillation current for a tapered circuit,
and I

SNT  
is the start oscillation current for a non-tapered single

pitch circuit, both the circuits are considered to be loss-less
and having the same total lengths.  It is worth noting here that
the oscillation-induced instability is a spontaneous process that
occurs at a frequency where the circuit phase velocity and the
slow space-charge wave have p-phase per period at perfect
synchronism satisfying b

0n
–b
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q
= 0 and b

0n 
p=(b

e
+b

q
)p = p.

However, for the brevity, it was considered that the oscillation
takes place at a frequency that corresponds to the mean frequency
of the two taper sections, i.e., b

0 
p=(b
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q
)p = p such that
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For all such computations, one needs to know the
phase-velocity and interaction impedance of the backward-
wave space-harmonic mode at the p-point frequency.  One
can easily compute the phase velocity and the interaction
impedance of the fundamental space-harmonic mode using
eigen-mode solutions through 3-D electromagnetic analysis
in HFSS, MAFIA or CST Microwave Studio.  However,
computation of interaction impedance at the backward-
wave space-harmonic mode needs an analytical formulation
(see Appendix)1, given as
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Here, 
nI%  and 

nK%  are the modified Bessel functions of
first- and second- kind, respectively, of order n.

3. RESULTS AND DISCUSSION

For numerical appreciation of the problem, the SWS
used in a typical X-Ku band helix TWT was considered.
The SWS is a metal-segment loaded one in which the helix

is supported inside a metallic barrel using three rectangular
APBN support rods.  The tube operates at a beam voltage
of 10 kV with a micro-perveance of 0.4 having an average
beam radius of 0.40 mm. The SWS is made in three sections:
the input section has a uniform pitch of 1.53a ± 0.005 mm;
the middle section also has a uniform pitch of 1.59a ± 0.005
mm; whereas the output section has a step-taper having
two pitches, 1.59a ± 0.005 mm and 1.53a ± 0.005 mm with
a 4 turn transition (normalised with respect to the helix
tunnel radius a ). The phase-velocity and interaction impedance
of the forward propagating mode have been computed
using 3 D HFSS modeling. These values have been interpreted
for the backward-space harmonic mode using the formulation
presented in this paper and subsequently used to analyse
the backward-wave effects. The p = 1.53a pitch section
has the p-point frequency of 19.98 GHz at which the normalised
phase velocity is 0.175 with forward space-harmonic interaction
impedance of 3.55 ohm, and the p = 1.59a pitch section
has the p-point frequency of 20.06 GHz at which the normalised
phase velocity is 0.180 with forward space-harmonic interaction
impedance of 3.34 ohm.

The backward space-harmonic interaction impedance
for the structure has been computed using Eqn (8), which
is plotted in Fig. 2 as a function of beam-filling factor.  It
can be seen that as the beam-filling increases, the backward-
wave interaction impedance increases sharply, thereby increasing
the possibility of higher backward-wave gain, and hence,
a lesser critical length.

The backward-wave interaction impedance thus computed
has been used to compute the critical lengths of the different
pitch sections using Eqn (4) for a circuit loss of 2 dB/in
at the p-point frequencies, as shown in Fig. 3 and Fig. 4.
It can be seen that as the beam current increases, the
critical length for oscillation to start reduces, and vice
versa.  The critical length reduces as the beam-filling factor
increases; this is because increase in beam-filling increases
the electric field threading the beam, thereby increasing
the backward-wave interaction, as seen in Fig. 2. However,
as one can expect an increase in the current density due
to bunching of electrons in the beam and consequence
to that, an increase in the beam filling, the design of the
critical length must consider an increased beam-filling.

Figure 2. Backward-wave interaction impedance of the structure
versus beam-filling factor as computed using Eqn (8).
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indeed increases the critical length; however, the improvement
is not significant.  It is seen that an increase of loss by
9 dB/in could increase the critical length only by around
10 per cent. This led to the conclusion that distributed
loss may not be an efficient way towards combating BWO;
however an efficient way may be the use of a lumped loss
in the circuit to provide a break in the growth of the backward-

Thus, the safe critical lengths have been arrived at for the
65 per cent beam filling and the input-section (p = 1.53a)
and middle-section (p = 1.59a) lengths have been designed
accordingly as L

input
=16.81l

g
±0.1 mm and L

middle
=12.26l

g
±0.1

mm, respectively.  Figure 5 shows an alternative representation
of the results for the middle section, where one would be
very easily able to appreciate the effects of beam filling
both in terms of critical current and critical length.  It can
be seen that the critical length and the critical current
show a logarithmic dependence.

Next, the effect of circuit loss on the critical length
(Fig. 6) was analysed.  It is observed that the circuit loss

wave interaction.
Next, the effect of pitch taper at the output section

was investigated. The normalised start oscillation currents
for different taper positions of the circuit are shown in Fig.
6.  It was assumed that the relative phase velocity difference
between the two tapers is the same for both the forward-
wave and the backward-wave modes.  This is a valid assumption
as the taper is obtained simply by providing a change in
helix pitch in the axial direction.  It may be observed from
Fig. 7 that the taper length at the proportion of 50 per cent
– 50 per cent gives the best oscillation suppression, whereas
a taper at the proportion of 70 per cent – 30 per cent
reduces the threshold oscillation current below the threshold
current of that of an un-tapered circuit.  For the circuit
under consideration, the output section (being L=23.69 l

g

long) has two-step pitch-tapered sub-sections.  The sub-
sections having two pitches,  p=1.59a and p=1.53a  with
a 4 turn transition.  The taper sections have ~3.2 per cent
phase velocity step corresponding to normalised taper
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Figure 3. Critical length versus beam-filling factor for input
section with operating beam current as the parameter.
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Figure 4. Critical length versus beam-filling factor for middle
section with operating beam current as the parameter.
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Figure 5. Critical length versus critical current showing a
logarithmic dependence with beam-filling factor as
parameter.
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Figure 6. Increase in critical length versus distributed circuit
loss.

Figure 7. Normalised start oscillation current versus normalised
taper strength with the taper proportions as the
parameter.
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strength ~ 4.2 (D).  The taper circuit lengths L
1
=13.60 l

g

with p=1.59a and L
2
=10.09 l

g
 with p=1.53a corresponds a

taper positioning ratio of 58 per cent – 42 per cent.
For the present case of D = 4.2 and a taper ratio of

58 per cent –42 per cent, the ratio of I
ST

 /I
SNT

 (start-current
taper to start current no-taper) becomes ~2.5, indicating
that the start oscillation current increases due to taper by
a factor of 2.5 wrt a non-tapered circuit. The increase in
the critical beam current versus beam-filling factor is shown
in Fig. 8. This shows that the instability in interaction can
occur if the entire output interaction circuit operates with
around 75 per cent beam filling.
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Figure 8.  Critical current versus beam-filling factor showing
the effect of 58% – 42% taper positioning with a
normalized taper dispersion step of 4.2.

4. CONCLUSION
A two-wave approach has been proposed to demonstrate

the positioning of the phase velocity taper for suppression
of BWO in a helix TWT amplifier.  The approach is based
on loss-less assumption and valid only for backward-wave
interaction in a linear regime.  However, the procedure is
general and one may consider analysing the multi-taper
effects and also the effects of distributed loss on the BWO
suppression mechanism.
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Appendix

Backward-Wave Interaction Impedance

We need to calculate the backward-wave (–1 space harmonic) interaction impedance at a particular radial
location inside the beam, from a known value of on-axis fundamental interaction impedance, for which a
closed form approximate analytical equation is presented here.  This derivation stems from the basic formulation
of Watkins and Ash used by Johnson3 that the ratio of both the impedances at the helix is given as:

1, 0

0, 0

 
1

a
k

a

K k a
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K k a
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-                                                                                     (A.1)

Here, k0 is the free space propagation constant at the frequency of interest.  We now define the axial
electric field distribution along the radial direction as follows:
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whence from (A.1) we get,
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Eliminating field constants from (A.2), we get the backward-wave (–1 space harmonic) interaction
impedance at any radial location inside the helix as:
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Here, all parameters are to be calculated at the p-point frequency.  Expression (A.3) for the interaction
impedance is appropriate for a thin beam around the axis of the structure.  In the case of a thick solid beam
of radius r, it would be more appropriate to use the average electric field intensity over the electron beam

cross-section.  This would introduce an additional factor { } { }( )( )21 /n n n nI r I r¢- b b  in the right-hand-side

of (A.3), for the given nth space-harmonic propagating mode.


