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Thermo Creep Transition in Non-homogeneous
Thick-walled Rotating Cylinders
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ABSTRACT

Creep stresses have been derived using transition th&twy results for the combined effects of angular
speed and temperature are calculated and depicted graphically. It has been observed that a cylinder made of
less compressible material at the internal surface and highly compressible at the outer surface is on the safer
side of the design for different values bff 2 and temperature as compared to highly compressible material
at the internal surface and less compressible at the outer surface.
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1. INTRODUCTION the material in the cylinder as

The problem of a uniformly rotating long, thick-walled C—Cr* (1.2)
circular cylinder arises occasionally in the design of turbine 0
rotors. The creep behavior of circular cylinders rotating
about its axis of symmetry has been investigated by many
author$®. Rotating cylinder plays an important role in
machine design particularly at elevated temperatures. Rimrott
and Luké has obtained the creep stresses of a rotating 2.
hollow circular cylinder made of isotropic and homogeneous
materials. Walilhas given stress distribution under steady
state creep at elevated temperature for long rotating cylinders
having axial bores and subjected to external radial tension.
Non-homogeneous materials are effectively utilized in aerospace
and commercial applications. Some degree of non-homogeneity
is present in wide class of materials such as hot rolled u=r(1-B); v=0; w=dz (2.1)
metals, aluminum and magnesium allows. Non-homogeneity . . _ 2 =2 .
can also be generated by certain external field, that is wheref is a function of r =x"+y* only andd is a

. ; : constant.

thermal field, as the elastic modules of the material vary The finite components of strain are
with the temperature or co-ordinates, etc. The effect of '

where,a<r<b, aandb are internal and external radii,
C, andk are constants. Results obtained have been discussed
numerically and depicted graphically.

GOVERNING EQUATIONS

Consider a thick-walled circular cylinder of internal
and external radia andb respectively, rotating with an
angular velocityw of gradually increasing speed about its
axes subjected to temperatuie 0, at the internal surface.
The components of displacement in cylindrical co-ordinates
are given by

stress distribution caused by external fields is much more " —E[l—( VB’+B)2}
pronounced and of larger duration than the effect of thermal L
stresses themselves.
In this paper, an attempt has been made to obtain the el :E[l_BZ] (2.2)
creep stresses for a non-homogeneous thick-walled rotating 2
cylinder by using transition theaotyit utilizes the concept 1

2
of generalized strain measure and asymptotic solution at the €, = —[1—(1— d) J

turning points or transition points of the governing differential 2
equation defining the deformed field and has been successfully A
applied to a large number of problems in créép &= =g=0
The generalized principal strain measure is definéd as
R ,_dp
o n, 1 n where B’ = ar
g =[[1-2¢ ] dg==|1-(1- 2¢) (1.1) | _ , , ,
0 n Using equation (2.2) in equation (1.1), we get the generalized

Taking the non-homogeneity as the compressibility of components of strain as,
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e, = %[1— (1B’ +BY" |

Q= [1-5"] (2.3)

1 n
e, =~[1-@-dy ]

€ =6 =6=0

wheren is the measure.
The stress-strain relation for thermo elastic isotropic
materials is

Tij = }\’Sij |1+2l’|'¢] —§9§j (i,j=1,23) (2.4)
wherel =g, ; T, , e are stress and strain tensors respectively
and

§= oc(3k + zp)
wherei, u are Lame's constarli, is Kronecker's delta,
o being coefficient of thermal expansion d@rid the temperature.
The temperatur® has to satisfy

0,=0 (2.5)
Equation (2.4) for this problem become
2u L ayn
Trr =7y|1+7[1— (rB +B) ]_F:e
2u n
T, = M1+7[1—[3 ]—ge (2.6)

1 Lo n
where !, ==|3=(r'+B)" " ~(1-d)" |, & =a(3h+2)
The temperature field satisfying equation (2.6) and

0=0, at r

a

6=0 at r=>b
where 0, is constant, is given by

o) o

Equations of equilibrium are all satisfied except

(2.7)

d (T -T.)
(T id 00 ro?=0
OIIr(,r)+ ——+p o (2.8)
where p is the density of the rotating cylinder.
Using equation (2.6) in equation (2.8), one gets a non-

linear differential equation i} as

LdP o C o 1
d_ﬁ_(l—C)[l B (P+1)]Bn

-nP[(1- O)+ (P+1)]

nPR(P+1)"

+c[1-(|3+1)"]+&r2‘”2

2up" (2.9)
no, r
- ré'log—
2up" {&E" gb}
= 0
2u 0, =—0
" C=—"F_ 0
whererp’ = BP, (7»+2M) and Iog%

The transition point off in equation (2.9) ar@® —» -1
and P> +oc.

The boundary conditions are
(2.10)

T.=0 atr=a; T =0 atr=a

The resultant forces normal to the plahe constant
must vanish, that is,

b
frr.dr=0

a

(2.11)

SOLUTION THROUGH THE PRINCIPAL STRESS
DIFFERENCE

For finding the creep stresses, the transition function
is taken through the principal stress differené¢eat the
transition pointP — —1. The transition functioR is defined

as

R=Ir—Le:2”—F[1-( P+1)’] (3.1)

Taking the logarithmic differentiation of equation (3.1)
with respect tor and using equation (2.9), one gets
d _nP C

a9 e

j}&lc'c)[l B (P+1"]-np[ @ C)+ (P+ 1]

n 2 .2
+C [1- (P2 ]- S l:{:,Jr re |ogﬂ+ Crp ro

2 2P (3.2)

r[1-P+1)]

Taking asymptotic value of equation (3.3)Rt> -1
and integrating, one gets

(3.3)
where asymptotic value o as P— -1 isD/r, D being
a constant and

2u = E(2-C)/(3- 2C)

whereE is the Young's modulugyis constant of integration
and

R=Ar*expf
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c 1 r
=|—=- dr
(1—C){C D"}
2 +1
+(n-1) Edr _npe” [Cr(3- 2C)dr
r ED" (2-0)

2 a0 (e ac)s C [ logh |t ar
D" @a-0) b
From equation (3.1) and equation (3.3), it is found
Trr _Tee =ArF (34)

-2n-1

where F=r expf

Substituting the value of, —T,, from equation (3.4)
into equation (2.8) and integrating, it is found

o 22

T =B- AJ. Fdr— (3.5)
whereB is a constant of integration.

The constantsA and B are obtained by using the
boundary conditions (2.10) in equation (3.5) as

o

5 az—bz)

A= 222
pao®

2

A U Fera

Substituting the value ofB in equation (3.5), it is
found

b .
J.Fdr ’

2 2 2 r
T zp(D(a—r)_A

] 5 [ Far (3.6)
Using equation (3.6) in equation (3.4), it is found
Tee =T, - ArF (3.7)
Equations (2.6) give

1-C
Tzzz(z_(:)(Trr+-|;e)+ E %z_ Ea0 (38)

Substituting equation (3.8) in equation (2.11), one get
3
(1 C) rcT
- wf ar- |

" dr+E
L (2-CY
E(b2 &)
2
Equations (3.6) to (3.8) are thermal creep stresses for
non-homogeneous thick-walled rotating cylinder.
Non-homogeneity in the cylinder is due to variable
compressibilityC as given in equation (1.2). Using equation
(1.2) in equations (3.6) to (3.8), one gets

b
aIerr

p74

r

mZ(aZ_ r2)
T =22 D AR (3.9)
Tee :Trr - A r I:1 (3.10)
1-Cr*
Tzz:(ﬁ[;r_k](Trr-’_Ee)-’_ Eg,- Eab (3.11)

32

59, NO. 1, JANUARY 2009

where
1-C,
!r( r )dr kcji(2 &y dr+aEIr9dr
€,= (bz _ az) (312)
E
2
0)2 a2_b2
— p E ) r—(2n+k+1) ¢
szdr : FFWGXIO 1; and
n-— 1 - n k-1
f=- ( . erk —_—
_Mp ®C, [ B 2C0r'k)
ED" (2-GC,r")
+

2o

Equations (3.9) to (3.11) give thermal creep stresses
for a thick-walled rotating cylinder having variable
compressibility.

The non-dimensional components are introduced as

_. Ti,ce:h;czzi;ﬂzzpmzbz
E E E E

The equations (3.9) to (3.12) in non-dimensional form
can be written as

—k
kC,r" log(r /b) gy
@1-C,r' )

R
(F% R)-Af E dR (3.13)
R
6,=c,-RA F (3.14)
1-C b*R*
GZZ(Z_C:Ob_kR_k](Gr-’_GG)"_eZZ_ae (3.15)
0
where
T R(1- Cbb R") v R's,
R{ (2-C,b* R)d kq’bj(z Gb*R"y d
ab, b ¢
. oy F{ R (logR dR (3.16)
ZZ= 1 >
S-R)
’ (F%2 _1) —(2n+k+1)
A= F:—(bR) expf
2[R, dR 5 7 (1-C,b*RY)
R 0

-k k-1
R ) O S L) Al drR-
K D" ) @ Gb*RY)
NO* G, b P RIE-2G b RY) o
D" (2-C,b*R¥)

H(g_ L0 R)- k C,b*R*(log R

No, éobn
Drl

+

—}R“dR
(1-C,b*R¥)
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4. ROTATING CYLINDER WITHOUT THERMAL
EFFECTS
For non-homogeneous material with negligible temperature

field (6,=0), creep stresses (3.13) to (3.15) become

py)

(F% R)- ’%é[ R dR (4.1)

o,=0,~RAF, (4.2)
1-GC, bR

G, = 72 Co'R (o, +04)+€, (4.3)
where

. R(1-CGb*RY) . R-ts,
c {_ZQF{@C*’R)W 20 - cary % (4.4)
72 (1—R02)
A§ _ Qz(Rf_l) (bR)—(2n+k+1)

1 p—
2[F, dR ; E ‘—(l_cob_k Rk)epr3

Ro

f,=— (” 1jc b*R*
k
+kCO U’l—k Rnkl
o J@-cpoRY"
oG B J‘R*“(s 2Gb*RY) o
D" (2-C,b*R¥)

Equations (4.1) to (4.4) are same as obtained by Gupta
et.al®

Q*=5and 4,

STRESSES

THERMO CREEP TRANSITION IN NON-HOMOGENEOUS THICK-WALLED ROTATING CYLINDERS

5. STRAIN RATES

When the creep sets in, the strain should be replaced
by strain rates. The stress-strain relation (2.4) can be written
as

(1+ V) Vs

T- (5.1)
Where e,, |s the straln rate tensor with respect to flow
parametett and ® =T, +T,,+ T,, and v=(1-C)/(2-C)
is the Poisson's ratio.

Differentiating equation (2.3) with respect toit is
found

, O+a 0

=—p"B (5.2)
For SWAINGER measure (n=1)
b0 =P (5.3)

where g,, is SWAINGER strain measure.
The transition value of equation (3.1)Rt» -1 gives

p (Z—r]uj (5.4)
Using equations (5.2), (5.3) and (5.4) in equation (5.1),

it is found
1
]

(T, ~Ta)r

(1+v)
E

A%
-E —E§j®+a ei|

Cj(cz +0y)+a e} (5.5)

Cj(c, +0,)+a e} (5.6)

=0

Figure 1. Creep stresses in a non-homogeneous / homogeneous thick-walled rotating cylinder.
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Figure 2. Creep stresses in a non-homogeneous/homogeneous thick-walled rotating cylinder.

Table 1. Values of circumferential stresss, for a non-homogeneous/ homogeneous rotating cylinder
along the radius R for various values of angular speed2? and measuren with and without
thermal effects.

O*=5 and 6,=0 0?=30 and 6,= 05

34

i 0.5 0.625 0.75 0.875 1.0 0.5 0.625 0.75 0.875 1.0

E K = - 2 (Non-homogeneous material whose compressibility increases radially)

% 0.78 1.20 2.03 3.92 10.21 4.66 7.21 12.17 23.51 61.24
}é 0.82 1.25 2.06 3.89 9.96 4.93 7.51 12.38 23.37 59.77
}é 0.93 1.37 2.14 3.84 9.40 5.59 8.22 12.87 23.04 56.41
1 1.69 2.02 2.48 3.45 6.76 10.14 12.12 14.88 20.69 40.57
E K = 0 (Homogeneous incompressible material)

% 2.98 3.09 3.02 2.79 2.45 16.59 17.91 18.11 17.41 1591
}g 3.097 3.15 3.02 2.74 2.35 16.72 17.95 18.10 17.35 15.84
}é 3.38 3.26 2.99 2.62 2.13 16.95 18.01 18.06 17.28 15.77
1 5 3.75 2.83 2.028 1.25 16.69 17.00 17.42 17.94 18.69
E K = 2 (Non-homogeneous material whose compressibility decreases radially)

% 5.87 3.86 2.71 1.82 1.01 35.20 23.18 16.27 10.94 6.08
¥ 6.04 3.89 2.69 1.78 0.96 36.21 23.33 16.13  10.69 5.78
}é 6.44 3.94 2.63 1.69 0.85 38.617 23.66 15.79 10.12 5.12
1 8.58 4.09 2.33 1.29 0.45 51.49 24.54 13.99 7.73 2.71
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. temperaturd®,= a0 = 0.5 [thermal expansion coefficient
o | B oY e[S 0= = 5.0 x 10° °F! (for Methyl Methacrylate) and
2z N(ch) (Gr Ge) o, 2_C (Gr+66)+a € (57) . .. X A
0,= 10000° F] with respect to radii rat® shown in Fig.
These are the constitutive equations for finding the 1 and Fig. 2 fok=-2, 0, 2, respectively. In classical theory,

creep stresses. In classical theory, the mealurel/n. the measureéN is equal to .
For incompressible material, without thermal effects one (i) Fork = -2, the compressibility of the material varies
obtained the same constitutive equations as given by Otlquist asC=Cy? thatis, from the lowest value at the internal
surface to the highest value at the external surface.
6. NUMERICAL ILLUSTRATION AND DISCUSSION It has been observed from Fig. 1 that circumferential
For calculating the stresses and strain rate distributions stress for non-homogeneous rotating cylinder with an
based on the above analysis, the definite integral in equation angular speef?=5, is maximum at the external surface
(3.13) to equation (3.16) have been evaluated by using for the measura = 1, 1/3. It has also been observed
Simpson's rule (with the use of Mathematica) by taking from Table 1 that circumferential stress goes on increasing
D = 1. Curves have been made for stresses and strain rates  with the increase in measure. From Fig. 2, it has been
for measuringn = 1, 1/3 with angular sped@d?=5, 30 at observed that circumferential stress goes on increasing
—_—— = n=1 2 _ _ 6 -
19 - s ‘- Q°=5and 6,=0
- K=0 51 & K=2
3 4 G\ g_y 4 "
& 1
=z
= i T T T ——& — 0
& 05 0625 0786 T8
1 F.—q?‘__pk 11
-2 4 .-3”: £, 23 2
& o -3 4
R
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Figure 3. Strain rates in a non-homogeneous/homogeneous thick-walled rotating cylinder.
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Figure 4. Strain rates in a non-homogeneous/homogeneous thick-walled rotating cylinder.
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with the increase in angular speed and inclusion of REFERENCES

thermal effects.

Fork = 0, for homogeneous incompressible rotating
cylinder, it has been observed from Fig. 1 that with
angular spee@®?=5, circumferential stress is maximum
at the internal surface. It has been observed from
Table 1 that with the increase in measure, the circumferential

1

2.

3.

stress goes on decreasing at the internal surface. From4.

Fig. 2, it has been observed that circumferential stress
goes on increasing with the increase in angular speed
and inclusion of thermal effects.

Fork = 0, the compressibility of the material varies
asC=C/r?, thatis, from the higher value at the internal
surface to the lower value at the external surface. It
has been observed from Fig. 1 that circumferential
stress is maximum at the internal surface and goes on
decreasing with the increase in meashréas seen
from Table 1). From Fig. 2, it has been seen that the
circumferential stress goes on increasing at the internal
surface with the increase in angular speed and inclusion
of thermal effects.

It can be seen from Fig. 3 that there is a contraction

in the radial direction at its internal surface for a non-

homogeneous rotating cylinder whose compressibility increases

radially (k=—2) forn =1, 1/3 respectively and it increases
for homogeneous incompressible rotating cylinderQ()

and non homogeneous rotating cylinder whose compressibility
decreases radiallk£2).With the increase in angular speed 11.
and inclusion of thermal effects, there is more contraction
in radial direction fok=—2 andk=2 while less contraction
for incompressible materi&k0 (as seen from Fig. 4). The
circumferential strain rate is maximum at the external surface Contributor
for k=—2 and at internal surface f&r0, k=2.

7.

CONCLUSION
From the above observations, it can be concluded

that a cylinder made of less compressible material at the
internal surface and highly compressible at the outer surface
is on the safer side of the design for different values of
N, Q%and temperature as compared to highly compressible

at the internal surface and less compressible at the outer

surface.
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