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1. INTRODUCTION
The problem of a uniformly rotating long, thick-walled

circular cylinder arises occasionally in the design of turbine
rotors. The creep behavior of circular cylinders rotating
about its axis of symmetry has been investigated by many
authors1-5. Rotating cylinder plays an important role in
machine design particularly at elevated temperatures. Rimrott
and Luke5 has obtained the creep stresses of a rotating
hollow circular cylinder made of isotropic and homogeneous
materials. Wahl6 has given stress distribution under steady
state creep at elevated temperature for long rotating cylinders
having axial bores and subjected to external radial tension.
Non-homogeneous materials are effectively utilized in aerospace
and commercial applications. Some degree of non-homogeneity
is present in wide class of materials such as hot rolled
metals, aluminum and magnesium allows. Non-homogeneity
can also be generated by certain external field, that is
thermal field, as the elastic modules of the material vary
with the temperature or co-ordinates, etc. The effect of
stress distribution caused by external fields is much more
pronounced and of larger duration than the effect of thermal
stresses themselves.

In this paper, an attempt has been made to obtain the
creep stresses for a non-homogeneous thick-walled rotating
cylinder by using transition theory7. It utilizes the concept
of generalized strain measure and asymptotic solution at the
turning points or transition points of the governing differential
equation defining the deformed field and has been successfully
applied to a large number of problems in creep7-11.

The generalized principal strain measure is defined as7
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the material in the cylinder as

0
kC C r-=                                           (1.2)

where, a r b£ £ , a and b are internal and external radii,
C

0
 and k are constants. Results obtained have been discussed

numerically and depicted graphically.

2. GOVERNING  EQUATIONS
Consider a thick-walled circular cylinder of internal

and external radii a and b respectively, rotating with an
angular velocity w of gradually increasing speed about its
axes subjected to temperature  q = q

0
 at the internal surface.

The components of displacement in cylindrical co-ordinates
are given by7

( )1 ; 0;  u r v w d z= -b = =                   (2.1)

where b is a function of  r  = 2 2x y+   only and d is a
constant.

The finite components of strain are,
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Using equation (2.2) in equation (1.1), we get the generalized
components of strain as,
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where n is the measure.
The stress-strain relation for thermo elastic isotropic

materials is

1 2ij ij ij ijT I e= ld + m - xqd    (i , j  = 1,2,3)            (2.4)

where I
1
=e

kk
 ; T

ij
 , e

ij
 are stress and strain tensors respectively

and

( )3 2x = a l + m

where l, m   are Lame's constant, d
ij
  is Kronecker's delta,

a being coefficient of thermal expansion and q is the temperature.
The temperature q has to satisfy
q

ii 
= 0                                              (2.5)

Equation (2.4) for this problem become
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The temperature field satisfying equation (2.6) and

q = q0 at r = a

q = 0 at r = b

where q0 is constant, is given by
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Equations of equilibrium are all satisfied except
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where r is the density of the rotating cylinder.
Using equation (2.6) in equation (2.8), one gets a non-

linear differential equation in b as
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The transition point of b in equation (2.9) are 1P ® -
and P ® ± µ .

The boundary conditions are

T
rr  

= 0 at  r = a ;   T
rr  

= 0  at  r = a         (2.10)

The resultant forces normal to the plane Z = constant
must vanish, that is,

0
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3. SOLUTION THROUGH THE PRINCIPAL STRESS
DIFFERENCE
For finding the creep stresses, the transition function

is taken through the principal stress difference7-11 at the
transition point 1P ® - . The transition function R is defined
as
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Taking the logarithmic differentiation of equation (3.1)
with respect to r  and using equation (2.9), one gets
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Taking asymptotic value of equation (3.3) at 1P ® -
and integrating, one gets

2 expnR A r f-=                                    (3.3)

where asymptotic value of  b as 1P ® -  is D/r , D  being
a constant and

2m = (2 ) /(3 2 )E C C- -
where E is the Young's modulus, A is constant of integration
and
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From equation (3.1) and equation (3.3), it is found

  rrT T A r Fqq- =                                     (3.4)

where  2 1 expnF r f- -=

Substituting the value of rrT Tqq-  from equation (3.4)

into equation (2.8) and integrating, it is found
2 2 

2rr

r
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= - -ò                            (3.5)

where B is a constant of integration.
The constants A and B are obtained by using the

boundary conditions (2.10) in equation (3.5) as
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Substituting the value of  B in equation (3.5), it is
found
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Using equation (3.6) in equation (3.4), it is found
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Equations (2.6) give
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Substituting equation (3.8) in equation (2.11), one get
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Equations (3.6) to (3.8) are thermal creep stresses for
non-homogeneous thick-walled rotating cylinder.

Non-homogeneity in the cylinder is due to variable
compressibility C as given in equation (1.2). Using equation
(1.2) in equations (3.6) to (3.8), one gets
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Equations (3.9) to (3.11) give thermal creep stresses

for a thick-walled rotating cylinder having variable
compressibility.

The non-dimensional components are introduced as
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The equations (3.9) to (3.12) in non-dimensional form
can be written as
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4. ROTATING CYLINDER WITHOUT THERMAL
EFFECTS
For non-homogeneous material with negligible temperature

field (q
0
=0), creep  stresses (3.13) to (3.15) become
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Equations (4.1) to (4.4) are same as obtained by Gupta
et.al.8

5. STRAIN RATES
When the creep sets in, the strain should be replaced

by strain rates. The stress-strain relation (2.4) can be written
as
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where ije&  is the strain rate tensor with respect to flow
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is the Poisson's ratio.

Differentiating equation (2.3) with respect to t, it is
found
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Figure 1. Creep stresses in a non-homogeneous / homogeneous thick-walled rotating cylinder.
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Figure 2. Creep stresses in a non-homogeneous/homogeneous thick-walled rotating cylinder.

n = 1/3

n = 1

 2
15 and 0W = q =  2

130 and 0.5W = q =  

R 
  ® 

0.5 0.625 0.75 0.875 1.0 0.5 0.625 0.75 0.875 1.0 

n 
¯ 

K = - 2 (Non-homogeneous material whose compressibility increases radially) 

1
7  0.78 1.20 2.03 3.92 10.21 4.66 7.21 12.17 23.51 61.24 

1
5  0.82 1.25 2.06 3.89 9.96 4.93 7.51 12.38 23.37 59.77 

1
3  0.93 1.37 2.14 3.84 9.40 5.59 8.22 12.87 23.04 56.41 

1 1.69 2.02 2.48 3.45 6.76 10.14 12.12 14.88 20.69 40.57 

n 
¯ 

K = 0 (Homogeneous incompressible material) 

1
7  2.98 3.09 3.02 2.79 2.45 16.59 17.91 18.11 17.41 15.91 

1
5  3.097 3.15 3.02 2.74 2.35 16.72 17.95 18.10 17.35 15.84 

1
3  3.38 3.26 2.99 2.62 2.13 16.95 18.01 18.06 17.28 15.77 

1 5 3.75 2.83 2.028 1.25 16.69 17.00 17.42 17.94 18.69 

n 
¯ 

K = 2 (Non-homogeneous material whose compressibility decreases radially) 

1
7  5.87 3.86 2.71 1.82 1.01 35.20 23.18 16.27 10.94 6.08 

1
5  6.04 3.89 2.69 1.78 0.96 36.21 23.33 16.13 10.69 5.78 

1
3  6.44 3.94 2.63 1.69 0.85 38.617 23.66 15.79 10.12 5.12 

1 8.58 4.09 2.33 1.29 0.45 51.49 24.54 13.99 7.73 2.71 

 

Table 1. Values of circumferential stress s
q
 for a non-homogeneous/ homogeneous  rotating cylinder

along the radius R for various values of angular speed W2 and measure n with and without
thermal effects.
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These are the constitutive equations for finding the
creep stresses. In classical theory, the measure N = 1/n.
For incompressible material, without thermal effects one
obtained the same constitutive equations as given by Odquist3.

6. NUMERICAL ILLUSTRATION AND DISCUSSION
For calculating the stresses and strain rate distributions

based on the above analysis, the definite integral in equation
(3.13) to equation (3.16) have been evaluated by using
Simpson's rule (with the use of Mathematica) by taking
D = 1. Curves have been made for stresses and strain rates
for measuring n = 1, 1/3 with angular speed W2=5, 30  at

temperature q
1
= aq

0
= 0.5 [thermal expansion coefficient  a

= 5.0 x 10–5 °F–1  (for Methyl Methacrylate) and
q

0
= 10000° F] with respect to radii ratio R shown in Fig.

1 and Fig. 2 for k = –2, 0, 2, respectively. In classical theory,
the measure N is equal to .
(i) For k = –2, the compressibility of the material varies

as C = C
0
r2, that is, from the lowest value at the internal

surface to the highest value at the external surface.
It has been observed from Fig. 1 that circumferential
stress for non-homogeneous rotating cylinder with an
angular speed W2=5, is maximum at the external surface
for the measure n = 1, 1/3. It has also been observed
from Table 1 that circumferential stress goes on increasing
with the increase in measure. From Fig. 2, it has been
observed that circumferential stress goes on increasing
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Figure 3. Strain rates in a non-homogeneous/homogeneous thick-walled rotating cylinder.
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with the increase in angular speed and inclusion of
thermal effects.

(ii) For k = 0, for homogeneous incompressible rotating
cylinder, it has been observed from Fig. 1 that with
angular speed W2=5, circumferential stress is maximum
at the internal surface. It has been observed from
Table 1 that with the increase in measure, the circumferential
stress goes on decreasing at the internal surface. From
Fig. 2, it has been observed that circumferential stress
goes on increasing with the increase in angular speed
and inclusion of thermal effects.

(iii) For k = 0, the compressibility of the material varies
as C=C

0
/r 2 , that is, from the higher value at the internal

surface to the lower value at the external surface. It
has been observed from Fig. 1 that circumferential
stress is maximum at the internal surface and goes on
decreasing with the increase in measure N (as seen
from Table 1). From Fig. 2, it has been seen that the
circumferential stress goes on increasing at the internal
surface with the increase in angular speed and inclusion
of thermal effects.
It can be seen from Fig. 3 that there is a contraction

in the radial direction at its internal surface for a non-
homogeneous rotating cylinder whose compressibility increases
radially (k=–2 ) for n = 1, 1/3 respectively and it increases
for homogeneous incompressible rotating cylinder (k=0)
and non homogeneous rotating cylinder whose compressibility
decreases radially (k=2).With the increase in angular speed
and inclusion of thermal effects, there is more contraction
in radial direction for k=–2 and k=2 while less contraction
for incompressible material k=0  (as seen from Fig. 4). The
circumferential strain rate is maximum at the external surface
for k=–2 and at internal surface for k=0, k=2.

7. CONCLUSION
From the above observations, it can be concluded

that a cylinder made of less compressible material at the
internal surface and highly compressible at the outer surface
is on the safer side of the design for different values of
N,  W2 and temperature as compared to highly compressible
at the internal surface and less compressible at the outer
surface.
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