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ABSTRACT

The paper considers the problem of angular orientation of anti-aircraft guns towards a moving air target.
The factors affecting the collision of the projectile fired from a gun with the moving air target are highlighted.
Thereafter, a mathematical model has been developed to estimate the angular orientation of the anti-aircraft
gun in terms of bearing and elevation, in the direction of the predicted future position of the moving air target,
to enable collision of the projectile with the target.
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Projectile’s average deceleration
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Projectile’s average velocity

K Projectile’s initial velocity (1000 m/s)

C Deceleration Constant

g Acceleration due to gravity (9.8 m/s2)
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Bearing at which the projectile is fired from
the gun
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Elevation at which the projectile is fired
from the gun

t Time of flight of projectile till collision with
target

1. INTRODUCTION
Present day war has become multifaceted with

technologically advanced weapon systems being used on
land, in air, and at sea. Although ground forces play the
most decisive role, the enemy aircrafts and missiles can

limit the efficacy of ground forces to an extent that may
change the course of a battle. To provide immunity against
enemy air attacks, air defence systems comprising  anti-
aircraft guns and surface- to- air missiles form an integral
part of any ground force. Amongst the two, anti-aircraft
guns are a more economical option and are invariably used.
However, angular alignment of a gun towards a moving
air target needs some deliberation.

Consider a target in the three dimensional air space
moving with some velocity being fired upon by an anti-
aircraft gun located on ground. If the angular orientation
of the gun at the time of firing the projectile is aligned
in the direction of an imaginary line joining the gun and
the position of the target at that instant, then by the time
the projectile traverses the distance between the gun and
the target, the target itself would have moved some distance
away, and thereby, the projectile will miss the target entirely.
To ensure collision of the projectile fired by the gun with
a moving air target, the angular orientation of the gun has
to be aligned in the direction of the future position of the
moving air target, taking into account all factors that affect
their collision1.

A variety of configurations are possible for such weapon
systems. The air target tracking device and the anti-aircraft
guns may be co-located on the same platform or on two
different platforms which may themselves be static or mobile.

2. FACTORS CONTRIBUTING TO THE IMPACT
A multitude of factors affect the collision between the

projectiles fired from the anti-aircraft gun and a moving
air target4,6,8. All these factors need to be accounted for
in the mathematical model to estimate the angular orientation
of gun in the direction of the future position of the moving
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air target. These factors are as below:
(a) Target:

(i) Initial position of target along X, Y and Z
axes of  the stabilised reference frame.

(ii) Initial velocity of target along X, Y and Z
axes of  the stabilised reference frame.

(iii) Initial acceleration of target along X, Y and
Z axes of the stabilised reference frame.

(b) Projectile:
(i) Initial position of projectile along X, Y and

Z axes of the stabilized reference frame
(ii) Initial velocity of projectile along X, Y and

Z axes of the stabilised reference frame
(c) Environment:

(i) Gravitational acceleration
(ii) Deceleration due to viscous friction with

the atmosphere
(iii) W ind drift

(d) System Errors:
(i) Computation time
(ii) Steady state error and settling time of

control loops
(iii) Ballistic drift

3. FRAME  OF  REFERENCE  AND  ANGULAR
REFERENCE
 Before evolving the mathematical model, one defines

the stabilised reference frame and the angular references
for measurement of the variables involved2-4.

In the three dimensional space, a reference frame is
required as datum wrt  which the angular measurements
of the variables are made, i.e., bearing and elevation of
the target as well as the angular orientation of anti aircraft
gun. The reference frame will have three mutually perpendicular
axes, named arbitrarily as X, Y and Z.  Let the XY plane
of this frame be always perpendicular to the direction of
the gravitational force and parallel to perfectly horizontal
surface of the earth. The XZ and the YZ planes are perpendicular
to XY plane as well as to each other. However, the reference
frame has no particular orientation wrt the Earth’s north.
For a platform placed on the ground with radar mounted
on it, the X, Y and Z axes of the reference frame aligned
themselves along the longitudinal, lateral, and vertical
axes of the platform, and the centre of gravity of platform
is coincident with the origin, as shown in Fig. 1. Such
an imaginary reference frame, as described here, is the
stabilised reference frame.

The angular references are required for quantifying
the angular measurements of the variables, i.e., bearing
and elevation, in the stabilised reference frame under
consideration. Bearing is measured in XY plane positively
from +X towards +Y axis and elevation is measured positively
from XY plane towards +Z axis.

4. SYSTEM MODEL
To evolve the generalised mathematical model, consider

a twin platform system with the target- tracking device,

such as the tracking radar on one platform and the anti-
aircraft gun on another platform, and also the stabilised
reference frame aligned with the platform mounted with
the target-tracking device as  shown in Fig. 1. The target
will be at a certain elevation, bearing, and range wrt the
target-tracking platform at different instances of time.
Depending on the target’s velocity, the target may approach
the platform (approacher), fly past the platform (crosser)
or recede away from the platform (receder). This three-
dimensional scenario may be viewed in the horizontal yaw
plane i.e. left / right  disregarding the elevation aspect,
and also in the vertical pitch plane, i.e., up / down, disregarding
the bearing aspect. The target, in either of the two planes,
can be depicted as in Fig. 2.

To prevent the target, i.e., enemy aircraft, from causing
damage in the area where the anti-aircraft gun is located
on the ground, the target has to be hit by the projectile
while it is an approacher. Once the target- tracking device
acquires the initial target data, i.e., bearing, elevation, and
range, the targets initial position, velocity, and acceleration
along the three axes are computed and it is assumed that
the target continues to fly with the same velocity and
acceleration till the time the projectile intercepts it. To
enable collision of the projectiles fired from the anti-aircraft
gun with the moving air target, the equations of their
motions along the X, Y and Z axes may be equated similarly
as for the estimation of missile launch angle4-6 along with
two additional terms pertaining to main external influences
of gravity and deceleration due to air8, as below:
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Figure 1. Two platform system.
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Rewriting eqn’s (4-6),
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Squaring Eqns (7) and (8) and adding them,
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(X
t
 – X

p
 + V

tx
.t + ½A

tx
.t2)2 + (Y

t
 – Y

p
 + V

ty
.t +

½A
ty
.t2)2 + ( Z

t
 – Z

p
 + V

tz
.t + ½(A

tz 
+ g).t2)2 =

(K.t – ½D
pav

.t2)2 
   

                                         (12)

Expanding Eqn (12) and collecting terms with same
power of variable time t,
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The Eqn. (13) above is a fourth-order equation for
the variable time t containing terms for t4, t3, t2, t and a
constant. The formulae for finding roots of second- third-
fourth-order equations are available; above which one
must resort to the numerical method. The formula for solving
the quadratic is easily applied, but the cubic solution is
rather long and for quartic, it is very complicated. It turns
out that one usually uses a numerical method for all the
equations above the quadratic order7. The Lin’s method
and the Newton’s method are two well documented methods5,7.
Although either of these two methods or any similar method
will give the roots, however for the model under consideration,
a better way of finding the value of the variable time t
would be as under since it may so happen that more than
one positive real root may exist for a particular case.

It may be appreciated that the value of the variable
time t cannot be imaginary or complex and can have only
a positive real value. Further, ones interest lies in finding
only that one particular root amongst the possible four
that would result in correct estimation of the angular orientation
of the gun which will enable collision of the projectile with
the target. This value of t when substituted in the left
side of the Eqn. (13) will equate with the right side of the
Eqn, i.e., zero.

To determine the value of the variable time t which
is of interest, consider the target to be stationary at point
A in the target / projectile fly plane as shown in Fig. 3.
In the three-dimensional stabilised reference frame, the
plane containing the straightline trajectory of the target,
which also passes through the initial position of the projectile
on the ground, is the target / projectile fly plane4. For a
target initially acquired at point A at a distance d

1
, the

corresponding value of time t
1
 for flight of the projectile

to the target
 
is the most obvious reference in whose vicinity

the actual value of the variable time t lies. The initial
distance of the target from the initial position of the projectile
is4:
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If  the deceleration of the projectile is disregarded
due to viscous friction of the atmosphere as well as the
effect of gravity, the time of flight of the projectile will
be t

1
 = d

1
/K as in the case of missile which fly at a

constant velocity4. In reality, as the projectile moves towards
the target it is subjected to viscous friction with the atmosphere
due to which its velocity keeps reducing continuously
and is accounted for by taking into consideration the
average deceleration D

pav
. The deceleration due to gravity

may be accounted for by resolving it with cosine of the
elevation e

1
 of the stationary target initially located at

point A, as shown in Fig. 4. The time of flight t
1
 may be

estimated from its equation of motion as under:

d
1 
= K.t

1
 – ½D
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.t

1
2 – ½ g.cos(90o–e

1
).t

1
2                     (15)

If we neglect the term pertaining to gravity since its
value is much smaller than the initial velocity of the projectile
K, which is approximately 1000 m/s for most anti- aircraft
guns today, as well as average deceleration D

pav
, whose

value lies between 285 and 140 as will be shown later, the
Eqn.(15) reduces to:
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The two roots of the quadratic Eqn(16) above are

t
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t
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1
)1/2]/D
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To ascertain which one of these roots gives the correct
value of the time of flight t

1
 of the projectile,  the values

of the two roots tabulated in Table 1 were examined for
various values of d

1 
along with its associated value of

average deceleration D
pav

 calculated using Eqn (34).
All the values of the second root corresponding to

various distances d
1
 varying from 500 m to 2500 m fall

within 7.1129 s and 8.6601 s, which is obviously not possible,
and therefore ruled out. The values of the first root seem
more likely to be correct considering the fact that the
initial velocity K of the projectile is 1000 m/s. Also, even
if the values of the second root for various distances were
reasonably different, it would be appropriate to consider
the first root, being lesser of the two roots, and therefore,
representing the time for the shortest flight path of the
projectile to the target. Further, numerical evaluation of
Eqn (15) for various values of the variables d

1
 and e

1
 will

reveal that taking into consideration the effect of gravity
cause a variation of less than 0.015 s in the value of time

of flight t
1
. During this time of 0.015 s, a target travelling

at a maximum velocity of 400 m/s will move only 6 m, which
is inconsequential considering the size of the smallest
target aircraft which may be 20 m long, 25 m wide, and
3 m tall. Thus the estimated value of t

1
 using Eqn (17)

by disregarding effect of gravity is sufficiently accurate
to correctly determine the direction of search for the correct
value of time t that will satisfy Eqn (13).

Having calculated the value of time t
1
 for flight of

projectile to the stationary target, let the target now continue
to fly. The value that will satisfy Eqn (13) will not be
exactly t

1 
but in its vicinity, either less or more than t

1
,

depending on whether the target is approaching or receding4.
To determine in which direction the value will lie, consider
now the position of the moving target after t

1
 seconds.

The distance will be
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If d
2
 > d

1
, the target is a receding one, and consequently

the value of variable time t that will satisfy Eqn (13) will
be greater than t

1
.. If d

2
< d

1
, the target is an approaching

one and consequently the value of variable time t that
will satisfy Eqn (13) will be < t

1
.

To justify the use of variables t
1
, d

1
 and d

2
 in choosing

the direction of search let A’ be a point ahead on the target
trajectory which is at the same distance d

1
 and for which

the projectile would take the same time t
1
 to reach.

Allow the projectile travel from its initial position to
the point A’ and simultaneously the target from point A

 

Variables Values 

d1 (meters) 500 1000 1500 2000 2500 

Dpav = 285.7 – (0.04857) . d1 261.415 237.100 212.845 188.560 164.275 

t1 (root 1) = [K – (K2 – 2 . Dpav . d1)
1/2] / Dpav  (sec) 0.5378 1.1594 1.8736 2.6743 3.5146 

t1 (root 2) = [K + (K2 – 2 . Dpav . d1)
1/2] / Dpav (sec) 7.1129 7.2748 7.5229 7.9324 8.6601 

Table 1. Evaluating values of two roots of Eqn (16)
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Figure 4. Accounting gravity in Eqn (15).
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towards point A’. By the time the projectile reaches point
A’, if the target reaches any point B which is short of A’
then the distance d

2
 will be < d

1
. It can thus be inferred

that if the projectile were to be launched in the correct
direction the time taken to intercept the target will be <
t
1
.

Similarly, if the target were to reach some point C
ahead of point A’, then the distance d

2
 will be > d

1
 and

the time taken by the projectile to intercept the target will
be > t

1
.

Having ascertained the direction in which the value
of variable time t lies, the expression in Eqn (13) is calculated
successively starting with value of t = t

1
 and thereafter,

increasing or decreasing it, as determined earlier, in steps
of  say 0.01 or 0.025 or 0.1, as per the requirement of
accuracy. As these calculations are done successively,
the value of the expression will approach zero. Once that
value of the variable time t has been reached for which
the value of the expression on the left side of Eqn (13)
crosses the zero or is within certain + limit of zero, the
value of variable time t arrived at will be the one that will
nearly satisfy Eqn (13). This value of the variable time
t so arrived at by time-convergence of Eqn (13) is that
pertaining to the final distance d

f
 of the impact point D.

The final distance of the target from the initial position
of the projectile4 will be

d
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Mathematically, one may be tempted to find the value
of variable time t where the slope of Eqn (13) will change
by taking the derivative of Eqn (13) and finding the value
of the variable time t that would have satisfied Eqn (13).
However, this may not render the value of variable time
t for two reasons. Firstly, taking derivative of Eqn (13)
will give a third-order equation with three roots and where
once again a numerical method will have to be applied.
Secondly, the nature of Eqn (13) will depend on its constants
and may be such that a change of slope may not exist4.

However, before implementing the above time-convergence
procedure, another aspect regarding the value of the variable
average deceleration D

pav
 needs to be considered on which

depends the accuracy of the result. More about the variable
average deceleration D

pav 
is brought out later including

experimental determination as well as approximate estimation
for  validation of this model by numerical simulation.

While searching for the value of the variable time t
to satisfy Eqn (13),  the most obvious and easily available
value t

1
 was used to start with, pertaining to the initial

distance d
1
 of the target. It would thus be logical to use

that initial value of D
pav 

which pertains to the distance d
1
.

However the final distance d
f
 will invariably be different

from d
1 
for a moving target and the initial assumption of

the value of D
pav 

pertaining to the distance d
1 
will be incorrect.

Also, as will be brought out later, greater the distance,

lesser will be the value of the variable average deceleration
D

pav
. Therefore, if the value of d

f 
turns out to be greater

than d
1 
then the correct value of D

pav 
would be less than

that selected initially. Similarly, if the value of d
f
 turns out

to be less than d
1 
then the correct value of D

pav 
would be

greater than that selected initially. Accordingly the value
of D

pav 
is increased or decreased in steps of say 1.0 or

0.5 or 0.1, as per the requirement of accuracy, and the time-
convergence procedure is repeated. This procedure of
average deceleration convergence, with the time-convergence
nested inside, is repeated till the last selected value of
D

pav 
in the above convergence procedure is nearly the

same as the corresponding value of average deceleration
D

pavf
 pertaining to final distance d

f
.

The method described above may perhaps be the
most suitable way of finding the solution of Eqn (13).
Having found the desired value of variable time t, the
same is substituted in Eqn (9) to get the value of variable
elevation e

p
. Further, by substituting the value of the

variable time t and elevation e
p
 in either Eqn (7) or Eqn

(8) will give the value of the variable bearing b
p
.

The Eqn’s (7), (8), (9) and (13)  are the gun-laying
equations for anti-aircraft guns whose problem-specific
numerical solution is as elucidated above.

5. DETERMINATION OF SYSTEM CONSTANTS
As the projectile travels from the gun towards the

target, it experiences deceleration due to the drag force
exerted on it by virtue of friction with the atmospheric
medium. For small projectiles traveling at low subsonic
speeds, where there is laminar flow of air, drag force is
directly proportional to the instantaneous velocity as well
as coefficient of drag9 of the projectile. However, for large
projectiles traveling at high supersonic velocities, where
there is turbulent flow of air, drag force is directly proportional
to one-half of coefficient of drag, density of air, cross-
sectional area of the projectile perpendicular to flow of
air and square of the projectiles instantaneous velocity
(or even higher powers of velocity depending on the speed
of the projectile)9. Although literature mentions this fact
but does not specify the velocity at which the relationship
changes. Further, the value of coefficient of drag, which
is determined experimentally using Doppler radar10, is not
constant and depends on projectiles velocity, viscosity
of air, projectile shape as well as roughness of projectiles
surface and thus only an average value is used. This drag
force when divided by the mass of the projectile gives
the deceleration experienced by the projectile10. Mathematical
models such as Siacci/Mayevski G1 model and the Pejsa
model for calculating effects of air resistance are quite
complex and the most reliable method of establishing
trajectories (Ballistic Tables) is still by empirical measurement10.
Irrespective of the changing values of coefficient of drag
and power of instantaneous velocity to which the deceleration
of the projectile is proportional, what can be said with
certainty is that the velocity of the projectile keeps reducing
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continuously, which in turn reduces the deceleration
experienced by the projectile. It is thus evident that greater
the distance, lesser will be the average velocity and thus
the average deceleration as well.

Since the velocity of the projectile is continuously
reducing, the best value that can be chosen over a certain
distance traveled by the projectile is the average velocity
which will render the average deceleration of the projectile
over the distance under consideration. Using the most
common expression of drag force in which it is proportional
to square of instantaneous velocity and representing one-
half of coefficient of drag, density of air, cross sectional
area of the projectile, and inverse of mass of the projectile
by a single constant C which  may be  called  the deceleration
constant9, the average deceleration may be represented
mathematically as

D
pav

 = C.V
pav

2                                          (21)

To estimate the average deceleration one would
instinctively tend to mathematically integrate instantaneous
deceleration wrt to time. However, neither deceleration
nor the velocity to which deceleration is proportional, can
be represented as a function of time since these are
interdependent11. This aspect, apart from the fact that the
velocity at which its relationship changes with deceleration
not being known, leads one to infer that experimental
determination of average deceleration will yield more realistic
results.

The average deceleration of the projectile over a certain
distance can be determined by conducting an experiment
in the following way. A single projectile is fired from a
gun kept at a height h from the ground in a horizontal
direction, parallel to the surface of earth as shown in Fig.
5. Thus one can write the equation for its motion along
the Z axis as

–h = V
pz

.t – ½g.t2 – D
pav

.t2                                              (22)

If one neglects the viscous friction effect, since the
velocity achieved by the projectile along Z axis will not
be high for height equal to say up to 10 m or so, and also

since the initial velocity of the projectile along the Z axis
is zero, the equation reduces to

h = ½g.t 2                                                                           (23)

and therefore

t = (2h/g)1/2                                             (24)

To get a still more accurate value of time t, the projectile
may simply be dropped from various heights and time t
elapsed till the projectile hits the ground be recorded
using an accurate time measurement device such as gun
chronograph.

Let the projectile travel the distance d before it hits
the ground, which can be measured physically. Also, the
initial velocity of the projectile along the X axis, i.e. K,
is known from the gun’s muzzle velocity measuring device
or from the manufacturer’s data sheet. We may thus write
the equation for the motion of the projectile along the X
axis as

d = V
px

.t – ½D
pav

.t2                                     (25)

Substituting value of time t and rearranging,one gets

D
pav

 = [K.(2h/g)1/2 – d]/(h/g)                                (26)

This experiment is repeated from different heights
from which a graph/table can be drawn between the average
deceleration of the projectile and the distance.

However, for validation of the model by numerical
simulation, one may approximately estimate the value of
average deceleration D

pav 
for various distances as described

hereafter. Based on experience of Army’s Air Defence
Regiments, it has been established that attacking enemy
aircrafts flying in at a low altitude, ranging between 300
m and 800 m, to avoid radar detection and at speeds no
more than 1.2 Mach (Mach 1 is approximately 331 m/s,
the speed of sound) to enable precision delivery of
conventional explosives. Also, most anti-aircraft guns in
use today have maximum muzzle velocity of 1000 m/s and
maximum effective range of approximately 3000 m. At this
maximum effective range of 3000 m, for the worst case of
a receding target at 400 m/s (1.2 Mach), the velocity of
the projectile should be at least 400 m/s for it to be able
to hit the target. Thus the average velocity of the projectile
over this distance of 3000 m would be one-half of summation
of the initial and final velocities, i.e., [1000 m/s + 400 m/
s] / 2 = 700 m/s and the time of flight of the projectile
would be ratio of distance and the average velocity i.e.
(3000 m) / (700 m/s) = 4.285 s. From the laws of motion
one may write:

Distance = (Initial Velocity x Time) –
                  ½ (Average deceleration x Time2)                     (27)

Substituting the values,

3000 = (1000 x 4.285) – ½ (D
pav

) (4.285) 2                   (28)

and therefore,

 

+X 

+Z 

+Y 

d 

h 

Figure 5. Experimental determination of deceleration due to
viscous friction of the atmosphere.



9

KUMAR & MISHRA: ANGULAR ORIENTATION OF ANTI-AIRCRAFT GUN FOR INTERCEPTION OF A MOVING AIR TARGET

D
pav

 = 140.                                                                     (29)

Thus, a point has been established on the distance
Vs average deceleration graph. Substituting the value of
D

pav 
as 140 and the value of average velocity as 700 m/

s pertaining to the distance 3000 m in Eqn (21), one gets
the value of the deceleration constant C as

C = D
pav 

/ V
pav

2 = 140 / 7002 = 0.00028571                 (30)

It is also known that the velocity of the projectile
at the muzzle of the gun is 1000 m/s when the distance
traveled is zero. When substituted in Eqn (21) along with
the value of the deceleration constant C, as calculated
above, the value of D

pav 
is known which pertains to the

value of distance as zero.

D
pav

 = V
pav

2 . C = 10002 x 0.00028571 = 285.71         (31)

It has thus been established that another point on
the distance V

s
 average deceleration graph. Assuming

that the variation in the average velocity of the projectile
over various distances is linear, we can now draw a graph
by joining a straight line between the two points established
above, depicting the relationship between distance and
average deceleration as shown in Fig. 6. However, in the
real world the variations in average velocity over various
distances will not be linear and hence the experimentally
determined table/graph of average deceleration over various
distances will also not be linear.

From the two points that we have established above
and the straight line joining them which depicts the relationship
between distance and average deceleration, the value of
D

pav
 at any distance d can be calculated as under:

D
pav 

= D
pav

(initial) +

[(D
pav

(final) – D
pav

(initial))/(d(final) – d(initial))].d       (32)

Substituting the values, one gets,

D
pav 

= 285.71 + [(140 – 285.71) / (3000 – 0)] . d         (33)

and therefore,

D
pav 

= 285.71 – (0.04857) . d                                        (34)

The Eqn (34), which gives a typical approximate estimate
of the value of average deceleration D

pav 
for various distances

was established only to provide quantitative values to
work with for the purpose of validation of the model by
numerical simulation in the absence of physical resources
for experimental determination of the values. While implementing
the model in the real world, only experimentally determined
values in the form of look-up table are to be used to
achieve accurate and successful results.

Projectile drag/deceleration is directly proportional
to air density, which depends on temperature, pressure,
and moisture8. An increase in pressure or decrease in
temperature will result in an increase in density. Although
not as obvious, an increase in moisture content will result
in a decrease in density. Since the air pressure varies

widely at a particular place depending on its altitude and
the variations superimposed due to temperature depending
on the time of the day, the graph/table between the average
deceleration and distance is drawn with a fixed relation
between density and altitude for average temperature and
moisture levels just like the standard trajectories reflected
in the ballistic/firing tables8. The value of the average
deceleration over a certain distance isthen read off from
the graph/table pertaining to the altitude at which the
anti-aircraft gun is operating.

6. SIMULATION VALIDATION
To gain faith, let an example be considered to and

demonstrate the efficacy/validity of Eqn (13). The initial
values of the variables have been chosen consistent with
the facts based on experience of Army’s Air Defence Regiments.

The target is assumed to be initially positioned + 2000 m
away along X axis, + 2200 m away along Y axis, approaching
at a constant velocity of –250 m/s along X axis, –275 m/s
along Y axis  (approacher target with crossover distance)
and with no acceleration. Further, the anti-aircraft gun
is assumed to be displaced +50 m along X and Y axes
from the target tracking device which is at the origin of
the reference frame. The initial muzzle velocity of the
projectile of most anti-aircraft gun’s today is approximately
1000 m/s and assumed accordingly. The Eqn (34) have
been used to provide values of average deceleration for
various distances.

With this data, the Eqn (13) was solved using software
made in MATLAB 6.1, as shown in Table 2. The software
numerically simulates values of the variables time t and
average deceleration D

pav 
which satisfy the Eqn (13) along

with the count (n) for the number of times the iterations
take place for time convergence and the count (m) for
the number of times the average deceleration convergence
takes place. Thereafter the analytical values for the final
position of the target (X

tf
, Y

tf
, Z

tf
) and the projectile (X

pf
, Y

pf
, Z

pf
)

along the three axes, initial and the final distances of
the target (d

1
, d

f 
) and the average deceleration (D

pavf
)

corresponding to the final distance is calculated. The
result of the simulation after time convergence procedure
for the first time as well as after full procedure of average
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Figure 6. Estimation of average deceleration at various
distances.
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Table 2. Software program for time convergence and average deceleration convergence of  Eqn (13) to calculate
projectile elevation ep and bearing bp.

 % anti aircraft gun laying angle calculation program in matlab 6.1 % 
Xt = 2000 ; Yt = 2200 ; Zt = 500 ; Vtx = -250 ; Vty = -275 ; Vtz = 0 ; Atx = 0 ; Aty = 0 ; Atz = 0 ; 
Xp = 50 ; Yp = 50 ; Zp = 0 ; 
K = 1000 ; G = 9.8 ; 
d1 = sqrt((Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2) ; % check tgt approaching / receeding 
Dpav = 285.7 – 0.04857*d1 ; 
t1 = (K-sqrt(K^2-2*d1*Dpav))/Dpav ; 
t = t1 ; 
d2 = sqrt((Xt+Vtx*t+0.5*Atx*t^2-Xp)^2+(Yt+Vty*t+0.5*Aty*t^2-Yp)^2+(Zt+Vtz*t+0.5*Atz*t^2-Zp)^2) ; 
if d1 > d2 % set direction of search for time t 
    dir = -1 ; 
else 
    dir = 1 ; 
end 
eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
          ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
          (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
          2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
          (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
x = sign(eqn) ; % check initial value of eqn is +ve / -Ve 
n = 0 ; % count number of iterations while searching for time t 
switch x 
    case -1 
        while eqn < 0 % limit number of iteration till eqn reaches zero  
        n = n + 1 ; 
        t = t1 + (dir*n*0.01) ; 
        eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
                  ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
                  (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
                  2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
                  (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
        end 
    case +1 
        while eqn > 0 % limit number of iteration till eqn reaches zero  
        n = n + 1 ; 
        t = t1 + (dir*n*0.01) ; 
        eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
                  ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
                  (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
                  2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
                  (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
        end 
end 
% find gun elevation / bearing , position of target/ projectile and distance of impact 
e = asin ((Zt-Zp+(Vtz*t)+(0.5*Atz*t^2)+(0.5*G*t^2))/((K*t)-(0.5*Dpav*t^2))) ; % gun elevation 
b = atan ((Yt-Yp+(Vty*t)+(0.5*Aty*t^2))/(Xt-Xp+(Vtx*t)+(0.5*Atx*t^2))) ; % gun bearing 
Xtf = Xt + Vtx*t + 0.5*Atx*t^2 ; % target's final posn along X axis 
Ytf = Yt + Vty*t + 0.5*Aty*t^2 ; % target's final posn along Y axis 
Ztf = Zt + Vtz*t + 0.5*Atz*t^2 ; % target's final posn along Z axis 
Xpf = Xp + K*t*cos(e)*cos(b) - 0.5*Dpav*cos(e)*cos(b)*t^2 ; % projectile's final posn along X axis 
Ypf = Yp + K*t*cos(e)*sin(b) - 0.5*Dpav*cos(e)*sin(b)*t^2 ; % projectile's final posn along Y axis 
Zpf = Zp + K*t*sin(e) - 0.5*Dpav*sin(e)*t^2 - 0.5*G*t^2 ; % projectile's final posn along Z axis 
df = sqrt((Xtf-Xp)^2+(Ytf-Yp)^2+(Ztf-Zp)^2); % targets's final distance w.r.t projectile 
Dpavf = 285.7 – 0.04857*df ; % final value of Dpav corresponding to df 
t1, n, t, Xtf, Ytf, Ztf, Xpf, Ypf, Zpf, d1, d2, df, Dpavf, Dpav, e, b %- print results  
m = 0 ; % count number of iterations while searching for Dpav 
% chk direction of search for correct Dpav  
if Dpavf > Dpav  
    while Dpavf > Dpav  
    m = m + 1 ; 
    Dpav = Dpav + 1.0 ;      
    t = t1 ; 
    n = 0 ; 
    eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
              ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
              (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
              2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
              (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
    x = sign(eqn) ; 
        switch x 
            case -1 
                while eqn < 0 % limit number of iteration till eqn reaches zero  
                n = n + 1 ;  
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                 t = t1 + (dir*n*0.01) ; 
                eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
                          ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
                          (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
                          2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
                          (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
                end 
            case +1 
                while eqn > 0 % limit number of iteration till eqn reaches zero  
                n = n + 1 ; 
                t = t1 + (dir*n*0.01) ; 
                eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
                          ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
                          (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
                          2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
                          (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
                end 
        end 
    e = asin ((Zt-Zp+(Vtz*t)+(0.5*Atz*t^2)+(0.5*G*t^2))/((K*t)-(0.5*Dpav*t^2))) ; % gun elevation 
    b = atan ((Yt-Yp+(Vty*t)+(0.5*Aty*t^2))/(Xt-Xp+(Vtx*t)+(0.5*Atx*t^2))) ; % gun bearing 
    Xtf = Xt + Vtx*t + 0.5*Atx*t^2 ; % target's final posn along X axis 
    Ytf = Yt + Vty*t + 0.5*Aty*t^2 ; % target's final posn along Y axis 
    Ztf = Zt + Vtz*t + 0.5*Atz*t^2 ; % target's final posn along Z axis 
    Xpf = Xp + K*t*cos(e)*cos(b) - 0.5*Dpav*cos(e)*cos(b)*t^2 ; % projectile's final posn along X axis 
    Ypf = Yp + K*t*cos(e)*sin(b) - 0.5*Dpav*cos(e)*sin(b)*t^2 ; % projectile's final posn along Y axis 
    Zpf = Zp + K*t*sin(e) - 0.5*Dpav*sin(e)*t^2 - 0.5*G*t^2 ; % projectile's final posn along Z axis 
    df = sqrt((Xtf-Xp)^2+(Ytf-Yp)^2+(Ztf-Zp)^2); % targets's final distance w.r.t projectile 
    Dpavf = 285.7 – 0.04857*df ; % final value of Dpav corresponding to df    
    end 
else 
    while Dpavf < Dpav  
    m = m + 1 ; 
    Dpav = Dpav - 1.0 ;     
    t = t1 ; 
    n = 0 ; 
    eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
              ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
              (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
              2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
              (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
    x = sign(eqn) ; 
        switch x 
            case -1 
                while eqn < 0 %- limit number of iteration till eqn reaches zero  
                n = n + 1 ; 
                t = t1 + (dir*n*0.01) ; 
                eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
                          ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
                          (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
                          2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
                          (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
                end 
            case +1 
                while eqn > 0 %- limit number of iteration till eqn reaches zero  
                n = n + 1 ; 
                t = t1 + (dir*n*0.01) ; 
                eqn = 0.25*(Atx^2+Aty^2+(Atz+G)^2-Dpav^2)*t^4+ ... 
                          ((Atx*Vtx)+(Aty*Vty)+((Atz+G)*Vtz)+(K*Dpav))*t^3+ ... 
                          (((Xt-Xp)*Atx)+Vtx^2+((Yt-Yp)*Aty)+Vty^2+((Zt-Zp)*(Atz+G))+Vtz^2-K^2)*t^2+ ... 
                          2.0*(((Xt-Xp)*Vtx)+((Yt-Yp)*Vty)+((Zt-Zp)*Vtz))*t+ ... 
                          (Xt-Xp)^2+(Yt-Yp)^2+(Zt-Zp)^2 ; 
                end 
        end 
    e = asin ((Zt-Zp+(Vtz*t)+(0.5*Atz*t^2)+(0.5*G*t^2))/((K*t)-(0.5*Dpav*t^2))) ; % gun elevation 
    b = atan ((Yt-Yp+(Vty*t)+(0.5*Aty*t^2))/(Xt-Xp+(Vtx*t)+(0.5*Atx*t^2))) ; % gun bearing 
    Xtf = Xt + Vtx*t + 0.5*Atx*t^2 ; % target's final posn along X axis 
    Ytf = Yt + Vty*t + 0.5*Aty*t^2 ; % target's final posn along Y axis 
    Ztf = Zt + Vtz*t + 0.5*Atz*t^2 ; % target's final posn along Z axis 
    Xpf = Xp + K*t*cos(e)*cos(b) - 0.5*Dpav*cos(e)*cos(b)*t^2 ; % projectile's final posn along X axis  
    Ypf = Yp + K*t*cos(e)*sin(b) - 0.5*Dpav*cos(e)*sin(b)*t^2 ; % projectile's final posn along Y axis 
    Zpf = Zp + K*t*sin(e) - 0.5*Dpav*sin(e)*t^2 - 0.5*G*t^2 ; % projectile's final posn along Z axis 
    df = sqrt((Xtf-Xp)^2+(Ytf-Yp)^2+(Ztf-Zp)^2); % targets's final distance w.r.t projectile 
    Dpavf = 285.7 – 0.04857*df ; % final value of Dpav corresponding to df    
    end 
end 
m, n, t, Xtf, Ytf, Ztf, Xpf, Ypf, Zpf, d1, d2, df, Dpavf, Dpav, e, b %- print results  
%- end of programme 
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deceleration convergence with time convergence nested
inside is shown in Table 3.

After the time convergence for the first time in which
172 iterations took place, apparently the values of final
position of the target (X

tf
 = 1378.3 m, Y

tf
 = 1516.1 m) and

the projectile (X
pf
 = 1376.8 m, Y

pf
 = 1514.5 m) are almost

the same, with a difference of 1.5 m and 1.6 m along the
two axes, leading us to believe that collision will take
place. However, the average deceleration D

pavf
 corresponding

to the final distance d
f
 is 186.5405 and is not the same

as the initially chosen value of D
pav

 which is 142.5667. It
can thus be inferred that in the real world the projectile
will experience an average deceleration other than 142.5667
and hence the values of final position of the projectile
along the three axes are incorrect. However, after the average
deceleration convergence in which 47 iterations took place
and the last iteration nested with another 155 iterations
of time convergence, the value of average deceleration
D

pavf
 corresponding to the final distance d

f
 is 189.5145

which is almost same as the value of D
pav

 = 189.5667
arrived at by average deceleration convergence procedure.
It can thus be inferred that the projectile will actually
experience an average deceleration of 189.5667 and hence
the values of final position of the target and the projectile
along the three axes as well as the gun elevation and
bearing are correct. The corresponding values along X
and Y axes of the final position of target (X

tf
 = 1335.8 m,

Y
tf
 = 1469.3 m) and final position of the projectile (X

pf
 =

1335.4 m, Y
pf
 = 1468.9 m) are same with a negligible difference

of just 0.4 m along both X and Y axes.
The difference of 0.4 m in the values of the final

position of target and the projectile along X and Y axes
worked out in the example are negligible as compared to
size of an aircraft and will vary for other examples with
different initial target data. For the choice of 0.01 s as the
size of the step in the time convergence procedure, the
distance an aircraft would travel in 0.01 s while flying at
1.2 Mach (400 m/s approx) will be only four meters and
the difference in the values of the final position of target
and the projectile will also be within this range which may
be improved by further reducing the size of the step if
required. As per practices of anti aircraft gunnery, invariably
a burst of eight to ten projectiles are fired and due to
recoil of the gun, dispersion takes place. This dispersion
of projectiles in 3-D space as well as the use of proximity
fuse1 in the projectile enables the projectile to be effective
against the target. Lastly, as regards to the execution time
of the software, the results are displayed instantaneously
on the computer screen even before the release of the
click of the mouse which would be adequate for real time
application.

7. ERROR COMPENSATION
It will be appropriate to mention that the angular

orientation of the gun estimated so far will remain a little
inaccurate as long as the error attributable to the computation

time of the mathematical model, settling time and steady
state error of the closed loop position control system for
bearing and elevation channels of the gun as well as the
drift due to ballistic effects and wind is not compensated
for.

In the mathematical model developed so far, it is assumed
that the computations are done instantaneously and the
gun is aligned immediately without any time lag, which
is not so. In the finite time taken to carry out the computations
and the settling time taken by the gun to align itself,
which will be system specific and known, the target would
have moved ahead due to its velocity and acceleration.
This distance can be added with the terms X

t
, Y

t 
and Z

t

in Eqn’s (1-3) respectively for compensation. The compensation
for angular deviation due to steady state error of the
closed loop position control system in bearing and elevation
channels can be done by algebraically adding value of
the angular deviation to the values of bearing and elevation,
estimated in the mathematical model.

Also, to enable the anti-aircraft gun to traverse smoothly
without any jerks while changing its orientation from one
instance of time to another, a traverse rate may be injected
in the control loops of elevation and bearing channel. If

pe& (n) and pb& (n) are the elevation and bearing calculated
based on the target data acquired at the t(n) instance of
time and similarly e

p
(n-1) and b

p
(n-1) for the previous

instance of time t(n-1), then the elevation rate pe& (n) and
bearing rate pb& (n) at which the anti-aircraft gun may be
made to traverse till the next instance of time t (n+1) will
be as under:

pe& (n) = [e
p
(n) – e

p
(n–1)]/[t(n) – t(n–1)]                    (35)

pb& (n) = [b
p
(n) – b

p
(n–1)]/[t(n) – t(n–1)]                    (36)

Results of time convergence 
for the first time. 
 

Results of average 
deceleration convergence 
with time convergence 
nested inside 

t1 = 4.2069 
n = 172 
t = 2.4869 
Xtf = 1.3783e+003 
Ytf = 1.5161e+003 
Ztf = 500 
Xpf = 1.3768e+003 
Ypf = 1.5145e+003 
Zpf = 500.0000 
d1 = 2.9453e+003 
d2 = 1.4294e+003 
df = 2.0405e+003 
Dpavf = 186.5405 
Dpav = 142.5667 
e = 0.2622 
b = 0.8347 

m = 47 
n = 155 
t = 2.6569 
Xtf = 1.3358e+003 
Ytf = 1.4693e+003 
Ztf = 500 
Xpf = 1.3354e+003 
Ypf = 1.4689e+003 
Zpf = 500.0000 
d1 = 2.9453e+003 
d2 = 1.4294e+003 
df = 1.9793e+003 
Dpavf = 189.5145 
Dpav = 189.5667 
e = 0.2723 
b = 0.8347 

Table 3. Result of convergence procedures on Eqn (13) for
example in Table 2.
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When a projectile is fired, it does not go straight but
tend to veer off in the direction of its spin. This effect
is called drift and is mainly due to Equilibrium Yaw by
virtue of projectile’s gyroscopic motion8. The other factors
that contribute to drift, although to a much lesser extent,
are the Magnus Effect and Lateral Jump8. The drift due
to Magnus Effect is very slight and is entirely masked
by the drift due to the equilibrium yaw and hence ignored.
Lateral jump caused by a slight lateral and rotational movement
of the barrel at the instant of firing is also ignored since
its effect on bearing is small and varies from round to
round. The Coriolis Effect caused by rotation of earth
pertain to long range guns firing at static targets located
on ground and is not applicable to short range guns firing
at mobile air targets. Also, Poisson Effect is no longer
accepted since it is not supported by laws of aerodynamics.
A practical method of allowing for drift is to assume that
it is product of the drift constant and the tangent of the
angle of departure of the projectile from the gun8. The
angle of departure of the projectile from the gun is the
vertical acute angle measured from the horizontal plane
passing through the weapon to the line tangent to the
trajectory at the commencement of free flight8. The Drift
Constant depends on the muzzle velocity, spin rate, shape
of the projectile and other characteristics of the projectile
which is determined experimentally and mentioned by the
manufacturer of the projectile and gun system8.

Angular deviation due to drift =
        Drift Constant x Tan (angle of departure)    (37)

The effect of wind on a projectile in flight is called
wind drift. The effect of ballistic wind can be analyzed
by reducing it into its two components of range wind,
which blows along the trajectory, and cross wind, which
blows across the trajectory, by use of wind component
tables8. The range wind which blows with the projectile
(tail wind) offers less resistance while the range wind
which blows against the projectile (head wind) offers more
resistance. Since the cross-section which projectile offers
to range wind is small the effect is negligible as compared
to the effect of cross wind to which the cross-section
offered by the projectile is much greater. Cross wind tend
to carry the projectile with it causing drift and thereby
deviation from direction of fire. The amount of drift depends
on the cross wind speed acting on the cross-sectional
area of the projectile, projectile’s time of flight in air and
projectile’s time of flight in vacuum12,13. The projectile’s
time of flight in vacuum is nothing but ratio of final distance
of the target and muzzle velocity of the projectile.

Drift due to crosswind = Crosswind velocity x
             (flight time in air – flight time in vacuum)  (38)

The effect of drift due to cross wind and ballistic
effects can be once again compensated by algebraically
adding equivalent angular value of the drift to the value
of angular orientation of gun estimated in the mathematical
model.

8. CONCLUSIONS
In this paper,  the problem of angular orientation of

the anti-aircraft gun in direction of the predicted future
position of the moving air target to enable collision of the
projectile fired by the gun with the target has been dicussed.
A method and computational algorithm scheme has been
developed for determining angular orientation quantitatively
in elevation and bearing. The mathematical model developed
can be implemented on a digital computer in real time with
inputs from the target tracking device and feeding back
the outputs of angular orientation to the closed loop position
control system in bearing and elevation channels of the
anti-aircraft gun system.
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