
Received 7 February 2012, revised 9 October 2012, online published 12 November 2012

Defence Science Journal, Vol. 62, No. 6, November 2012, pp. 412-419, DOI: 10.14429/dsj.62.1477
 2012, DESIDOC

1. INTRODUCTION
Complicated software systems such as software utilized

by weapon system should be reused on other projects
whenever technically possible. However, this objective is
not easy to achieve practically in most cases. To achieve
this goal, software should be developed from scratch for the
purpose of the software reuse. In addition, the basic principle
of interoperability should be followed carefully to other project
for the purpose of successful reuse of software.

To ensure the interoperability and reusability among the
simulation objects in a distributed environment, high level
architecture (HLA) was started in 19961. These simulation
objects which we call federates are interoperated in the HLA by
way of federation capable of supporting analysis of joint training
and so on. In this case, the federation requires the coordination
of heterogeneous models. In spite of the success of HLA, itis
relatively complex due to the guaranteeing properties such as
absence of race conditions and deadlocks2. This problem may
result in the weakening of real-time processing. However,
similar technologies designed to promote interoperability
between entities had not been completely standardised when
they are potentially running on a multicore computer and
their inner components. In addition, the standard of common
architecture framework had not been built officially to reduce
the development costs needed to build a software model which
is integrated in the HLA3.

Without these standards, it is almost impossible to develop
to reusable entities and a model of software components due
to their feature of embedding various core framework or
simulation engine service within the code for coordinating
their activity. Interoperability between entities and components
is impossible due to the fact that each simulation engine
providing its own event-processing engine bearing with its
own unique interfaces.

Authors proposed a layered architecture and modelling
framework for supporting software interoperability and reuse
of models in military simulation. The proposed architecture and
modelling framework have been implemented successfully in
AddSIM and illustrated the validity through a pilot study4.

2. HIsTORICal RevIew Of sImUlaTION
aRCHITeCTURe
Standard simulation architecture (SSA) was proposed

by Steinman and Hardy, and it is recently evolving into open
modelling and simulation architecture (OpenMSA) by the
parallel and distributed modelling and simulation standing
study group (PDMS-SSG) established in Interoperability
Standards Organization (SISO) 5.

The evolution of simulation architecture is summarised as
follows by Steinman 5.
	 SIMulator NETworking (SIMNET) : Supporting real-

time battlefield simulations of tanks in a virtual training

a Distributed Parallel simulation environment for Interoperability and
Reusability of models in military applications

Taeho Lee, Sangjin Lee, Seogbong Kim*, and Jongmoon Baik#

Agency for Defense Development, Deajeon, 305-152, Korea
#Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea

*E-mail: sbkim@add.re.kr

absTRaCT

Interoperability and reusability of models are main concerns in military simulation. In order to improve the
interoperability and reusability of models, the model shall be separated with a particular simulation engine, and
the modelling framework of models as well as the architecture of the simulation engine should be standardized.
This paper describes the architecture and operational concept of simulation environment which has been developed
to enhance interoperability an d reusability of models. We named this environment adaptive distributed parallel
Simulation environment for Interoperable and reusable models (AddSIM). We suggested a modelling framework
to promote model development, portability and interoperability with other models. Also, we proposed a layered
architecture to modularise critical capabilities including kernel layer, tool/application layer, support/service layer and
external interface. This means that models can be developed independently of a simulation engine and interfaced with
it using API. To validate the application feasibility of AddSIM, we set up an anti-air missile engagement situation
and performed simulation. In military simulation, it is expected that reusability and interoperability of models will
be enhanced by using proposed AddSIM.

Keywords: Simulation environment, simulation engines, modelling framework, interoperability, reusability

412

LEE, et al.: A DISTRIBuTED PARALLEL SIMuLATION ENVIRONMENT FOR INTEROPERABILITy AND REuSABILITy

413

environment6.
	 Joint training confederation (JTC) : Integrating models

from the different armed forces for supporting joint
training exercises

	 Time warp operating system (TWOS) : Showing that
optimistic time management could achieve parallel speedup
when applied to military simulation applications7.

	 Distributed interactive simulation (DIS) : Evolved from
SIMNET supporting virtual battles involving (Semi-
automated forces (SAF). IEEE standardized more than
100 protocol data units (PDus) that specify message
formats exchanged between DIS models8.

	 Aggregate level simulation protocol (ALSP) : Simplifying
the integration of various simulations participating in the
JTC, the was developed by MITRE9.

	 Synchronous parallel environment for emulation and
discrete event simulation (SPEEDES) : replace of TWOS
introducing new flow control techniques that were
required to stabilize runtime performance for optimistic
simulation10,11.

	 HLA : interoperability standard for building federations
out of real time and logical time simulation.

	 Standard modelling framework (SMF) and data-stream
management system (DSMS) layer: Designed and
developed in SPEEDES12.

	 Joint simulation system (JSIMS) : Combination
of SPEEDES and HLA. Enabling development of
independent models that would interoperate using
a powerful SPEEDES-based common component
simulation engine (CCSE)

	 OpenMSA : Evolved from the combination of SPEEDES-
HLA

3. addsIm
3.1 Design Goals

AddSIM is designed to enhance interoperability and
reusability of models in the area of acquisition and analysis of
military simulation. The detailed design goals of AddSIM are
as follows:
	 Capability to integrate easily various kinds of simulation

in distributed environment
	 Architecture of the simulation engine to support plug-

in and play of componentised models which have
implemented the behavior and functional logic of weapon
systems into software models

	 Establishing a modelling framework in order to
componentise models

	 Open architecture for enhancing flexibility and
composability of models by separation of model from
simulation engine

	 Web service based on the service oriented architecture
(SOA) concept to utilize and reuse componentised models
stored in the local and remote resource repositories

	 Providing external Interfaces such as legacy C/C++ code,
Matlab, HLA/runtime infrastructure (RTI) to increase the
usability of AddSIM

	 Providing environmental services such as atmosphere,
ocean and terrain for helping the convenience of model
developers

3.2 architecture
AddSIM is designed in the layered architecture for ease

of maintenance, prevention against duplication of functions at
each layer and convenience in developing models as shown in
Fig. 2. Also, it is designed in the form of simulation architecture
using shared memory based on middleware to improve the real-
time processing capability of simulation. To do this, the Tao-
CORBA is used as a middleware and multi passing interface
(MPI) concept for distributed parallel processing of simulation
is applied14.

In a tools and application layer, components/players
development, build/execution, and analysis of simulation, search
and use of componentised models in distributed repositories are
performed. The graphical editing framework based-on Eclipse
is used as a development tool to increase the convenience and
efficiency of making components. To support the reuse of
components models, editing tool provides properties of model figure 1. evolution of standard simulation architecture5

Afterwards, simulation architecture in
military simulation to support efficiently and
efficiently network centric warfare is looking
forward to evolve into such as web-based
modelling and simulation (MandS), multi-core
processor, distributed collaborative simulation,
live, virtual, constructive (LVC) integration,
etc13.

Taking into the development trend of
simulation architecture, AddSIM was designed
and implemented by referencing OpenMSA,
which is the standard simulation framework, and
reflecting characteristics of web-based MandS
and distributed collaborative simulation.

figure 2. a layered architecture of addsIm.

DEF. SCI. J., VOL. 62, NO. 6, NOVEMBER 2012

414

as an xml format. The web server for models is linked with the
xml file automatically when the model is shared. During the
time the component is developed, the xml file (which is used
in the simulation configuration and operation) for the model
is made. AddSIM also provides the post-analysis module to
analyze the simulation result and visualization module using
SIMDIS to play back the entire simulation.

Kernel layer as a core layer of AddSIM consists of six
functions including parallel/distributed management for
parallel processing in distributed environment as well as the
basic five functions of event management, time management
and simulation management, run-time object management
and persistence/rollback management. Procedure executing
simulation in kernel layer is as follows. After loading
componentised models stored in local and remote repository,
simulation object is created. In a kernel layer, componentised
models generated in a tools and application layer and stored
in local and remote repositories are loaded and run-time
objects of simulation are executed. After that, kernel processes
simulation events, i.e., initialization or update which is the
communication with other runtime objects through messages,
stores properties of simulation objects and conducts relay of
service for a services layer.

AddSIM provides APIs for modelling the high fidelity
models. users can model easily and faithfully the weapon
system by using environmental APIs of atmosphere, ocean,
and geography. The atmospheric and oceanic APIs can treat
the meteorological data format such as, GRIdded binary
(GRIB), SEDRIS transmittal format (STF), network common
data file (NetCDF) by transforming data into ASCII files. The
geographical API is designed to handle the flat and ellipsoidal
earth model. It is used to manage the digital terrain elevation
data (DTED) and feature database (FDB) format to extract the
geographical feature. user handles the simulation object’s spatial
information such as position, speed, and user defined data.
Journaling API saves and extracts log data generated during the
simulation execution and user defined variables. Table 1 shows
the sample code of atmospheric API written in C++.

There are many simulation resources developed with C/
C++ or Matlab in military simulation. Also, many simulation
resources are federated through HLA/RTI. Simulation

environment has to support the interoperability with these
legacy simulation resources to enhance the usage of simulation
environment. For this reason, AddSIM provides three external
interfaces such as C/C++, Matlab, and HLA/RTI interface.

3.3 Characteristics
AddSIM has some distinguishing characteristics compared

with existing simulation environments. The first characteristic
is the separation between a simulation engine and models.
Modelling framework in AddSIM has been developed upon
open simulation architecture for modelling and simulation
(OSAMS) (which is being studied as an open modelling
framework in PDMS-SSG of SISO) and base object model
(BOM), SISO standard for simulation object model15,16. A
legacy simulation model usually has been developed together
with a simulation engine. OSAMS is designed to prevent the
deterioration of reusability due to tight coupling of simulation
model and engine. As shown in Fig. 3, events of models are
handled through a component interface, an API provided by
engine.

A simulation model is developed using APIs provided by
a simulation engine. As the model and engine are separated,
they can be developed independently. As AddSIM adopts this
concept, simulation models can be developed as a component
independently and are linked with a simulation engine by a
plug-in and play way.

The second characteristic is the standardisation of
modelling framework. A simulation model is designed to have
a hierarchical structure as shown in Fig. 4. The top level is
the simulation model which includes several players. Each
player consists of several components, and furthermore each
component can include sub-component recursively. For
example, the simulation model to describe the engagement of
surface-to-air missile can possess four players such as a missile,
an aircraft, detecting radar, and a launcher for a missile. An
aircraft is made up of some components such as propulsion,
fire control, weapon, and control system. The weapon of
aircraft has several sub-components such as air-to-air missile,
air-to-surface missile, etc.

Definition of component, player, and interface is as
follows.
	 Component: It is a building block (an element of a player

or upper component) which executes a specific
function independently. The behavior of an
element is modeled as a user defined code. A
component is compiled into a dynamic link
library (DLL) and linked with AddSIM.
	 Player: It is a top level component and a
part of simulation model. usually it represents
a weapon system such as a tank, an aircraft, a
missile. The behavior of a player is also modeled
as a user defined code.
	 Interface: It is a passage of events through
components and players. using these, components
and players can communicate each other.

In the modelling procedure, common meta-
model is used to improve interoperability and
reusability of model. AddSIM also uses meta-

Void pEnvTest :: Get_AtmosphereState3D()
{

// declaration of variables and setting input values
// Height (meter), Latitude (degree), Longitude (degree)

 Double dAlt = 1,000.0; double dLat = 11.42; double dLong = 43.65;
 SAtmosphereState3D stR;
 // querying three dimensional atmospheric information
 This -> m_ifsAtmosphere -> Get_AtmosphereState3D(dAlt, dLat, dLong, stR);

 // output of three dimensional atmospheric information
 This -> LogMessage2(Informative, “%f, %f, %f, %f”,
 stR. dAirPressure, // Atmospheric pressure (kg/m3)
 stR. dAirDensity, // density (N/m2)
 stR. dSpeedOfSound, // speed of sound (m/s)
 stR. dTemperature); // temperature (℃)

Table 1. sample code of atmospheric aPI

LEE, et al.: A DISTRIBuTED PARALLEL SIMuLATION ENVIRONMENT FOR INTEROPERABILITy AND REuSABILITy

415

figure 3. a modelling framework of addsIm. figure 4. a modelling structure of addsIm.

figure 5. a meta-model in addsIm.

model for component/player modelling. As shown in Fig.
5, meta-model in the AddSIM defines the relation among
component, player, interface, member function, variable,
and data type. using the hierarchical structure and common
meta- model for component/player, AddSIM can enhance
interoperability between components/players, and reusability
of components/players.

Figure 6 shows the difference among JMASS, OneSAF,
and AddSIM. A componentised model in the JMASS is

internally loaded. Therefore, a model is recompiled and
statically reused with plug-in and rebuild way. OneSAF
supports a plug-in and play way using dynamical link library in
an entity level. Because jar (java archiver) may contain dynamic
link library itself, it has a limitation when a component which
is included in a part of other components is reused. AddSIM
supports dynamic configuration of executing simulation objects
because componentised models participate in the simulation
with dynamically linked library way in AddSIM. Due to

DEF. SCI. J., VOL. 62, NO. 6, NOVEMBER 2012

416

this, AddSIM supports the reusability,
compatibility and interoperability of
models.

To configure the dynamic loading
for simulation, components and players
are compiled by way of componentising.
Meta-information for a component
such as configuration information,
communication information, and control
information is stored and controlled in
the XML style. While a simulation is
executed, a kernel interprets that file
for configuring simulation objects. As
AddSIM provides dynamical loading of
simulation objects, components stored
in remote repositories are retrieved or
are used without any modification of
components by downloading.

The third characteristic is web service
based on SOA concept. To support distributed simulation
smoothly, the distributed resource repository based on web is
provided. using the web service, users can retrieve and reuse
components stored in a remote repository. Figure 7 shows the
operational concept of distributed repository.

There are two types of repository, integrated and local. The
integrated repository uses universal description, discovery, and
integration (uDDI) engine to support response to user requests
such as finding components or simulation configuration.
The local repository contains simulation resources such as
components, simulation configuration, and simulation scenario.
The repository is implemented by using web service and
interoperates with a tools/application layer. By interoperation
with a tools/application layer, modelers easily can store and
share resources. Also, modelers can use remote resources by
drag and drop.

Finally, AddSIM engine provides the infrastructure and
related functions capable of working number of event processes
and synchronizing time between event processes in order to
do parallel processing at the same time. Time synchronization
algorithm for parallel processing can be divided into
conservative way and optimistic way. In the optimistic way,
there are time warp, breathing time bucket (BTB), breathing
time warp (BTW), etc. Among the optimistic way, AddSIM
engine is designed to utilize BTB algorithm and rollback
handling for time synchronization between event processes
when proceeding parallel processing. In BTB algorithm, each
process broadcasts the oldest local even among those it will
execute. This is called a local event horizon (LEH). A process
must suspend its even processing if it has received an older
LEH than the one it is currently processing. The oldest LEH
among all processes become the next global event horizon
(GEH). Each process may send out all messages and process

figure 7. Operational concept of distributed repository.

figure 6. Comparison of reuse methodology among Jmass, addsIm and Onesaf.

LEE, et al.: A DISTRIBuTED PARALLEL SIMuLATION ENVIRONMENT FOR INTEROPERABILITy AND REuSABILITy

417

all events before this new GEH. Processes which
have already processed beyond GEH must roll back
their computation to GEH. No anti-messages are
sent out17.

AddSIM engine offers the infrastructure and
related functions capable of generating runtime
objects located in a remote place and passing the
interaction messages between runtime objects. As
shown in Fig. 8, all constituents of the kernel are
operated based on CORBA. Management of runtime
object located in remote place is performed by remote
kernel, but event management is performed by master
kernel through the configuration of the constituent
information when kernels are connected.

4. OPeRaTION Of aDDsIm
Author explained operational concept of AddSIM and

application example of AddSIM using four players which are
described earlier.

4.1 Operational Concept
As shown in Fig. 9, concepts implemented in AddSIM

are the separation of simulation engine and model, integrated/
distributed resource repository based on web service adapting
SOA concept, simulation architecture based on open simulation
architecture, and modelling framework for modelling simulation
models. Due to these concepts, AddSIM can support a whole
lifecycle of simulation process. To enhance the reusability and
interoperability of existing simulation models, AddSIM has
the external interfaces such as C/C++, Matlab, and HLA/RTI
interface.

4.2 application of addsIm
To validate the application feasibility of AddSIM, we

figure 9. Operational concept of addsIm (notional).

figure 8. Operation mechanism of distributed processing.

have made an anti-air missile engagement situation as shown
in Fig. 10. In this case, there are four players (red aircraft,
detecting radar, launcher, and missile). These players are newly
coded or converted from the legacy models in AddSIM enough
to fulfill the framework of the meta model as shown in Fig. 5.
The scenario is as follows. A red aircraft approaches a radar
station and the radar tries to detect the approaching red aircraft.
When the radar detects the red aircraft, the radar sends the
detecting signal to a missile launcher. The launcher calculates
the estimated aircraft position with detecting information from
the radar and homing guide point for a missile. The missile
gets the homing guide point and launching signal from the
launcher. The missile flies to the homing guide point with the
inertial guide algorithm. After it reaches there, it uses seeker to
search and track the red aircraft. The ending condition is that
the distance between the missile and the red aircraft is within
a specified threshold range. Figure 10 shows the relationship
among players.

DEF. SCI. J., VOL. 62, NO. 6, NOVEMBER 2012

418

5. CONClUsIONs
This paper describes the architecture and operational

concept of simulation environment called AddSIM which has
been developed to enhance interoperability and reusability of
models. To this end, models should be separated from a specific
simulation engine and the modelling framework of models as
well as simulation engine architecture should be standardised.
To satisfy these concepts, the architecture of AddSIM,
pursuing an open simulation architecture such as OpenMSA,
is developed and the modelling framework similar to OSAMS
is set up. Based on the modelling framework developed, model
developers can make model components systematically. Also
AddSIM provides the web service based on the SOA concept to
use local resources and share remote resources smoothly. users
easily can use components as plug-in and play way because
they are made of dynamic link library. As the dynamic link
library is a binary code, the logic, and source code of model can
be also protected from leakage. By the result of this research,

AddSIM can give the basic simulation environment for
the enhancement of reusability and interoperability of
models, especially in Korean military application.

RefeReNCes
1. Griffin, S.P.; Page, E.H.; Furness, C.Z. & Fisher,
M.C. Providing uninterrupted training to the Joint
Training Confederation (JTC) during transition to high
level architecture (HLA). In the Proceedings of the 1997
SimTecT Conference, Canberra, Austrailia, March,
1997, pp.17-20.
2. Dingel, J.; Galan, D. & Damon, C. Bridging the HLA
: Problems and solutions. In the Proceedings of the 6th
IEEE International Workshop on Distributed Simulation
and Real-Time Applications, Fort Worth, TX, 2002, 33-
42.
3. Institute of Electrical and Electronics Engineers.
IEEE standard for modelling and simulation (MandS)
high level architecture(HLA)- Framework and Rules

516-2010, 25 March 2010.
4. Oh, H. & Kim, D. Generic simulation models to evaluate

integrated simulation environment. In the Proceeding of
2011 AsiaSIM, Seoul Korea, 2011.

5. Steinman, J. & Doug, H. Evolution of the standard
simulation architecture, Overview of the full SIW paper
in Modelling and Simulation. Soc. Model. Simul. Int.,
2004, 3(2), S9-S11.

6. Kanarick, C. A technical overview and history of the
SIMNET project. In the Proceedings of the 1991 Advances
in Parallel and Distributed Simulation conferences,
PAnaheim CA. uSA, 23-25 January 1991. pp. 104-111.

7. Steinman, J. SPEEDES: Synchronous parallel
environment for emulation and discrete event simulation.
In the Proceeding of the SCS Western Multiconferences
on Advances in Parallel and Distributed Simulation, San
Diego CA. uSA, 17-20 January 1993.pp. 95-103.

8. IEEE, IEEE standard for distributed interactive simulation
-Communication services and profiles, IEEE 1278.2, 21
September 1995.

9. Weatherly, R.; Wilson, A. & Griffin, S. ALSP–Theory,
experience, and future directions. In the Proceeding of the
1993 Winter Simulation Conference, Orlando FL. uSA,
1993, pp. 1068-1072.

10. Steinman, J. The WarpIV simulation kernel. In the
Proceeding of the 2005 Principles of Advanced and
Distributed Simulation (PADS) workshop. Monterey CA.
uSA, 1-3 June, 2005. pp.161-170.

11. Wieland, F.; Hawley, L.; Feinberg, A.; Di Loreto, M.;
Blume, L.; Ruffles, J.; Reiher, P.; Beckman, B.; Hontalas,
P.; Bellenot, S. and Jefferson, D. The performance of a
distributed combat simulation with the time warp operating
system. Concurrency Comput.: Practice Experience,
1989, 1(1), 35-50.

12. Steinman, J. SPEEDES: A multiple-synchronization
environment for parallel discrete-event simulation. Int. J.
Comp. Simulation, 1992, 2, 251-86.

13. Dutta, Debasis. Simulation in military training: Recent
development. Def. Sci. J., 1999, 49(3), 275-85.

14. http://www.cs.wustl.edu/~schmidt/TAO.html
15. Steinman, J.; Lammers, G. & Valinski, M. A Proposed Open

figure 11. a snap shot of simulation visualization using
sImDIs.

Figure 10. Simulation configuration of a sample example.

All data generated during simulation execution are saved
in the journaling DB, the local simulation archive of AddSIM.
Simulation results are analysed by using specific data or all
data in the DB. The simulation output formats consist of CSV
file, analytic report, and visualisation format (SIMDIS format).
Figure 11 shows a snap shot of an anti-air missile engagement
using SIMDIS. From these activities, AddSIM can be utilized
in the Korean military domain.

LEE, et al.: A DISTRIBuTED PARALLEL SIMuLATION ENVIRONMENT FOR INTEROPERABILITy AND REuSABILITy

419

Cognitive Architecture Framework. In the Proceeding of
2009 Winter Simulation Conference, Orlando FL. uSA,
2009, pp.1345-355.

16. SISO, Base Object Model (BOM) - Template Specification,
SISO-STD-003-2006, 31 March 2006.

17. Steinman, J. SPEEDES: A unified approach to parallel
simulation. In the Proceeding of the 6th Workshop on
Parallel and Distributed Simulation, Newport Beach CA.
uSA, 20-22 January 1992, pp. 75-83.

Contributors
mr Taeho lee is currently pursuing
his PhD (Software Engineering) from
KAIST. He is working as a Senior
Researcher at Joint Modelling and
Simulation Directorate, Agency for
Defense Development (ADD), Republic
of Korea. His main research interests
include: Distributed and parallel

simulation engine, software process improvement, and
software reliability.

Dr sangjin lee obtained his PhD
(Industrial Engineering) from Korea
Advanced Institute of Science and
Technology, Republic of Korea, in
2008. Presently, he is working as a
Senior Researcher at Joint Modelling
and Simulation Directorate, ADD,
Republic of Korea. His main research
interests include: Developing distributed

and parallel simulation engine.

Dr seogbong Kim obtained his PhD
(mechanical engineering) from Korea
Advanced Institute of Science and
Technology, Republic of Korea, in
2009. Presently, he is working as a
Principal Researcher at Joint Modelling
and Simulation Directorate, ADD,
Republic of Korea. His research interests

include: Developing distributed, parallel collaborated
simulation environment.

Dr Jongmoon baik received his PhD
(computer science) from university of
Southern California in 2000. Currently,
he is an associate professor in the
Computer Science Department at Korea
Advanced Institute of Science and
Technology. His research activity and
interest are focused on software six
sigma, software reliability and safety,

and software process improvement.

