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AbstrAct

Riccati differential equations (RDEs) plays important role in the various fields of defence, physics, engineering, 
medical science, and mathematics. A new approach to find the numerical solution of a class of RDEs with quadratic 
nonlinearity is presented in this paper. In the process of solving the pre-mentioned class of RDEs, we used an 
ordered combination of Green’s function, Adomian’s polynomials, and Pade` approximation. This technique is 
named as green decomposition method with Pade` approximation (GDMP). Since, the most contemporary definition 
of Adomian polynomials has been used in GDMP. Therefore, a specific class of Adomian polynomials is used to 
advance GDMP to modified green decomposition method with Pade` approximation (MGDMP). Further, MGDMP 
is applied to solve some special RDEs, belonging to the considered class of RDEs, absolute error of the obtained 
solution is compared with Adomian decomposition method (ADM) and Laplace decomposition method with Pade` 
approximation (LADM-Pade`). As well, the impedance of the method emphasised with the comparative error tables 
of the exact solution and the associated solutions with respect to ADM, LADM-Pade`, and MGDMP. The observation 
from this comparative study exhibits that MGDMP provides an improved numerical solution in the given interval. In 
spite of this, generally, some of the particular RDEs (with variable coefficients) cannot be easily solved by some of 
the existing methods, such as LADM-Pade` or Homotopy perturbation methods. However, under some limitations, 
MGDMP can be successfully applied to solve such type of RDEs.
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1. IntroductIon
The solution of first order linear/nonlinear differential 

equations exhibit an important role in various models of 
defence, physical sciences, biological sciences, engineering, 
statistics and economics. Every linear and nonlinear differential 
equation cannot be solved analytically, then various numerical 
method are used to solve such problems. 

The RDEs are one of the vital case of the first order 
nonlinear differential equations and are affined with optimal 
control systems, network synthesis, financial mathematics, 
one-dimensional Schrödinger equations, solitary wave 
solutions, DNA repair models, Integrated missile guidance and 
control1-5. 

The form of RDE solved in this article, is written as

( ) ( ) ( ) ( ) ( ) ( ) ( )2' ,  ay t P t y t f t Q t y t y a y− = + =         (1)

where ( ), ( ), ( )P t f t Q t  are some known functions in interval 
[ , ]a b .

If a particular solution of Eqn. (1) is given or known, 
then the associated analytical solution can be determined. 
As well, every RDE of the form Eqn. (1) can be converted 
into a self adjoint differential equation6, and the respective 

general solutions can be  obtained in some of the particular 
cases. Unfortunately, there is no any general method to 
obtain the analytical (or closed form) solution. In any case, 
some numerical methods like ADM, Homotopy perturbation 
method, iterated He’s Homotopy perturbation method, He’s 
variation iteration method, LADM-Pade`7-12 are presented 
to find an approximate solution of Eqn. (1). Although, these 
methods give quite good approximate solutions. However, 
either the computation of undetermined coefficients or 
implementation of multiple operations is required to solve Eqn. 
(1). Moreover, these methods are also very restrictive with 
variable coefficients and they have their own advantage and 
limitations. Therefore GDMP13, is proposed to solve Eqn. (1). 
This method is an ordered amalgamation of green’s function, 
Adomian decomposition method, and Pade` approximation. 
The method is easy to use under some limitations but in some 
of the examples, obtained solution coincides with the solution 
given by LADM-Pade`. Since to increase the accuracy of 
GDMP, a modified green decomposition method (MGDMP) 
is described in this article. In order to solve aforementioned 
RDEs with MGDMP, a specific class of adomian polynomials14 
is used, in spite of the most contemporary class. This exhibits 
a hike in the degree of absolute error, results more accuracy 
than previously existing methods.   
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1.1 An observation of ADM
Adomian decomposition method (ADM)15-21 has been 

used to solve multiple problems by a number of authors. We 
consider a dynamical system represented by a deterministic 
operator equation of the form

 ( ) ( )F y g t=                                                                   (2)  
where F  is a nonlinear ordinary differential operator 

with linear and nonlinear terms and g  is a known function 
called source term and y  is unknown function. Decompose 
the operator F  as ,L R N+ +  where L  is the linear operator 
with highest order derivative. In this case L must be invertible. 
R  is the remaining part of the linear operator and N  is the 
nonlinear operator. 

Now, Eqn. (2) can be written as, 
 Ly Ry Ny g+ + =

where L is a first order differential operator, whose inverse 
1L− , is an integral operator defined as, 

 1[.] [.], and [.] [.]
t

a

dL L ds
dt

−= = ∫
Applying 1L−  both side, we have

 1 1 1(Ry) (Ny)y L g L L− − −= φ + − −                                    (3)
where the function φ  represents the terms which has been 
arisen by using the given initial or boundary conditions.

 Now decompose the solution (t)y , and the nonlinear term 
(y)N  in converging infinite series, such as

 

0
k

k
y y

∞

=

= ∑                                                                       (4)

 

0
(y) k

k
N A

∞

=

= ∑                                                                 (5)

where 'kA s are Adomian’s polynomials, which can be 
use to solve various types of nonlinear functions, given by the 
formula7:

 0
1

( , k) (y ), k 0
k

kA c f ν

ν=

= ν ≥∑

Now using Eqns. (4) and (5) in Eqn. (3), and comparing 
both sides of the obtained equation

 
1

0
1 1

1

,

(y ) L Ak k k

y L g

y L R

−

− −
+

 = φ+


= − −
                                            (6)

Therefore iterative scheme Eqn. (6), is recognised as 
ADM.

1.2 Pade` approximation
Pade` approximation22,23 is used to approximate truncated 

power series of a function. This tool rationalises the truncated 
power series and gives a large radius of convergence in the 
comparison of the original truncated power series. Moreover, 
Pade` approximation gives the asymptotic behaviour of those 
models, which cannot be solved easily. To understand Pade` 
approximation further, suppose a function (t)f , which can be 
approximated in a power series about point 0t =  such that,

0
(t) .k

k
k

f c t
∞

=

= ∑
2 2

0 1 2 2( ) n
nf t c c t c t c t≈ + + + +

Now to increase the radius of convergence of the truncated 
power series of (t)f , [ / ]m n  Pade` approximation takes place 
such as,

 

2
0 1 2

2
1 2

2
0 1 2

[ / ]
1

m
m

n
n

m n
m n

a a t a t a t
m n

b t b t b t

c c t c t c t +
+

+ + + +
=

+ + + +

= + + + +







                            (7)
 

By solving the system of equations obtained by 
simplification of Eqn.  (7), the unknown coefficients occurred in 
numerator and denominator ( ' and ' )i ia s b s  can be determined 
easily. 

 The motive of this article is to give a better approximation 
with the help of Green’s function24,25 and a specific class of 
Adomian polynomials14. The discussed method is easy to 
use and increases the radius of convergence of the solution 
of RDEs. Some numerical examples are solved to show the 
validation of the method.

 
2. AnAlySiS of thE MoDifiED GREEn’S 

decomPosItIon method wIth PAde` 
APProxImAtIon for rde 
 The Green’s function for the homogeneous differential 

equation corresponding to Eqn. (1) 
'( ) ( ) ( ) 0, ( ) 0,y t P t y t y a− = =  is given as

 
( )

0
( , ) t

P s ds

if a t b
G t

e if a t bξ

≤ < ξ ≤ξ =  ∫ ≤ ξ < ≤

Therefore, the solution of the RDE Eqn. (1) is 
 

( ) 2( ) ( , ) ( ) ( , ) ( ) ( )
t

a
t tP s ds

a a a
y t y e G t f d G t Q y d∫= + ξ ξ ξ + ξ ξ ξ ξ∫ ∫  

(7)
The solution of Eqn. (7) is not easy to calculate analytically, 

therefore the series solution of RDE Eqn. (1) is considered as

0
( ) lim lim ( )

k

k ik k i
y t S y t

→∞ →∞
=

= = ∑                                            (8)

and the nonlinear term in operator form can be decompose as

2 **
0 1 2

0
[ ] ( ) ( ( ), ( ), ( ), )i

i
N y y t A y t y t y t

∞

=

= = ∑ 

                (9)

where ** 'iA s , 0,1, 2,i =   are specially defined polynomials. 
These polynomials are known as Adomian polynomials14, 
which are estimated by the components , 0,1, 2, ,jy j =  .

 On combining Eqns. (8), (9), and  (7), an iterative scheme, 
namely, Green decomposition method (GDM)13, is proposed 
as

( )

0

**
1

( ) ( , ) ( ) , ( )

( , ) ( ) ( )

t

a
tP s ds

a ia
t

ia

y t y e G t f d and y t

G t Q A d−

∫= + ξ ξ ξ

= ξ ξ ξ ξ

∫
∫

           (10)

where ( , ) ( )G t fξ ξ  is R -Integrable in [ , ]a b . Since a specific 
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class of Adomian polynomials can be used to improve the 
approximate solution of the given problem. Here class **

nA  is 
introduced. Now first four polynomials of class **

nA  shall be,

  

**
0 0

** (1) 2 (2)
1 1 0 1 0

** (1) 2 (2) 3 (3)
2 2 0 1 2 2 0 1 0

** (1) 2 (2)
3 3 0 1 3 2 3 3 0

2 2 3 (3)
1 2 1 2 2 0

4 (4)
1 0 0

( ),
1( ) ( ),
2!
1 1( ) (2 ) ( ) ( ),
2! 3!
1( ) (2 2 ) ( )
2!

1 (3 3 ) ( )
3!

1 ( )
4!

A N y

A y N y y N y

A y N y y y y N y y N y

A y N y y y y y y N y

y y y y y N y

y y N y

 =

 = +


 = + + +



= + + +

 + + +








Therefore, to apply the Pade` approximation, kS can be 
written in a power series form with the help of Taylor’s series 
expansion about point t=0, such that

(n)

0
2

0 1 2

(t),

(0)
,

!

k T

N
nk

n
n

n

S S

S
 = t

n
a a t a t a t
=

≈

= + + + +

∑


                                      (11) 

For Eqn. (11), P
Q
 
 
 

 Pade` approximation can be defined 
as

2
0 1 2

2
1 21

P
P

Q
Q

c c t c t c tP
Q d t d t d t

+ + + + 
=  + + + + 





                                  (12)

where .P Q N+ ≤
If P Q=  then Eqn. (12) is called diagonal Pade` 

approximation.

3. exAmPles
In this section, we demonstrate some numerical examples 

based on the discussed approach.
example 1. Consider the following nonlinear RDE
 2'( ) 2 ( ) 1 ( ), (0) 0, 0 1y t y t y t y t− = − = ≤ ≤                (13)

The exact solution of Eqn  (13) is

 1 2 1( ) 1 2 tanh 2 log
2 2 1

y t t
  −

= + +   +   
 

Now, using iterative scheme Eqn. (10), approximated 
series solution 4S will be,

 
4

4
0

8 16
2 2

( ) ( ),

116 399 565 073 1 sinh(2 )
214 648 104 000 2064384 4

i
i

t
t t

S t y t

x ee e t

=

=

= − + − − −

∑
 



 

 

Here 4 (t)S is an approximated solution of Eqn. (13). Now, 
to perform the MGDMP, the Taylor’s series expansion of 4 (t)S
about point 0t = is given by 

 3 4 5 6 7 13
2 14

4
7 7 53 1522069(t) t t (t )

3 3 15 45 315 24324300
t t t t t tS O≈ + + − − − + + + +

 
(14)

Applying 7
6
 
  

 Pade` approximation for Eqn.  (14),

 
2 7

6

7 189 760 614 880 115 748
6 7(271 680 114 520 698 440 )

t t t
t t

− + +  =  − + + 

   

   

For the further study of the proposed MGDMP, a 
comparison is made with ADM and LADM-Pade` in Table 1.

Table 1 shows that k  term approximation for 4,k =  of 
the MGDMP gives better results than ADM and LADM-Pade` 
methods.

table 1. A comparison table of the absolute error (AE) function 
with ADM, lADM-Pade`, and MGDMP

t exact 
solution

AE using 
Adm26

AE using 
lADM-Pade`12

AE using 
MGDMP

0.0
0.2
0.4
0.6
0.8
1.0

0.241977
0.567812
0.953566
1.346360
1.6

0

89500

7

4

3

4

2

0
5.31195 10
1.14515 10
1.01464 10
8.56290 10
1.36606 10

−

−

−

−

−

×

×

×

×

×

10

7

5

4

3

0
4.45809
7.50816
2.75132
2.76256
1.41356

10
10
10
10
10

−

−

−

−

−

×

×

×

×

×

11

7

6

4

4

0
7.84803 10
1.93950 10
9.32366 10
1.03482 10
5.58310 10

−

−

−

−

−

×

×

×

×

×

example 2. Consider the nonlinear RDE
 2'( ) ( ) 1 ( ), (0) 0, 0 1y t y t y t y t− = + = ≤ ≤                (15)

The exact solution of Eqn.  (15) is

 1 3 3( ) tan
2 2 2 3 3

y t t
 π 

= − + +     
Now, using iterative scheme Eqn. (10), approximated 

series solution 4S will be,

 
4

4
0

2

( ) ( ),

224 703 132 009673 4 cosh 4 sinh
485 000 128 000

i
i

t t t t

S t y t

e e e t e t

=

=

= − − + − − +

∑
 



 

Here 4 ( )S t is an approximated solution of Eqn.  (15) using 
MGDM. Now to perform the MGDMP, the Taylor’s series 
expansion of 4 (t)S  about point 0t = is given by

2
21 22 23

4
841 533 442 589( ) ( )

2 162 000 124 000
tS t t t t O t≈ + + + + +

 



 

   (16) 

Applying 11
11
 
  

Pade` approximation for Eqn.  (16),

 
2 11

11

11 2( 579 200 t 227 800 t 142057 )
11 ( 115 400 396 400 153 263 )

t
t t

− − + +  =  − − + + 

  

   

For the further study of the proposed MGDMP, a 
comparison is made with ADM and LADM-Pade` methods in 
the Table 2.

As shown in Table 2 that five term approximation for the 
MGDMP gives better results than ADM and LADM-Pade` 
methods. 
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 ( ) ( ) ( )
´

21 , 0 0y t y t t ty y
t

− = + =

Using the iterative scheme Eqn.  (10), approximated series 
solution 4 (t)S  will be,

( )
4 6 10 14 18 22

2
4  

0

2 29 22 19594  
5 45 2925 9945

(t)
46990125i

i

t t t t tS t y t
=

= = + + + + +∑
 

(20)
In Eqn.  (20) variable t is in a power series form. So Pade ̀  

approximation [ ]11/11  is used to increase the efficiency of the 
method.

 
( )

2 6 10

4 8

11 9945 351 
11 9 1105 260 3

t t t
t t

− +  =  − + 

The residual error function for the RDE Eqn.  (19) can be 
given as

 
' 211 1 11 11- - -

11 11 11
Residual Error t t

t
     =           

For the further study of the proposed MGDMP, a 
comparison table is made with ADM.

table 4. A comparison table of the residual error (RE) function 
for ADM and MGDMP

t AE using ADM AE using MGDMP

0.0
0.2
0.4
0.6
0.8
1.0

2

2

2

2

4.24729 10
6.4721 10
6.02195 10
4.55738 10
0.17458

0

7

0

−

−

−

−

×

×

×

×

17

13

10

8

6

2.77556 10
5.08038 10
5.25542 10
8.02026 10
4.916

0

40 10

−

−

−

−

−

×

×

×

×

×

table 3. A Comparison tables of the AE function for ADM, 
lADM- Pade` and MGDMP.

t exact 
solution

AE using 
Adm 

AE using 
lADM-Pade` 

AE using 
MGDMP

0.0
0.2
0.4
0.6
0.8
1.0

1
0.428571
0.111111

0.0909091
0.230769
0.333333

−
−
−

3

1

1

6.53871
1.26703
6

0
10
10
10.06866

1.65096
3.29559

−

−

−

×

×

×

5

4

4

4

4

0
4.32515
2.05989
2.51433
1.85803
1.22405

10
10
10
10
10

−

−

−

−

−

×

×

×

×

×

6

5

6

6

6

0
4.11424 10
1.34154 10
9.11772 10
1.73317 10
4.38205 10

−

−

−

−

−

×

×

×

×

×

table 2. A comparison table of the absolute error (AE) function 
with ADM, lADM-Pade`, and MGDMP.

t exact 
solution

AE using 
Adm 

AE using 
lADM-Pade` 

AE using 
MGDMP

0.0
0.2
0.4
0.6
0.8
1.0

0.224724
0.526540
0.986295
1.840630
4.2

0

27710

7

4

3

2

1

0
6.71967 10
1.49837 10
4.85752 10
7.53604 10
9.49491 10

−

−

−

−

−

×

×

×

×

×

10

6

4

2

1

0
3.14604
1.17971
2.01829
1.07390
3.74040

10
10
10
10
10

−

−

−

−

−

×

×

×

×

×

11

7

5

3

1

0
5.47622 10
2.17779 10
4.28426 10
2.96453 10
1.63617 10

−

−

−

−

−

×

×

×

×

×

example 3. Consider the nonlinear RDE
 2'( ) 2 ( ) 1 ( ), (0) 1, 0 1y t y t y t y t+ = − − = ≤ ≤            (17)

The exact solution of Eqn. (17) is

 1 2( )
1 2

ty t
t

−
=

+

Now, using iterative scheme Eqn. (10), approximated 
series solution 4S will be,

 12
4 4 2 4 2 5

4
281 729 3 1 1( )

1024 2048 4 12 80

t
t t teS t e t e t e t

−
− − −= − + − + + +

To perform the Pade ̀ Approximation, the Tayor’s series 
expansion of 4S  about 0t = is given by

 
15 16

2 3
4

54295821446 137247812311  1 4 8 16
30405375 91216125

t tS t t t≈ − + − + − +

 

(18)

Using 8
8
 
  

  Pade ̀ approximation for Eqn. (18),

8

8  

8 9497 .9375 2937 . 3000 9547..0643
8 9497 .9375 6736 . 0500 9993...1593

t t
t t

… + … +…−  =  … + … +…− 
 

For the future study of the proposed MGDMP, a  
comparison is made with ADM and LADM- Pade` in the  
Table 3, it can be seen that MGDMP for solving RDE Eqn. (17) 
working better than ADM  and LADM- Pade ̀ methods.

In Example 4, the numerical solution is not easy to find 
via LADM- Pade ̀ methods. Hence, MGDMP can be easily 
applied in this example for the numerical solution. As it can be 
observed that exact solution of RDE Eqn. (19) is not known. 
Therefore to investigate the efficiency of MGDMP, the residual 
error is being used here. With the help of the residual error, 
the comparative study of MGDMP can be investigated with 
ADM.

4. conclusIons
In this paper, a method to solve a particular class of 

RDEs, namely MGDMP, is proposed. Some specific numerical 
problems are solved to confirm the robustness of the proposed 
approach. Examples 1, 2, and 3 validate the applied method. In 
Example 4, a particular class of RDE is discussed, which cannot 
be generally solved using LADM-Pade` technique. In the virtue 
of the solved examples, it can be concluded that MGDMP is 
an efficient method and provide a better solution in the given 
interval, in comparison to some of the classical methods or 
techniques like ADM and LADM-Pade`. Although, the applied 
class of Adomian polynomials and Pade` approximation have 
much computational work. However, using MGDMP, the 
numerical solutions of the specified class of RDEs are more 
accurate and effective in the given interval.

example 4. Consider the nonlinear RDE
 ( ) ( ) ( )2 2 2' , 0 0,    0 1ty t t t y t y t= + = ≤ ≤                 (19)

If 0,t =  then ( ) 0y t = is the only solution of Eqn. (19). 
For 0 1,t< ≤  Eqn.  (19) can be written as



ARyA & UJLAyAN : APPROxIMATE SOLUTION OF RICCATI DIFFERENTIAL EqUATION VIA MODIFIED GREEN’S DECOMPOSITION

423

references
1.  Reid, W.T. Riccati differential equations. Academic Press. 

1972.
2.  Dehghan, M. & Taleei, A. A compact split-step finite 

difference method for solving the nonlinear Schrödinger 
equations with constant and variable coefficients. Comput. 
Phys. Commun., 2010, 181, 43–51. 

 doi: 10.1016/j.cpc.2009.08.015
3.  Mukherjee, S.  & Roy, B. Solution of Riccati equation 

with variable coefficient by differential transform method. 
Int. J. Nonlinear Sci., 2012, 14, 251–256.

4.  Kafi, R. Al; Abdillah, B. & Mardiyati, S. Approximate 
solution of Riccati differential equations and DNA Repair 
model with Adomian decomposition method. J. Phys. 
Conf. Ser., 2018, 1090, 012017. 

 doi: 10.1088/1742-6596/1090/1/012017
5.  Palumbo, N.F. & Jackson, T.D. Integrated missile 

guidance and control: A state dependent Riccati 
differential equation approach. In Proceedings of the 
IEEE International Conference on Control Applications 
(Cat. No.99CH36328) (IEEE), 1999, 243–248. 

 doi: 10.1109/CCA.1999.806207
6.  Dharmaiah, V. Thory of ordinary differential equations. 

Delhi: PHI Learning Private Limited, 2013.
7.  Adomian, G. Solving frontier problems of physics: The 

Decomposition Method. Dordrecht: Springer Netherlands, 
2013. 

 doi: 10.1007/978-94-015-8289-6
8.  Cherruault, y. Convergence of Adomian’s method. 

Kybernetes, 1989, 18, 31–38. 
 doi: 10.1108/eb005812
9.  Abbasbandy, S. Homotopy perturbation method for 

quadratic Riccati differential equation and comparison 
with Adomian’s decomposition method. Appl. Math. 
Comp., 2006, 172, 485–490. 

 doi: 10.1016/J.AMC.2005.02.014
10.  Abbasbandy, S. Iterated He’s homotopy perturbation 

method for quadratic Riccati differential equation. Appl. 
Math. Comp., 2006, 175, 581–589. 

 doi: 10.1016/J.AMC.2005.07.035
11.  Abbasbandy, S. A new application of He’s variational 

iteration method for quadratic Riccati differential equation 
by using Adomian’s polynomials. J. Comp. Appl. Math., 
2007, 207, 59–63. 

 doi: 10.1016/J.CAM.2006.07.012
12.  Tsai, P.y. & Chen, C.K. An approximate analytic solution 

of the nonlinear Riccati differential equation. J. Franklin 
Inst., 2010, 347, 1850–1862. 

 doi: 10.1016/j.jfranklin.2010.10.005
13.  Arya, M. & Ujlayan, A. Solution of Riccati differential 

equation with Green’s function and Padè approximation 
technique. Adv. Differ. Equations Control Process, 2019,  
21, 31–52. 

 doi: 10.17654/DE021010031
14.  Alkresheh, H.A. New classes of Adomian polynomials for 

the Adomian decomposition method. Int. J. Eng. Science 
Invention, 2016, 5, 37-44. 

15.  Adomian, G. A review of the decomposition method and 
some recent results for nonlinear equations. Comp. Math. 
Appl., 1991, 22, 101–127. 

 doi: 10.1016/0898-1221(91)90220-x
16.  Biazar, J.; Babolian, E. & Islam, R. Solution of the 

system of ordinary differential equations by Adomian 
decomposition method. Appl. Math. Comp., 2004, 147, 
713–719. 

 doi: 10.1016/S0096-3003(02)00806-8
17.  Biazar, J.; Babolian, E. & Islam, R. Solution of a system 

of Volterra integral equations of the first kind by Adomian 
Method. Appl. Math. Comp., 2003, 139, 249–258. 

 doi: 10.1016/S0096-3003(02)00173-x
18.  Babolian, E.; Biazar, J. & Vahidi, A.R. Solution of a 

system of nonlinear equations by Adomian decomposition 
method. Appl. Math. Comp., 2004, 150, 847–854. 

 doi: 10.1016/S0096-3003(03)00313-8
19.  Hatami, M.; Ganji, D.D.; Sheikholeslami, M.; Hatami, 

M.; Ganji, D.D. & Sheikholeslami, M. Introduction to 
differential transformation method. Diff. Transform. 
Method Mech. Eng. Probl., 2017, 1–54. 

 doi: 10.1016/B978-0-12-805190-0.00001-2
20.  Luo, x.G. A two-step Adomian decomposition method. 

Appl. Math. Comp., 2005, 170, 570–583. 
 doi: 10.1016/J.AMC.2004.12.010
21.  Wazwaz, A.M. A reliable modification of Adomian 

decomposition method. Appl. Math. Comp., 1999, 102, 
77–86. 

 doi: 10.1016/S0096-3003(98)10024-3
22.  Chisholm, A. & Common, J.S. Padé approximation and 

its applications. L. Wuytack editorial. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 1979. 

 doi: 10.1007/BFb0085571
23.  Baker, G.A. & Morris, P. The convergence of sequences 

of Padé approximants. J. Math. Anal. Appl., 1982, 87, 
382–394. 

 doi: 10.1016/0022-247x(82)90131-7
24.  Agarwal, R. & Regan, D. An introduction to ordinary 

differential equations. 2008.
25.  Deo, S.G. & Raghavendra, V. Ordinary differential 

equations and stability theory, 2005.
26.  El-Tawil, M.A.; Bahnasawi, A.A. & Abdel-Naby, A. 

Solving Riccati differential equation using Adomian’s 
decomposition method. Appl. Math. Comp., 2004, 157, 
503–514. 

 doi: 10.1016/J.AMC.2003.08.049

ACKnowlEDGEMEntS
We would like to thank the editor and the anonymous 

reviewers for their useful comments and suggestions that help 
us for the improvement of this manuscript. We would also 
want to thank Mr Dharm Prakash Singh, Research Scholar, 
Department of Applied Mathematics, Gautam Buddha 
University, Greater Noida, India for his valuable suggestions 
in manuscript writing.



DEF. SCI. J., VOL. 70, NO. 4, JULy 2020

424

contrIbutors

Mr Mohit  Arya is pursuing PhD from the Department of 
Applied Mathematics, School of Vocational Studies and Applied 
Sciences, Gautam Buddha University, Greater Noida, India.
In this work, he has developed the proposed method for 
RDEs, and also conducted the calculation and comparison in 
the solved examples.

dr Amit ujlayan presently working as an Assistant Professor 
in Department of Applied Mathematics, School of Vocational 
Studies and Applied Sciences, Gautam Buddha University, 
Greater Noida, India. 
In the present work, he has compiled entire work, from 
the construction of Green’s function to MGDMP, under his 
supervision.


