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1. INTRODUCTION
Space-filling curves are fractal objects that arose from the 

fundamental works of Giuseppe Peano1 and David Hilbert2 in 
1890’s in which they formulated curves that visit every point 
in a unit square. Their constructions raised some fundamental 
questions about the understanding of dimensions of objects– 
that a space-filling curve, a one-dimensional object, fills a two 
dimensional object was paradoxical - which culminated in the 
founding of the field of fractals. The historical development of 
fractals and the contribution of Peano and Hilbert3 are covered. 
Interestingly, space-filling curves comprise an important design 
pattern in some fundamental building blocks of life wherein 
reaching every part in a given volume is an important design 
motif – for example, vascular, renal, and respiratory systems.

Author introduces space-filling curves in the context of 
image encryption and compression. First, they demonstrated 
its usefulness in achieving a correlation preserving linear 
reordering of image pixels. Then uses this property of space-
filling curves to arrive at a light-weight and partial encryption 
approach for image encryption. Light-weight implies that 
the encryption requires lesser effort–this is usually realised 
by encrypting only the perceptually sensitive regions of the 
image, a process also known as partial encryption. In addition 
to encryption, their approach also realises a lossy compression 
scheme for images.

    
2. IMAGE ENCRYPTION

Conventional encryption methods like DES, AES, etc. 
which are commonly used for encrypting text and binary data 

are not usually suited for the encryption of multimedia data 
primarily due to their massive volumes. This has necessitated 
in the study of encryption approaches that are specifically 
suited for multimedia content and are commonly referred 
to as multimedia encryption techniques. Also, multimedia 
objects typically have more redundancies than text and 
binary data which are not exploited by a direct application of 
the conventional approaches. In addition to their large sizes, 
they often require real-time processing operations such as 
transmission, display, etc. These properties and requirements 
make traditional encryption techniques inefficient from the 
multimedia encryption point of view and hence the need for 
new and efficient encryption techniques that are specific to 
multimedia data. 

Partial encryption of multimedia content aims at reducing 
the encryption load given that the input sizes are much 
larger than what is encountered usually with text and binary 
encryption. Here the information is categorised into two parts. 
Sensitive or salient part is encrypted with regular encryption 
techniques while the other part is either left unencrypted or 
encrypted using milder encryption techniques. The strength, 
or rather weakness, of partial encryption is derived from the 
process of separating the content into perceptually significant 
and insignificant regions. A fundamental requirement to be met 
by any partial encryption scheme is that the encrypted parts 
must be independent of the unencrypted parts. If this does not 
hold, the encrypted pixels could be guessed based on their 
correlations with the unencrypted pixels. 

As multimedia encryption systems have to deal with 
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voluminous data, it is preferred to have encryption techniques 
that are light-weight. In the original connotation of the term, 
light-weight means using software to perform encryption 
operations rather than using dedicated hardware. The rationale 
being–software implementations are easily upgradable and 
cheaper than hardware based systems. In the context of 
multimedia encryption, light-weight stands for encryption with 
lesser overheads and hence lesser effort. Thus light-weight 
encryption is an objective which is achieved through efficient 
and low cost software implementations and using techniques 
like partial encryption. We now give a brief overview of some 
multimedia encryption approaches in the literature.

Multimedia encryption techniques are many in number; 
an exhaustive list of these techniques is presented in a recent 
survey by Shiguo Lian4. one of the first multimedia encryption 
techniques is based on space-filling curves5. This forms the 
basis of one of the fundamental ideas behind image encryption 
–scramble or permute the pixels of the image in such a way 
that it becomes unintelligible for human consumption in the 
scrambled form (which is reversible). A related approach6 
adopted by European Tv networks is to permute pixels in each 
line in the Tv field.

By permuting a Huffman tree as in relabelling the edges 
of the tree, one gets another Huffman tree. Such a permutation 
could be achieved based on a key.  The permutation could be 
static or dynamic. In the former, one of the possible permutations 
of the tree is used. In the latter, to encode each symbol one uses 
a random Huffman tree. Details of such variations are given7,8. 
This type of multimedia content encryption is also called as 
simultaneous encryption and compression: Huffman coding 
compresses while randomizing the tree helps in encryption. 
In another variation to Huffman code encryption, encryption 
of the perceptually significant parts based on the length of the 
Huffman code is suggested9. The assumption here is that longer 
codes correspond to edges and hence selectively encrypting the 
DCT blocks containing code longer than a specified threshold 
value would result in reducing the encryption load.

yekkala & Madhavan10 shows that encrypting just two 
significant bit-planes is sufficient for image security. As per the 
authors, the intact information in the remaining bit planes does 
not contribute to any significant perceptual quality. The authors 
also observe that encryption does not induce additional noise 
in least significant bit planes–the LSB plane is noisy as it is. 

In the context of jpeg compression, instead of the 
conventional zig-zag scan, DCT coefficients in each 8 x 8 block 
was permuted11,12 to achieve images that are imperceptible. 

An image encryption and compression approach that uses 
fractal objects known as space-filling curves is presented.  

3. HILBERT SPACE-FILLING CURVES
The Hilbert curve, H2n , for n ≥ 1, is a fractal structure that 

is generated by the following recursive production rule:
H2n: → rightRot(H2n-1) → U → H2n-1 → R → 
            H2n-1  → D → leftRot(H2n-1) →
H2: → U → R → D →
rightRot(H2n) : → R → U → L →
leftRot(H2))    : → L → D → R →

where D, U, L and R  indicate the directions taken by the curve 

–down, up, left and right.
Generation of Hilbert space-filling curves based 

on the above rule could be described as follows. To 
generate H2n,

Copy H2n-1 to the top two quadrants
Left rotate H2n-1 and place it in the lower left quadrant
right rotate H2n-1 and place it in the lower right quadrant
Connect the top two quadrants with an R 
Connect the bottom and top left quadrants with a U 
Connect the top and bottom right quadrants with a D
H2n has 2n×2n points and is referred to as the nth order 
Hilbert curve or H(n)
An image could be sequenced as a linear array of pixels 

using Hilbert curves by re-ordering its pixels chronologically 
as the curve visits them. In our applications, the Hilbert 
scan enters an image from the top row first pixel and exits it 
through top row last pixel. The pixels visited are listed in the 
chronological order and called as space-filling curve reordering 
of the image. Figure 1 illustrates the curve construction for 
different orders. The first row of the image is in the bottom in 
our representation.

Correlation preserving properties of Hilbert curve are 
well known in the context of 2-D compression. Lempel and 
Ziv13  showed that Hilbert space-filling curves provide the best 
possible correlation preserving sequencing of 2-D objects. 
Matias and Shamir5 proposed an image obfuscation scheme 
based on traversals on images based on space-filling curves. 

Figure 1. Hilbert curves for different orders with the construction 
of Hilbert curve of 2ndorder based on the production 
rule illustrated.

Gross14, et al. extended this scheme to design image space-
filling curves that are specific to individual images to achieve 
better compression. 

owing to their correlation enhancing properties, space-
filling curves have been studied in the context of image 
compression–especially15,16, are in the context of a critical 
application like medical image compression. However, in the 
context of encryption– outside the above mentioned approaches, 
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namely5,14–space-filling curves have not seen an effective 
utilisation, especially in the context of partial encryption. Also, 
their potential to effect a high quality lossy compression has 
not been studied so far.  

We first illustrate the correlation preserving property of 
Hilbert curves by using them to achieve linear approximations 
of images that have low errors. Following this, we present our 
partial encryption scheme that use space-filling curves. We also 
show that the approach also gives scope to effect high quality 
lossy compression of the image. In our discussions, we call 
the pixel sequence generated by reordering the image pixels 
with the appropriate Hilbert space-filling curve as the Hilbert 
Image.

4. LINEAR APPROXIMATION AND HILBERT 
CURVES
Images can be represented as linear pixel sequences by 

reordering the pixels as per the order in which the Hilbert curve 
visits them. This is far superior to writing them as sequences in 
the conventional row or column-major order or raster format 
in terms of preserving pixel-correlations in the resulting 
sequence. This is due to the fact each pixel’s eight adjacent 
pixels in a 3×3 neighbourhood appear far apart in the raster 
sequence thereby resulting in a loss of correlation. on the other 
hand, Hilbert curve, upon visiting a pixel dwells in and around 
a pixel’s neighbourhood for longer durations which results 
in correlation preservation to a greater degree in the linear 
sequence. This translates to having smoother pixel variations 
in the sequence generated by the Hilbert curve as against the 
natural ordering of pixels in the row-major order. As mentioned 
earlier, we refer to images generated by traversing them with 
the Hilbert curve as ‘Hilbert images’, also conventional images 
will be referred to as ‘normal images’ when used in conjunction 
with the term Hilbert images. Suppose an image is divided 
into equal sized blocks of n pixels each. Each of the blocks 
could be represented by a straight line using the standard least 
squares approximation. Thus for each block, we would get two 
parameters–slope and the intercept. The error values are the 
difference between the actual values and the values predicted 
by the straight line. The entire image could then be represented 
as a sequence of error values and the straight line parameters 
for each block. We note that the straight line parameters, slope 
and intercept, are represented in the byte range.

We illustrate the distribution of the error values and slopes 
for Hilbert and normal images for the red plane of standard 
lena image in Figs 2 and 3, respectively. Each block contains 
32 pixels – a value which we use throughout. The error values 
are much sharper for Hilbert image than for the normal image, 
implying that the former is better suited for linear prediction 

and hence compression. This is also justified by the sharper 
peak for the slope distribution at zero degree for the Hilbert 
image when compared to a normal image. We quantify these 
statements in the Table 1 that compares the mean and standard 
deviations of Hilbert and normal images. Though the facts 
are presented for the standard lena image, it is representative 
of the general trend observed for many natural images in our 
experiments.

It is clear from Table 1 that for prediction errors, Hilbert 
images have means that are at least three times closer to zero 
than the normal images. Also the sharp peaks are captured by 
standard deviation values for Hilbert images that are typically 
40 per cent lesser than the corresponding normal images’. For 
slopes, the mean values for Hilbert images, for all practical 

Errors Slopes
Colour Mean SD Mean SD

normal hilbert normal hilbert normal hilbert normal hilbert
Red 0.47 1.58 12.40 20.81 0.07 2.87 20.59 38.55
Green 0.46 1.94 15.19 24.51 -0.02 3.78 22.78 42.46
Blue 0.50 1.73 12.73 18.79 -0.02 2.52 17.32 33.62

Table 1. Mean and standard deviation: Normal vs Hilbert images

Figure 2. Distribution of errors for normal image vs Hilbert 
image. X-axis represents the error values and Y-axis 
represents the frequency of the error values. Note 
that the Hilbert distributions have sharper peaks.

Figure 3. Distribution of slopes for normal image vs Hilbert 
image. X-axis represents the slope values and Y-axis 
represents the frequency of the slope values. Note 
that the Hilbert distributions have sharper peaks.
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purposes, are zero when compared to those for normal images. 
The standard deviations for the Hilbert image are typically 
half of that of that of normal images. These provide ample 
evidence to the fact that Hilbert images are better suited for 
prediction with linear curve fitting models. In fact the error 
values of the Hilbert images could be discarded and yet fairly 
accurate reconstructions of the image could be obtained. This 
is illustrated in Fig 4.

information about the image when compared to the slopes; 
hence intercepts rather than the slopes have to be encrypted. 
note that this amounts to performing a partial and light-weight 
encryption of the image. 

Authors’ approach presents the twin possibility of 
performing both encryption and compression on the image. By 
encrypting only the intercepts, one effects a partial encryption. 
By discarding the error values one achieves a lossy compression. 
The nature of the information loss is determined by the block 
size. Larger the block, lower is the quality of the compressed 
image. With smaller sized blocks, loss is lesser but the number 

Figure 6. Distribution of intercepts for normal image vs Hilbert 
image. X-axis shows the intercept values and Y-axis 
represents the frequency of the intercept values. 
Unlike the error and slope distributions, the intercept 
distribution for the Hilbert and the normal image are 
similar. This shows that the intercepts, rather than 
the slopes or error values, carry useful information 
about the image.

If the block sizes are increased, the quality of the 
approximation drops and as a result the information content 
of the error values increase. Lesser sized blocks would lead to 
lower errors. However, the quality of approximation for Hilbert 
images is better when compared to normal images irrespective 
of the block size. Figure 5 shows images generated with a 
block size of 64 – each block has 64 pixels as against Fig 2 
which is shown for block size of 32. It is clear that the quality 
of the approximation deteriorates much faster for normal 
image than for Hilbert image. The choice of 32 as block size 
was arrived at by experimenting with different block sizes. The 
quality of images resulting from block size of 32 provides a 
reasonable trade-off between high quality approximation and 
the encryption load for images. 

5. ENCRYPTION AND LOSSY COMPRESSION 
As a lossy compression scheme, one could compress only 

the straight line parameters and discard the errors. From the 
point of view of multimedia encryption, one needs to encrypt 
only the intercepts to achieve incomprehensibility. This is 
evident from the intercept distribution shown in Figure 6 for 
Hilbert and normal images. unlike those observed for slopes 
and errors, these distributions are non-trivial and cannot be 
approximated easily. on the other hand observe that for slopes 
one could make a reasonable first cut approximation–all 
slopes are zero degree. Thus intercepts carry more meaningful 

Figure 4. Image generated by dropping the errors and just 
using the straight line parameters. Hilbert image (b) 
retains better clarity when compared to the normal 
image (a). The corresponding errors when viewed as 
images. The errors of the normal image (c) reveals 
more about the image than its Hilbert counterpart 
(d).

(a)

(b)

(c)

(d)

Figure 5. Same as Fig 4 but with block size of 64. Though a 
sharp drop in quality is perceptible, Hilbert image, 
(b) has a better perceptibility than normal image (a). 
The drop in quality results in significant errors; (c) 
& (d) shows that this is higher for the normal image 
compared to the Hilbert image.

(a)

(b)

(c)

(d)
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of intercepts to be compressed increases. Thus a trade-off is 
required as mentioned earlier. In the present experiment with 
block size 32, one gets two parameters in the byte range for 
each block. This amounts to a lossy compression of 1/16. 
Further, as all the slopes are very close to zero, the slope can 
be encoded efficiently to take advantage of this. Thus, the 
net compression is determined by the compressibility of the 
intercept values. In practice, depending on the nature of the 
image, the net compression could be much smaller than the 
base estimate of 1/16.

Approximations that use higher-order polynomials too 
yield similar results for Hilbert images. However, unlike the 
straight line parameters, they require more than the byte range 
for their representation and the errors too tend to increase 
beyond the byte range. Hence in practice, representation of 
blocks as linear approximations using straight line parameters 
turns out to be adequate. 

The algorithm used for encrypting the intercepts could be 
a conventional algorithm like DES or AES. our approaches 
effectiveness is not affected by the choice of the encryption 
algorithm as the main objective in partial encryption is in 
segregating the image into a relatively smaller part that contains 
data corresponding to the perceptual quality of the image while 
the insignificant part could be left alone. In the present case, the 
unencrypted part would correspond to the lower right image in 
Fig 2. 

6. CONCLUSION
Authors have applied Hilbert’s space filling curves 

to sequence images and studied the correlation preserving 
properties of the resulting pixel sequences. They showed 
that Hilbert images are ideal for linear piece-wise linear 
representations of images. They showed that the parameters of 
the linear-approximation could be used to realise an effective 
partial image encryption as well as a quality preserving lossy 
compression.
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