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1. IntroductIon
Most underwater acoustic propagation models are 

approximated as two dimensional with no interaction between 
the azimuthal planes. This is a fair approximation, for a 
basically three-dimensional problem, due to two reasons. 
One is that three dimensional effects are negligible at shorter 
ranges and the other is due to non-availability of input data 
like Sound speed profile, bottom type, etc. along each azimuth. 
Also, the implementation of a three-dimensional model is 
computationally expensive for operational purposes. The two 
important cases where 3D effects are reported in literature are 
cross-slope propagation over a sloping bottom and propagation 
around sea mounts3. In this study, the effect of an upwelling 
event on azimuthal acoustic propagation is modelled. 
Upwelling is a process in which deep colder water rises to the 
surface, which leads to lowering of sea surface temperature. 
The change in sound speed profile structure is gradual along 
the range during an upwelling process1. This gradual change 
in SSP differs along each azimuth and is an ideal scenario to 
observe 3D effects of acoustic propagation. A 3D parabolic 
equation model based on implicit finite difference method is 
used for this study. This model code has been documented and 
validated with respect to different benchmark cases mentioned 
by Lee & Schultz3.

The parabolic equation model developed by Lee and 
Schultz3, can compute acoustic field for three-dimensional 

propagation scenario. The 3 D Helmholtz equation in cylindrical 
coordinates is given by,
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where
θ  Azimuth angle. 
∅  Spatial portion of the acoustic pressure field 
n Index of refraction; n (r,θ, z) = c0 /c(r, θ, z)
c0 A reference sound speed
k0  2πf/ c0, with f being source frequency
z  Receiver depth 
r   Receiver range.

separating the variables as under,
∅ (r,θ, z) = u (r,θ, z) v(r)

and solving we get v as Hankel function, and           
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Dropping first term in the above equation and rearranging 
the terms, 
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Rewriting the above equation in the operator form,
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Then, defining the operators,
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The far field equation can be written as
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The PE model uses finite difference techniques4 for 

computation of pressure field. In case of 3D propagation, 
θ-Coupling term will be included. There is flow of acoustic 
energy in θ direction. In case of N x 2D problem, there are N 
vertical planes and θ Coupling is not accounted for. There is 
no flow of acoustic energy in θ direction, but θ dependence is 
present.

In this study, the 3D PE model has been implemented 
for south-eastern Arabian Sea for studying the effect of an 
upwelling event. The sound speed profile data required for 
the 3D model run along all azimuths is used from the in-situ 
data collected by INS Sagardhwani during Mission 184. The 
bathymetry data is derived from etopo database. The ocean 
bottom parameters are provided from an ‘internal’ database of 
NPOL.

  
2. DEsCriPtiOn Of thE PE MODEl rUn.
2.1 PE Model: Model Domain

The input data for 3D PE model consists of sound speed 
profile, depth, density and attenuation in water column and 
sea bed, along each bearing. The region from 8.8 °N - 9.2 °N 
and 75.6 °E - 76.0 °E was chosen as the most optimum 
location for simulating the 3D acoustic propagation (Fig. 
1).  The lack of data between transects was overcome by re-
gridding the data to finer grids by carrying out an optimum 
interpolation technique known as barnes2 averaging to 
derive a gridded database of temperature and salinity. 

2.2 PE Model and in-situ Data: spatio-temporal 
Domain
The CTD profiles collected during July 2016 (Fig. 3) 

were utilised to study 3D acoustic propagation (3D Acoustic 
Model). Upwelling characteristics are well identified from 
the vertical sections of temperature and salinity at the 
shallow stations indicated temperature is excess of 25° C 

at the offshore region decreases to less than 23.5° C near to 
the coast and the thermocline was observed below 15 m depth. 
The subsurface cold water (21 °C) observed at the 20 m depth 
level in the southern transects were reached near to the surface 
(5 m), whereas towards off shore the high temperatures are 
observed at the surface. The subsurface upward movement is 
observed in all transects and a maximum upliftment of cool 
waters was observed at the southern part. As a result of the 
vertical movement of the subsurface water the surface water 
pushed towards the off shore and the sharp isotherms observed 
are the indication of the thermal front that can be observed in 
the vertical distribution of sound speed profile (Fig. 4). 

2.3 PE Model and in-situ Data: input(s) Domain
The 3D PE model has been implemented for the region 

as shown in the Fig. 1. In the model run, a 1500 Hz source is 
placed at a depth of 7 m. The model is run for both upslope 
(source at 75.6 °E, 8.8 °N with water column depth of 329 m) 
and downslope (source at 76.0 °E, 9.2 °N with water column 
depth of 83 m) cases (Fig. 2). The source locations have been 
chosen such that the azimuthal transects are confined to the 
study area. The PE model run formalism consists of division 
of the ninety degree arena in to a large number of sectors. And 
the model is run concentrically at different range intervals up 
to 50 km. The geographical north is placed as 90° and east 
is 0°. The azimuthal steps required for 1500 Hz source will 
be one-sixty fourth of a degree. The range and depth steps 
required will be one-fourth of the source wavelength. The 

figure 1. spatial domain of the PE model run overlaid on etopo 
bathymetry.

figure 2. the arena of PE model run.
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sound speed profile sections along three azimuths (0°, 45°, 
90°), restricted to 100 m and 55 m depth, are as shown in  
Figs. 5 and 6, respectively for better appreciation of the 
upwelling feature.

The cut off frequency and sonic layer depth of the sound 
speed profile at the source for upslope model run is 319 Hz 
and 36 m respectively. For the downslope model run, cut off 
frequency and Sonic layer depth at the source location is 1274 
Hz and 11 m respectively. The cut off frequency, fc and sonic 
layer depth, SLD, at the receiver ranges is also marked in the 
figures. In Fig. 5, the narrowing of the sonic layer depth near 
the coast is seen along 45° and 90° azimuth, whereas along 0° 
(North) the narrowing of sonic layer is absent. Similarly, in 
Fig. 6, the widening of sonic layer is seen along azimuths away 
from the coast and the sonic layer is almost constant along the 
azimuth parallel to the coast.

figure 4. Vertical sections of sound speed in the study area [Mission 184].

figure 5. sound speed along 3 azimuths (Upslope).
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figure 3. the stations locations for CtD cast.
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3. rEsUlts AnD DisCUssiOns
The effect of upwelling on acoustic propagation is 

studied from upslope (deep to shallow) and downslope 
(shallow to deep) perspective. The azimuthal transmission 
loss mosaics (a circular domain of 35 km) corresponding to 
a receiver depth of 10 m is as shown in Figs. 7 and 8. These 
mosaics correspond to a source-receiver configuration in 
the sonic layer. During an upwelling event, the acoustic 
signals travel longer distance downslope due to widening 
of sonic layer depth. The acoustic signals travel shorter 

distance upslope due to narrowing of sonic layer. This is 
clearly visible in the model results (Figs. 7 and 8). The 
upslope and downslope model run are repeated with single 
sound speed profile prevailing at the source location, for 
simulating a non-upwelling scenario. It is observed that 
acoustic signal is predicted to travel longer distance upslope 
than downslope. The shadow zone formed near the coast 
(Fig. 7) during upslope propagation is similar to the ocean 
model based acoustic propagation studies reported by  
Calado5, et al.

figure 6. sound speed along 3 azimuths (Downslope).
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figure 7. Azimuthal tl plot (receiver at 10 m) – upslope. (a) without upwelling [single ssp] and (b) with upwelling [Azimuthal ssP].
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The effect of azimuthal coupling on TL mosaic pattern is 
due to two factors namely, bathymetry and range-dependent 
sound speed profiles. This case study shows that 3D effects will 
be prominent in case of moderately strong range dependence 
induced by oceanographic phenomenon such as upwelling. The 
clear difference in Azimuthal TL mosaics in the presence and 
absence of upwelling points to the need for range dependent 
modelling for SONAR system analysis. 

4. COnClUsiOns
The 3D PE model has been implemented for SEAS by 

including the bathymetry, geo-acoustic properties and SSPs 
in an upwelling scenario. The effect of azimuthal variability 
in SSP during the event on acoustic propagation is studied 
and is found to be prominent. Further studies using high 
resolution in-situ data will provide greater insight in to effect 
of oceanographic features on azimuthal coupling. 
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