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AbstRAct

Accuracy of flow angles measurements becomes crucial as the aircraft approaches higher angle of attack. Flight 
path reconstruction (FPR) is an excellent tool for air data calibration. An important element of air data calibration is 
the estimation of wind velocities. The objective of this paper is to evaluate different approaches of wind estimation 
within the framework of FPR. Flight test data of a high performance aircraft is subjected to FPR and the estimated 
wind velocities and flow angle trajectories are presented and discussed to demonstrate the impact of wind estimation 
on aircraft flow angles. Results clearly show that accuracy of reconstructed flow angles improves when time varying 
wind models are used. The proposed analytical wind model is found to be as effective as augmented parameters in 
Extended Kalman filter and computationally less intensive. 
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NomENclAtuRE 
α  Angle of attack
β  Angle of sideslip

, ,x y za a a  Acceleration in x, y, z axes
, ,u v w  Inertial velocities in flight body axes
, ,c c cu v w  Body axes velocities corrected for wind

 p,q,r Aircraft angular rates
, ,φ θ ψ  Aircraft Euler angles 

,a aψ γ  Wind axes Euler angles 
V  True airspeed
h  Altitude
Kα , Kβ  Scale factor in α and β
∆α , ∆β  Bias in α  and β

, ,x y za a a∆ ∆ ∆  Biases in accelerations
, ,p q r∆ ∆ ∆  Biases in rates

1. INtRoductIoN
Flight path reconstruction1 is a process used for evaluation 

of flight data quality before attempting aircraft system 
identification /parameter estimation.  System identification has 
been the basis for extracting aerodynamic stability and control 
derivatives from aircraft flight test data2. These derivatives are 
useful not only to check for the deficiencies in the aero database 
derived from wind tunnel tests, but also in investigating the 
aircraft performance and aerodynamic characteristics, design of 
flight control laws and in conducting safe envelope expansion 
during prototype flight testing3.

The success of system identification considerably 
depends on the quality of flight experiments and the recorded 

data measurements. Several data inspection techniques are 
used by practicing engineers to check for the accuracy of 
the measurements. Initial checks are made by visual plots, 
examining the noise spectrum, slopes of the phase response 
and using redundancy in the measured variables. A more 
comprehensive approach is to use the complete 6DOF model 
for kinematic consistency checking4-5.

The kinematic model for flight path reconstruction 
(FPR) used for data quality checks includes a set of first order 
differential equations that relate velocity components to linear 
accelerations and Euler angles to the body-fixed rotational rates. 
In FPR process, the inertial accelerations and angular rates are 
used as input variables and not as observations. Deterministic 
systematic instrumentation errors are modeled as scale factors, 
biases, and time shifts in the measured flight variables6.

Flight path reconstruction  procedure is an excellent tool 
for airdata calibration. Accurate measurements of flow angles 
are required not only for parameter estimation but are also 
vital for proper functioning of the flight control laws. Role of 
this exercise becomes more and more crucial as the aircraft 
approaches higher limits of angle of attack. An important 
element of airdata calibration is the estimation of wind 
velocities. The equations for FPR use inertial accelerations to 
compute the true airspeed components. This is strictly valid for 
the assumption of constant wind unless ground speed is used in 
the observation vector7,8. 

For computing true airspeed, angle of attack (AOA) and 
angle of sideslip (AOS), reliable estimation of wind components 
is necessary. If left unaddressed, this can become a dominant 
source of error. With highly improved instrumentation 
available today for data gathering, the sensor errors in biases 
and scale factors are likely to be small, thus leaving the wind 
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variations as the most possible reason for the inaccuracies in 
the reconstructed flight variables from FPR.

Several methods have been discussed in the literature to 
estimate wind velocity components from flight data. A popular 
approach is to use measurements from GPS and INS along with 
aircraft dynamic model to calculate the wind components9-11. 
Computing wind components from ATC data, especially for 
accident analysis, is discussed by Bach and Wingrove12-13. 
Brian14 describes the process of air data calibration in full 
envelope from wind box manoeuvres. Results presented show 
limitation of time invariant wind formulations15-16. Application 
of time varying wind formulations as part of extended Kalman 
filtering to simulated data is demonstrated by lee17, et al.

The study presented in this paper is motivated by the need 
to evaluate the existing techniques for wind estimation under 
the stringent conditions of high AOA and altitude changes. The 
objective is to look for the approach that can provide the desired 
flow measurement accuracy and has ease of application to long 
duration manoeuvres. The aim is not to replace the existing 
approaches with a new one, but to decide which technique 
would yield better accuracy for a given flight condition and 
data measurements.

The most conventional approach is the constant wind 
model formulated within the framework of FPR. However, this 
technique poses several problems that limits its usefulness. It is 
shown in this paper that the constant wind model fails to yield 
accurate results for long duration manoeuvres, particularly 
when the variation in wind is large due to changes in altitude 
or heading18. The second approach is to use a time varying 
wind model to estimate the wind velocities from real flight test 
data of a manoeuvring aircraft. The estimation of unknown 
parameters in the error model is carried out using Extended 
Kalman Filter (EKF). EKF with stochastic modelling of wind 
components works well for long duration manoeuvres and 
yields wind estimates and air data flow angles with improved 
accuracy. However, improper tuning of the error covariance 
matrices may adversely affect the results from EKF19. Also, 
artificially defining wind components as additional states in 
EKF would increase the number of parameters in the error 
model, which may lead to observability and identifiability 
issues. Alternate approach is to use the analytical formulation, 
discussed in Ref.12, for wind estimation. Application of this 
technique for wind estimation shows that it is equally effective 
and easier to use as part of FPR for obtaining true AOA and 
AOS from flight data. The flip side of this approach is that 
it mandatorily requires inertial velocity components and flow 
angle measurements whereas the state augmentation method 
(EKF) can yield results with reasonable accuracy even in the 
absence of inertial velocity component measurements.  

2. FlIght PAth REcoNstRuctIoN thRough 
stAtE EstImAtIoN
Flight path reconstruction (FPR) process combines 

kinematic model of the aircraft states with flight measurements 
to determine the true state trajectories along with the estimation 
of uncertainties in the sensor measurements such as scale 
factors, biases and time delays4. In the current investigations, 
FPR for the segmented as well as full flight data (take-off to 

landing) is carried out using 9 states and 12 observations. The 
state vector includes the inertial velocity components in the 
body axis ( , ,u v w ), the aircraft Euler angles( , ,φ θ ψ ), altitude 
h and positions (x,y). The model response is matched with the 
measurements from flight data. The flight data signals used in 
FPR analysis are the angle of attack mα , side slip angle mβ , true 
air speed mV , Euler angles ( , ,m m mφ θ ψ ) and pressure altitude

mh . Inertial ( , ,gm gm gmu v w ) velocities measured in NED frame 
and converted to body axis are also used in observation for 
improved estimation of the true velocity components , ,u v w . 
GPS latitude and longitude are converted to ,em emx y  positions 
to compare with the estimated position of the aircraft in flight. 
The state model and observation model for FPR are given 
below1.

state model
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, , , , ,x y za a a p q r∆ ∆ ∆ ∆ ∆ ∆  are the biases in linear 
accelerations and angular rates. To start with, initial values 
of the state variables are taken as the average of the first few 
values from the measurements and then iterated upon to get the 
correct estimates. Initial values of the biases are taken as zero.

Conversion of the inertial velocities in body axes obtained 
from Eqn. (1) to the earth-fixed reference frame (NED frame) 
is given by the transformation in Eqns. (3) and (4). Velocity 
vector from body to earth axis is transformed using the product 
of three rotation matrices LBE.
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After estimating Wx, Wy , Wz components of wind in body 
axis, the aircraft’s the true airspeed V, flow angles α and β are 
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computed from the estimated states (u,v,w) using the relations 
given in Eqn. (5).
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Details of the wind models to compute Wx, Wy , Wz are 
given in Section 3. 

measurement model
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In Eqn. (6), Kα and Kβ  denotes the calibration scale factors 
and ∆α and ∆β  are the unknown bias parameters which are 
estimated as part of a sensor model for α and β.

2.1 Flight data measurements
The linear accelerations aX and aZ to be used in Eqn.(1) 

are computed from the accelerometer measurements of aXs and 
aZs, by accounting for CG offset from sensor location, as given 
in Eqn. (7).  
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where Xscg, Yscg, and Zscg represent the position of the 
accelerometers with respect to theCG.

The flight measurements used for matching the model 
observations include the attitude angles from INS, flow 
angles and true airspeed from air data sensors, and the inertial 
velocities and positions from GPS. 
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The state, input and the observation vectors for FPR are 
defined as
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[ ]Tu a  a  a  p q rzx y=                                            (9)
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g g gy V       h  u  v  w  x y   = α β φ θ ψ                                       

The unknown parameter vector to be estimated from flight 
data includes the wind velocity components and is given by 
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Estimation of the inertial wind velocity components 
, ,n e dW W W   is discussed in the next section.

     
3. mEthodology
3.1 Estimation method

In the present study, FPR is carried out using Extended 
Kalman Filtering (EKF) technique. This is one of the most 
established approach for the aircraft state estimation in the 
presence of measurement as well as process noise. In EKF, by 
means of augmented state vector3 given in Eqn. (11), parameter 
estimation is transformed into state estimation problem. 

T T T
ax =[x ]Θ                                                                  (11)

here the subscript a denotes the augmented state vector, where 
the additional parameters to be estimated are augmented to 
the state vector Θ . The state and observation models for a 
nonlinear system can be expressed for FPR as1,3
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                                     (12)           

where w(t) and v(tk) are defined as Gaussian white state and 
measurement noise with zero mean and characterised with 
covariance matrices Q and R, respectively. Z(tk) represents the 
vector of observations at the kth time instant. The characteristics 
of the instrumentation used in the aircraft are used to define the 
measurement noise covariance matrix. The noise in the input 
signals (accelerations and rates) is considered as process noise5. 
Hence, the process noise covariance matrix is defined using 
the variances of the noise from accelerometer and rate gyro 
measurements. With flight data sampled at regular intervals, 
EKF uses the previous state estimate to predict the current 
estimate, thus providing solution for the mixed discrete/ 
continuous time causal system.

The two stages of the estimation using EKF are the 
prediction and correction steps as shown in Fig. 1. The 
prediction equations project forward (in time) the current 
state and the state error propagation covariance estimates to 
obtain the a priori estimates kx  and kP  . In the correction step, 
a posterior estimate ˆ

kx  and k̂P  are evaluated from the a priori 
estimates using the new measurements. More details on EKF 
can be obtained from references2-4.
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3.2 Wind Velocities 
Kinematics of the aircraft flying in the atmosphere 

disturbed by wind is defined by “wind triangle”, as shown in 
Fig. 2(a). The wind-speed vector Vw is calculated by resolving 
the speed vectors Va, the aircraft velocity relative to air, and 
the ground speed Vg. The true airspeed V (TAS) is determined 
by air data computer using the measurements from Pitot tube 
sensor16.  V is then transformed to wind axis using wind axis 
Euler angles to obtain Va as shown in Fig. 2(b). The ground 
speed Vg is measured by the inertial navigation unit and GPS. 
The wind vector is obtained by subtracting the air speed vector 

from the ground speed vector. The vector formulation to 
compute the wind speed is given by

gw aV V V= −
  

                                                                (13)
Flow chart for the 3 different approaches is given in  

Fig. 3. In approach 1 and 3, wind model is implemented in 
the state model and in approach 2, it is in the observation 
models. The mandatory and optional signals used in state and 
observation model for each case are stated.   

Approach1
The body axes velocities u, v, w  from the state equation are 

contaminated with wind. Hence, the expression for positions x, 
y and h used in state model (Eqn. (1)) can be rewritten as given 
in Eqn. (14). Aircraft positions derived from GPS latitude 
and longitude are used as measurements to match the model 
observations as given in Eqn (6).  
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Wind velocities computed in NED frame can be converted 
to body axis using the equation

x n
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where uc, vc, wc are the corrected velocities in body axes during 
the previous time sample. Wind components in body axes 
Wx,Wy,Wz are obtained using transformation given in Eqn (15). 
In the present method, wind velocity components are treated 
as deterministic biases and, therefore, can be used only for 
manoeuvres where wind variation is minimal. using this wind 
formulation, FPR can be implemented with other estimation 
techniques such as output error or filter error methods6,14 which 
is the major advantage of this method.  
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Figure 1. EKF prediction and correction step.    

Figure 2. Wind triangle and airspeed definition.
(a)

(b)
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Approach 2
In this approach, the wind triangle representation is used 

to compute the wind components from the true air speed and 
inertial velocities as shown in Eqns. (16) and (17). The inertial 
velocity components (ug,vg,wg) , the true airspeed measurement 
(V ) from the pitot tube and wind axis Euler angles12,20 are used 
in this formulation.

cos cos
sin cos
sin

n g a a

e g a a

d g a

W u V
W v V
W w V

= − ψ γ

= − ψ γ

= − γ

                                     (16)

Where the wind axis Euler angles ( aγ , aψ ) are calculated 
using the equations
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This yields time varying wind which can be computed for 
full flight data. Parameters to be estimated are given in Eqn. 
(18), which are fewer when compared to Eqn. (10).     

 [ , , , , , , , , , ]  x y za a a p q r K Kα βΘ = ∆ ∆ ∆ ∆ ∆ ∆ ∆α ∆β            (18)

Since the wind components are not included in Ɵ, 
computational efficiency will be more with this formulation. 
However, this approach necessarily requires measurements of 
inertial velocity components for wind estimation.

Approach 3
In this approach, the wind components are treated as 

stochastic variables and are estimated as augmented states in 
the EKF. 
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Since the wind is modelled as stochastic, it obviates 
the need to model the physical processes that govern wind 
behaviour. Note that the process noise covariance matrix Q is 
defined as nonzero for treating wind as stochastic and can be 

tuned to improve the estimation accuracy1,3. Total wind and the 
wind direction can be calculated using the relation

 
2 2 2

1

( ) ( ) ( )
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                                   (20)

4. REsults ANd dIscussIoNs
In this section, flight data analysis results from a high 

performance fighter aircraft in different flight regimes are 
used for illustration. using the approaches discussed above, 
wind velocities are estimated and compared to demonstrate 
how different wind formulations affect the estimation of wind 
components, which in turn affects the accuracy of estimated 
flow angles. 

4.1 Wind Velocity components from Flight data
Figures 4 to 6 show the results of wind estimation when 

flight path reconstruction is carried out for the data gathered 
during roller coaster and pitch doublet manoeuvre in windup 
turn. Table 1 lists the estimated bias values in accelerometers 
and rate gyros during FPR. The small values of standard 
deviation indicate accurate estimation of bias parameters. 

           Figure 3. Flow chart for wind formulation.

Figure 4. Estimated wind components from roller coaster 
maneuver.
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 In Figs. 4 and 6, the estimated wind components from 
Approach 1 show no change over the duration of data segments, 
as these are treated as constant biases. In contrast, wind 
components obtained from Approach 2 and 3 show randomly 
changing wind velocities which are significantly different from 
the constant wind velocity values estimated using Approach 1. 
Further, it is interesting to note that, despite the formulation for 
wind estimation being very different in Approach 2 and 3, the 
wind velocities from these two approaches are exceptionally 
well matched. 

table 1. Estimated biases in accelerations and rates

Parameter Estimated value standard deviation
Δax 1.63370e-02     2.1491e-03
Δay -5.17674e-02     2.1287e-02
Δaz 3.80374e-03     1.2461e-02        
Δp -4.70081e-03     3.1776e-06
Δq -1.24640e-03     1.2357e-06
Δr 1.51588e-03     4.8576e-06

Figure 7 gives the illustration of what happens if the 
wind components are not estimated in the process of FPR. 
The results show the response match between the measured 
and estimated airspeed and AOA for the full flight data. Wind 
estimation is omitted in Approach 1 for FPR while Approach 
2 and 3 consider wind estimation. Results from Approach 1 
show the error in velocity to be around 40m/s while the error in 
alpha is around 5 deg.

It was observed in Figs. 4 and 6 for the short duration 
manoeuvres that estimated wind velocities from both the 
Approaches 2 and 3 are well matched. This is ascertained for 
the entire duration of the flight of a typical sortie in Fig. 8 
where, once again, wind estimation from both the Approaches 
shows no noticeable deviations (deviation within ±1m/s). 
Figure 9 shows the total wind variation with time and altitude. 
It is also seen that between 10 km to 14 km, (stratosphere) the 
wind shows a definite pattern with altitude15,21.

looking at the above results, one may conclude that, 
compared to Approach 3, wind estimation using Approach 
2 could provide for a better option given its computational 
simplicity. However, it needs to be kept in mind that Approach 
2 necessarily requires measurements of inertial velocities and 

Figure 6. Estimated wind components from Pitch doublet 
maneuver in wind up turn.

Figure 5. total wind velocity and wind direction for roller 
coaster maneuver.

 Figure 7. Velocity and flow angles with and without estimating 
wind (full flight).

Figure 8. Estimated wind components from Approach 2 and 3 
(Full flight).
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flow angles for its implementation whereas Approach 3 may 
still yield reliable estimates in the absence of inertial velocity 
measurements with proper tuning of process noise covariance 
matrix.

4.2 Reconstructed Flow Angles
Wind velocities obtained from FPR were illustrated in 

Figs 4 and 6 for the roller coaster and pitch doublet manoeuvre 
in windup turn. In the following discussion, we see how 
this affects the accuracy of the reconstructed α from FPR.  
In Fig. 10, the reconstructed α from roller coaster data is 
compared to the reference α obtained from Air Data Computer 
(ADC). In the α range of upto 16 deg covered during this 
manoeuvre, all the wind formulations are seen to provide 
a reasonably good match between the reconstructed and 
reference α. An error of around 2 deg is observed in α when no 
winds are estimated in FPR.

Figure 11 shows a similar comparison for the pitch doublet 
in windup turn. Once again, the reconstructed and reference 

Figure 10. Reconstructed α vs reference α for roller coaster 
maneuver.

Figure 9. total wind variation obtained using Approach 2 and 
3 (full flight).

α are in good agreement upto 16 deg α. However, the error 
increases at higher angles-of-attack. The time varying wind 
formulations used in Approaches 2 and 3 are seen to provide 
the best match to reference α. Maximum error is seen when no 
winds are considered. This is also evident from Fig. 12 which 
shows the enlarged view at higher angles of attack.

The flight manoeuvres considered in Figs. 10 and 11 will 
not have much excursions in β. However, wind estimation also 
affects the reconstruction of β during FPR. Figure 13 shows 
the results from FPR for a rudder doublet manoeuvre. A close 
match is observed between the reference β response and the 
reconstructed values obtained using Approaches 2 and 3. In 
contrast, the constant wind formulation of Approach 1 fails to 
provide the desired accuracy in β.

To further test the adequacy of Approaches 2 and 3, FPR 
is carried out for the full flight data from take-off to landing. 
Figure 14 gives the results of FPR match in the attitudes and 
Fig. 15 gives the response match for V, α and β. An excellent 
match is observed between the measured and estimated flight 
variables that is valid for the entire flight duration.

Figure 11. Reconstructed α for pitch doublet in windup turn 
with different wind formulations.

Figure 12. Enlarged α comparison for pitch doublet in windup 
turn.
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Figure 15. Estimated velocity, α and β.

5. coNclusIoNs
The study brings out the merits and demerits of the 

different approaches proposed for wind estimation along with 
aircraft state estimation. The algorithms investigated have 
the benefit of predicting wind velocities with high accuracy 
throughout the aircraft sortie, resulting in improved accuracy 
of the flight trajectories of air data parameters. Time varying 
wind formulations are seen to give better estimates of flow 
angles, especially at high angle of attack. Results from the 
analytical wind model match closely with the state augmented 
model, when implemented as part of state estimation using 
EKF. The variation of wind profile with altitude is also well 
captured with the proposed algorithms. 
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