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AbSTrAcT

Camera zoom operation and fast approaching/receding target causes scaling of acquired target in video frames. 
Fast moving target manifests in large inter-frame motion. In general, non-uniform background degrades performance of 
tracking algorithms. Fast Fourier transform (FFT)-based  Correlation algorithms improve tracking in this scenario, but 
their applications is limited to small inter-frame motion. Increasing search region has implication on execution speed 
of the algorithms. Rapid target scaling, non-uniform background and large inter-frame motion of target hinder accurate 
and long term visual tracking. These challenges have been addressed for extended target tracking by augmenting fast 
discriminative scale space tracking (fDSST) algorithm with probable target location prediction and target detection. 
Localisation of fast motion has been achieved by applying fused outputs of Kalman filter and quadratic regression based 
prediction before applying fDSST. It has helped in accurate localisation of fast motion without increasing search region. 
In each frame, target location and size have been estimated using fDSST and further refined by target detection near 
this location. Smoothing and limiting of trajectory and size of detected target has enhanced tracking performance. 
Experimental results show considerable improvement of precision, success rate and centre location error tracking 
performance against state-of-the-art trackers in stringent conditions.

Keywords: Visual tracking; Target detection; Prediction; Correlation filter; Quadratic regression; extended Kalman 
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1. InTroDucTIon
Tracking is the process of finding the dynamics and 

following a moving target over time1. In generic visual 
tracking, only the initial location and size of a target is 
known and the trajectory of a target in an image sequence 
acquired from camera is estimated. Tracking approaches can 
be classified as discriminative1,3 or generative4-6 methods. In 
generative approach, target appearance is described using 
statistical models or templates and it is matched in new frame 
to locate the target. But in discriminative approaches machine 
learning techniques are applied to differentiate between the 
target appearance and the surrounding background. A search 
region is defined to locate the target based on expected motion 
profile. Faster targets cause larger inter-frame motion, so they 
need larger search region. Search region affects execution 
speed of tracking algorithms.

Since camera has limited field-of-view (FOV), target will 
move out of frame if camera is not moved to follow the target. 
Camera is mounted on the set of gimbals and close loop tracking 
is used to follow target over wide field-of-regard (FOR). 
Automatic video tracker (AVT) calculates tracking error with 
respect to the aim point. This tracking error is suitably modified 
with track loop controller and given as steering command to 
stabilisation loop to move camera such that target is always 

around aiming point. One of the advantages of close loop 
tracking is that inter-frame motion reduces due to following of 
target by camera steering. So, for the fast moving target also a 
smaller search region will be required.

2. rElATED WorK
Visual tracking is an extensively researched topic. It 

involves1 feature extraction, target representation, target 
localisation and track maintenance. Most common tracking 
algorithms2,3 are: Normalised cross-correlation, centroid 
trackers, KLT tracker, mean shift tracker, L1 tracker, multiple 
instance learning7, incremental visual tracking (IVT) and 
discriminative correlation filters (DCF) based trackers.  

Due to fast execution, FFT-based discriminative  
correlation filters (DCF) are successfully applied to visual 
tracking4-6,8. They have demonstrated the capability of accurate 
target localisation in challenging tracking scenarios. But 
initially they were very slow in execution. First quantum 
improvement in execution rate was proposed by Bolme5, et al., 
who trained the correlation filter by minimising the total squared 
error between the actual and the sharp desired correlation 
output. Circular correlation was computed efficiently using 
only FFTs and point wise operations. Henriques9, et al. have 
used least squares regressor (ridge regression) and achieved 
fast kernelised correlation filters. To improve the tracking 
performance, multidimensional features10 are being used 
where multi-channel filters are trained. Impediment of tracking 

Received : 03 May 2018, Revised : 01 June 2019 
Accepted : 27 June 2019, Online published : 17 September 2019



DEF. SCI. J., VOL. 69, NO. 5, SEpTEMBER 2019

496

Fig. 1.  Proposed tracking scheme.

execution rate due to increase in feature dimension has been 
addressed by approximate formulations for learning multi-
channel filters4,6.

Most DCF based methods mainly focus on the problem of 
translation motion estimation. They assume very slow change in 
scale of the target. A multi-resolution extension of a kernelised 
correlation translation filter for translation and scale estimation 
was proposed by Li and Zhu11.  Generally, scale estimation is 
combined in DCF based tracking12 either by joint scale space 
filter or multi-resolution translation filter. Both schemes have 
high computational cost. 

Danelljan8, et al. have proposed Discriminative Scale 
Space Tracking (DSST) where a novel scale adaptive tracking 
approach by learning separate discriminative correlation filters 
for translation and scale estimation have been used. Sub-grid 
Interpolation of Correlation Scores in translational motion 
estimation and dimensionality reduction in scale estimation 
has helped them further reduce the computational cost of DSST 
approach without sacrificing its robustness and accuracy. The 
resulting fast DSST tracker (fDSST)12 capable of translational 
motion and scale estimation has been deliberated in 3.1.

This paper proposes a tracking algorithm of manoeuvring 
target by applying fused outputs of Kalman filter and quadratic 
regression based prediction before applying fDSST. It also 
incorporates target detection for accurate target localisation 
and scale estimation.

3. ProblEM STATEMEnT AnD ProPoSED 
SchEME
FFT-based correlation filters have promising performance 

and high execution rate. Fast moving targets like fighter planes 
have large inter-frame motion and change shape sharply. 
This requires fast learning of correlation filter without being 
affected by model drift. Accurate estimation of scale variations 
is a challenging problem. For estimating scale along with 
translational motion, performing exhaustive search at multiple 
resolutions of template is computationally complex. In real-
time applications, computational efficiency is also a crucial 
factor. 

In this paper, a tracking frame work to achieve accurate 
tracking of fast and manoeuvring target in real time has been 
proposed as shown in Fig. 1. proposed scheme has four 

basic units: Tracking, prediction, detection and smoothing.  
proposed scheme has been implemented and tested 
experimentally. Target location ( )tθ  and scale ( )tS  estimation 
has been explained in subsequent subsections.

3.1 Tracking Algorithm
Tracking is a procedure for localisation of the target. 

fDSST has performed very well12 and has high execution rate 
for this purpose. Therefore, it has been used as basic tracking 
algorithm in the proposed framework. fDSST is a multi-feature 
based DCF tracking algorithm capable of translational motion 
and scale estimation. Simplified block representation of fDSST 
has been given in Fig. 1. 

3.2 Trajectory Prediction
In fDSST, the search sample tz  in current frame t  is 

extracted at estimated target location in the previous frame. 
This scheme will give good result for only slow moving target. 
Localisation of fast motion has been addressed by predicting 
target’s probable location in the current frame using prediction. 
Fused outputs of Extended Kalman Filter (EKF) and quadratic 
regression based prediction has been used to predict target’s 
probable location in the current frame before applying fDSST 
for target localisation. It has helped in accurate localisation of 
fast motion without increasing search region. Thus, it reduces 
execution time also. 

3.2.1 Extended Kalman Filter
Extended Kalman Filter (EKF) is the popular choice of 

prediction for manoeuvring target. This algorithm has small 
computational requirement and also is recursive so it can be 
used for real time processes. The Kalman filter algorithm 
involves two steps: prediction and correction.

Tracking model includes target’s dynamics. Typically 
objects do not move with constant velocity. A model of a target 
tracking problem where the target is constrained to move with 
a constant acceleration has been used. Let x  and y represent 
the target tracking error (degree) in azimuth and elevation 
direction respectively. The system state can be described by 

[ , , , , , ]T
kx x x x y y y=     . It is assumed that sampled observations 

are acquired at discrete time interval t∆ . 
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The Kalman filter algorithm implements a discrete time, 
linear State-Space System described as Eqns (1) and (2). 
Equation (1) is state equation and Eqn (2) is measurement 
equation. 

1 1k k kx Ax w− −= +                                                            (1)

k k kz Hx v= +                                                                 (2)
A is the state transition model and it describes state 

transition between time steps. Similarly H is the  measurement 
model and it describes state to measurement transformation. Q 
is the process noise covariance and  R is the measurement noise 
covariance. For constant acceleration tracking system A and H  
have been defined as follows.
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The 1kw − and kv  are Gaussian white noise, whose 
variances are defined by

(0, ), (0, )k kw N Q v N R∼ ∼                                             (5)
In the first frame only prediction has been applied. 

In subsequent frames, correction has been followed by 
prediction. So with current measurement, states have been 
corrected and future state has been predicted. 

Kalman filter and its tuning has been discussed by 
Yaakov13, et al. Q has been selected using Eqn (6).
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T is the sampling period and is of the order of the  
magnitude of maximum acceleration incremental over a 
sampling period (T), ∆am. A practical range is 0.5∆am ≤ vσ

 ≤  
∆am.. Considering measurement error, step size of single pixel 
and its distribution as Gaussian, R has been taken as 1/12.

3.2.2 Quadratic Regression
Quadratic curve fitting has been also used to predict 

motion of target in each frame. Least squares approach for 
fitting a second order polynomial has been used. Last seven 
smoothen locations ( )tθ  have been used in quadratic curve 
fitting and prediction.

predicted location ( )t

∧

θ  to extract search patch tz  for target 
location is the combination of target location in the previous 
frame with fDSST algorithm 1( )t −θ  and final location after 

smoothing  1( )t −θ , EKF predicted location ( )kpθ  and quadratic 
regression based predicted location ( )qrpθ  as given in Eqn (7):

1 1( 2.0 1.5 )
5.5

t t kp qrp
t

∧
− −θ + θ + θ + θ

θ =


                                (7)

More weightage has been given to the EKF predicted 
location ( )kpθ  and quadratic regression based predicted 
location ( )qrpθ .

In general term, θ is related with angular position, and S 
is related to the scale of target. (θ, S) along with their subscript 
and superscript have been listed as follows

( )tθ : Target location, estimated by fDSST

( )tθ  : Target location, estimated after blob detection

( )tθ  : Target location, smoothened by limiting and smoothing

( )kpθ : Target location, predicted by EKF

( )qrpθ : Target location, predicted by quadratic regression

( )t

∧

θ : 
predicted location using fused information from fDSST, 
limiting and smoothing, EKF and quadratic curve fitting

( )tS : Scale of target, estimated by fDSST

( )tS : Scale of target, smoothened by limiting and smoothing

( )tS : Scale of target, estimated after blob detection

3.3 Target Detection
unlike other tracking schemes14, where tracking and 

detection are parallel processes, here, accurate target detection 
has been done around fDSST located target. Different target 
detection schemes have been applied depending on the nature 
of background. 

A permissible detection region factor ( )β with respect to 
fDSST estimated target has been defined. The detection region 
size has been taken as Eqn (8): 

1( S )
(1 )

2
t t

t
S

Sd −+
= + β                                                   (8)

St is the target size estimated using fDSST. Target region 
average intensity ( )TgtAvgInt  has been calculated by cropping 
around centre of fDSST estimated target as per dimension 
given by Eqn (9): 

1
3t tSdt S=                                                                    (9)

For background nature estimation, four side strips have 
been cropped from image based on Eqn (8) as per dimension 
given by Eqn (10). Only permissible boundary strips size of 
1/3rd of pixels has been taken.

( )
3

t t
t

Sd S
Sdb

−
=                                                    (10)

Mean and standard deviation of all four strips has been 
calculated. Strip with highest standard deviation in intensity 
has been discarded. Absolute differences of remaining three 
strips means have been calculated and tabulated in a 3x3 
matrix. Further elements of each row have been added. Strip 
causing highest sum has been eliminated. Average of mean of 
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Figure 2.  limiting and smoothing scheme.

remaining two strips has been taken as average background 
intensity ( )BckgndAvgInt . Similarly, average of standard 
deviation of background ( )BckgndStdInt  has been calculated 
from these two strips. Threshold for segmentation has been 
calculated as per Eqn (11).

( )
2

BckgndAvgInt TgtAvgIntThresholdSeg +
=            (11)

 
If ( ) 2ThresholdSeg BckgndAvgInt BckgndStdInt− ≥

background is declared as uniform and vice versa.

3.3.1 Uniform Background
If background is almost uniform, current frame has been 

segmented with adaptive threshold level ( )ThresholdSeg . 
Polarity of difference between threshold ( )ThresholdSeg and 
target average intensity ( )TgtAvgInt has been used adaptively 
to change label of segmented image. Erosion with disk 
structuring element with radius 2 pixels has been performed 
on segmented image to remove spurious targets. Again dilation 
with disk structuring element with radius 7 pixels has been 
performed to connect segmented target parts. 

3.3.2 Non-Uniform Background
If background is not uniform, previous frame has been 

aligned with respect to the current frame using background 
motion estimation. For background motion estimation a patch 
of 3 times of size cropped image ( )tSd has been taken from 
current and previous frame. Motion between background 
of frames has been estimated using FFT-based correlation. 
previous frame has been aligned with current frame using 
estimated motion. Difference image of aligned frames has 
been normalised for intensity (0-255). Mean ( )Avg and 
standard deviation ( )Std  of normalised image have been used 
to calculate adaptive threshold for segmentation. If intensity 
is greather than ( 3 )Avg Std+  or less than ( 3 )Avg Std− , it 
is part of the target. This segmented image has been filtered 
with median filter of size 5x5. Again dilation has been applied 
followed by erosion. In dilation structuring element is disk 
with radius 7 pixels and in erosion structuring element is disk 
with radius 6 pixels.

Largest blob has been declared as detected target. Target 
detection near estimated location has helped in acquiring 
accurate size and location.

3.4 Target Dynamics limiting and Smoothing
Target location and size has been limited and smoothened 

to avoid sudden changes due to inaccuracy of target detection. 
Target location and size have been limited in accordance to 
detection area limit factor ( )β . Basic purpose of smoothing is 
to restrict rate of change of targets’s location and size. proposed 

scheme has been shown in Fig. 2. It is based on approach 
proposed in15 which was further improved in16.

Smoothing scheme has a feedback structure. Considering 
required gain at low frequency, gain margin and phase margin 
for stability of the loop and 25 Hz frame rate, proportional 
controller gain ( )k  has been designed as 28. Generally, gain 
margin (GM) and phase margin (pM) are taken as greater 
than 6 dB and 30°, respectively. pM indicates transient 
behaviour. Damping ratio (ξ) and PM of second order system 

are approximately related as 
100
PM

ξ ≈ . ξ of the order of 0.55-

0.7 gives good transient behaviour and fast response for step 
command. So, GM of 6dB and pM of around 60° has been 
target. Saturation block will limit derivative of output (i.e. rate 
of change of location and size). The limit of saturation block 
has been adaptively changed depending upon nature of input 
to the smoother. If inputs are increasing/decreasing, this limit 
has been increased/decreased. For location, rate of increment 
of limit is 15 and rate of decrement is 7.5. Similar for size, 
rate of increment of limit is 10 and rate of decrement is 3.33. 
Maximum and minimum limit of saturation block has been 
fixed. For translational motion and size, maximum limit are  
150 and 100 pixels respectively. For translational motion 
minimum limit is 30 pixels and for size it is 10 pixels. These 
parameters have been tuned experimentally. This filtered 
parameters ( ltθ , ltS ) is limited to permissible detection region ( )γ .

4. ExPErIMEnTAl rESulTS
After development of proposed tracking scheme, its 

performance has been evaluated against standard datasets. 
proposed scheme has been implemented in MATLAB. All 
experiments have been performed on an Intel(R) Xeon(R) Cpu 
E5-2620 v3 @2.40GHz 2.40 GHz with 4 GB RAM computer. 
Implementation details have been presented in section 3.

 For the tracking approaches presented in section 4.2, 
the same parameter settings are used for all experiments and 
videos. All algorithms have been quantitatively evaluated on 
the list of dataset given in section 4.1. Extensive experiments 
have been performed to test the proposed method and validate 
its robustness to the scale and orientation changes of the 
target.

4.1 Datasets
Large number (15) of challenging datasets having fast 

and manoeuvring target has been used to extensively evaluate 
performance of proposed framework. These types of datasets 
are not commonly available. So, first six datasets have been 
extracted from fighter planes videos available on www.youtube.
com (i.e. 4 Days on the hills of Wales, Low flying in Mach Loop 
480p.mp4, 2014 F-22 RApTOR DEMO @ CALIFORNIA 
CApITAL AIR SHOW 480p.mp4, Buzzed by F18’s at Death 
Valley 480p.mp4, F-15C %20Grim Reapers%20,  Low Level 
Mach-Loop 480p.mp4, Low-Flying Jets LFA 7 Training area 
Mach Loop 480p.mp4). In order to perform quantitative 
analysis, each video sequences has been manually annotated for 
the ground truth. Remaining nine datasets have been selected 
from17-18. These datasets with ground truth can be found at  
dropbox. Also, all datasets with tracking annotations of all 
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considered state-of-art tracker and proposed framework can be 
found here (https://www.dropbox.com/sh/8m98ebmtxzjocj2/ 
AAAJbbeZN3XQ_xzEtlvt8ABua?dl=0). Colour codes of 
trackers are as used in Fig. 4.

4.2 Tracking Performance
Tracking performance of proposed scheme has been 

evaluated and compared with other four state-of-the-art 
trackers. In scale adaptive with multiple features (SAMF) 
tracker two type of appearance features have been considered: 
Gray and colour HOG.

Before evaluating tracking, few suitable changes have 
been made to make them perform better for this type of 
scenario of fast movement of target. Since interframe motion 
is larger, padding for search region has been increased to 2.5 
for all algorithms. 

In DSST no other changes have been made except 
padding. In fDSST and proposed algorithms, along with 
change in padding, feature update rate ( )η  has been increased 
to 0.075 from 0.025. Also to cater for fast change in shape and 
size scale step has been changed to 1.075 from 1.02.  In SAMF 
search size has been updated to [1 0.98 0.96 0.94 1.02 1.04 
1.06] from [1 0.985 0.99 0.995 1.005 1.01 1.015]. Also, for 
better performance, In SAMF_Color HOG, interp_factor has 
been changed to 0.075 from 0.01, kernel. sigma to 0.2 from 0.5 
to match with SAMF_gray.

For the comparative study of performance of proposed 
algorithms, four commonly used parameters19 of tracking has 
been considered: precision, overlap, centre location error 
(CLE) and speed of execution. Average distance precision, 
commonly known as precision is defined as the percentage 
of frames in a dataset where the Euclidean distance between 
the tracking output and ground truth centres is smaller than 
a threshold. Similarly average overlap is defined as the 
percentage of frames in a dataset where the intersection 
over-union overlap with the ground truth exceeds a certain 
threshold. This is normalised and it accounts for both position 
and size of the predicted and ground-truth bounding boxes 
simultaneously.

CLE in each frame of a dataset is defined as Euclidean 
distance in the centre of tracking output and ground truth. 
Commonly used threshold of 20 pixels for precision and 0.5 for 
overlap has been used in this paper. The value of average overlap 
for 50 per cent of overlap criteria is also called success ratio.

Average precision and overlap of trackers against all of 
 the 15 datasets have been tabulated in Tables 1 and 2, 
respectively. For precision and overlap, proposed framework 
has performed best (bold) in 10 and 12 datasets, respectively. 
Second best result has been underlined.

Average CLE has been consolidated in Table 3. Smaller 
the average CLE, better is tracking performance. In most cases, 
proposed method has performed better. 

Along with precision and overlap, speed of algorithms 
was also compared. It may be noted that visualisation of 
tracked frame with annotation was enabled during execution 
rate estimation. From the average execution rate as tabulated in 
Table 4, it is clear that fDSST has performed faster in the most 
of the case. But in a few cases, proposed scheme has edged it.  

Table 1. Tracking performance: Precision (per cent) 

Proposed fDSST DSST
SAMF_

Gray
SAMF_
hoG

Fighterplane_1 94.7 58.6 55.9 60.9 32.8
Fighterplane_2 80.4 51.7 26.9 69.2 69.5
Fighterplane_3 98.4 91.3 81.2 51 78.7
Fighterplane_4 98.9 100 100 99.3 100
Fighterplane_5 87 97.5 81.5 86 89.5
Fighterplane_6 93.5 100 69 86 51
Airplane_001 98 43 42.5 16.5 17
Airplane_004 100 21.5 21.5 21 27
Airplane_006 95 55.5 52.5 37.5 75.5
Airplane_007 87 32 22 38 38
Airplane_011 100 77.7 59.3 51.3 30
Big_2 74.5 100 100 100 97
Planestv_2 81.5 13.5 25.5 37 15
Planestv_3 98.0 17.7 9 2.67 10.7
Planestv_7 54.1 65.3 52.9 53.5 60.6

Table 2. Tracking performance: Success ratio (per cent)

Proposed fDSST DSST SAMF_
Gray

SAMF_
hoG

Fighterplane_1 72.8 11.8 9.47 11.5 11.2
Fighterplane_2 45.3 13.3 12.7 3.63 12.4
Fighterplane_3 73.3 35.4 16.3 3 16.1
Fighterplane_4 92.7 57.1 60.7 46.5 50.2
Fighterplane_5 69 82 31.5 6.5 11.5
Fighterplane_6 83.5 29.5 3 6.5 29.5
Airplane_001 100 16 35 15.5 16
Airplane_004 95 54.5 25 21.5 36
Airplane_006 88 47.5 43.5 27.5 55
Airplane_007 69 50 47.5 39.5 30.5
Airplane_011 50 31.3 29.3 11.3 30
Big_2 71 100 96 95.5 83
Planestv_2 45.5 64.5 64.5 21 40.5
Planestv_3 86.3 37.7 15.7 4.67 15.3
Planestv_7 65.9 54.1 48.2 22.9 23.5

In last nine datasets (1280 x 720 pixels) all algorithms have 
been slow due to large frame size as compared to first six 
datasets (640 x 360 pixels). Due to large frame format, more 
data were required to be processed.

Table 5 shows the average performance considering all 
datasets. Proposed scheme is distinctly better than rest in first 
three parameters (precision, success ration and CLE). In case 
of speed, fDSST has performed better.

Average precision and success rate of all datasets for 
different limits have been shown in Fig. 3. Precision curves 
simply show the percentage of correctly tracked frames for 
a range of distance thresholds. A higher precision at low 
thresholds means the tracker is more accurate. Similarly a 
higher overlap at low threshold indicates better performance. 
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Figure 3. comparative Performance: (a) Precision plot (b) 
Success plot.

Both plots indicate that the proposed method has performed 
better than the rest with a decent margin.

Also, all trackers were qualitatively evaluated for 
complete datasets. Representative performances of all five 
trackers against few datasets have been listed in Fig. 4. It can 
be observed that the proposed scheme is the most accurate and 
adaptive to target shape and size changes.

proposed algorithm has performed well with uniform 
background (Figs. 4(a) and (d)) as well as non-uniform 
background (Figs. 4(b) and (c)). Its major merit is quick 
adaptation to the shape and size changes. Smoothing of  
location and size of detected target has improved tracking 
performance. The major contributions in this work are addition 
of detection with fDSST tracking algorithm. Target location 
prediction and smoothing of detected target dynamics have 
also been included.

5. concluSIonS
Accurate scale estimation and target detection based 

scheme for fast moving target tracking has been presented. A 
framework has been developed, where detection has improved 
location and scale estimated by tracking algorithm. Target 
location prediction helped in a significant increase in tracking 
performance for fast moving target without increasing search 
region. Experimental results show that the proposed scheme 

Table 3. Tracking performance: Average clE (pixels)

Proposed fDSST DSST SAMF_
Gray

SAMF_
hoG

Fighterplane_1 7.48 19.3 37.2 19 30.1

Fighterplane_2 11.9 23.5 27.9 18.3 15.8

Fighterplane_3 5.04 9.72 13.7 19.8 14.3

Fighterplane_4 3.11 7.43 5.69 8.45 7.59

Fighterplane_5 8.32 5.44 9.73 13.4 7.51

Fighterplane_6 5.81 8.02 14.4 13.4 25

Airplane_001 5.15 32.2 34.1 60.5 49.3

Airplane_004 5.54 28 28.2 32.4 26.2

Airplane_006 5.75 19.9 19.2 24.7 17.7

Airplane_007 8.32 51.3 22 41.1 41.3

Airplane_011 4.43 12.4 18.9 26.3 82.7

Big_2 11.6 4.02 3.66 5.23 6.05

Planestv_2 13.8 35.3 31 49.9 38.8

Planestv_3 7.25 28.7 52.4 60.9 39.8

Planestv_7 25.2 20.7 32.6 45.6 17.1

Table 4. Tracking performance: Execution rate (FPS)

Proposed fDSST DSST SAMF_
Gray

SAMF_
hoG

Fighterplane_1 58.1 157 90 17.2 15.8

Fighterplane_2 23.5 122 61.6 16 14.6

Fighterplane_3 32.5 49.7 35.4 12.4 13.9

Fighterplane_4 21.6 42 2.82 10.8 11

Fighterplane_5 52.1 145 104 18.4 16.7

Fighterplane_6 21.5 126 98.3 18.4 16.3

Airplane_001 28.6 14.4 10.1 2.92 3.37

Airplane_004 8.85 55.6 1.82 3.64 4.28

Airplane_006 17.2 10.8 2.7 6.86 6.19

Airplane_007 8.55 10.3 2 3.9 5.77

Airplane_011 19 11.2 3.31 1.51 2.14

Big_2 11.8 25.5 1.44 2.93 4.85

Planestv_2 9.16 6.42 1.15 2.77 3.6

Planestv_3 5.77 8.48 1.25 2.49 3.85

Planestv_7 6.17 9.1 2.22 3.71 5.8

Table 5. Average tracking performance

Proposed fDSST DSST SAMF_
Gray

SAMF_
hoG

precision (%) 91.28 62.54 53.65 54.87 52.97

SR (%) 74.16 42.35 32.87 20.24 28.68

CLE (pixel) 8.10 19.72 23.85 28.28 28.46

Execution (fps) 22.31 54.49 28.16 8.43 8.78

(a)

(b)
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Figure 4. Tracking in representative frames (show bounding box of all 5 trackers with frame number):  (a) Airplane_001  
(b) Fighterplane_3  (c) Fighterplane_5  and (d) Airplane_004 (best view in colour).

facilitates tracking of fast and manoeuvring target with high 
precision and success ratio. It has performed distinctly well 
against manoeuvring and scale change compared to standard 
(benchmark) tracking algorithms. Experimental results confirm 
the efficacy of the proposed algorithm.

Novelty of this work resides in the addressing of a 
practical problem of accurately tracking of fast moving and 
scaling target. It has been achieved by using fDSST, trajectory 
prediction using EKF, quadratic regression, target detection 
and trajectory smoothing.
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