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AbsTRACT

Camouflaging is the process of merging the target with the background with the aim to reduce/delay its 
detection. It can be done using different materials/methods such as camouflaging nets, paints. Defence applications 
often require quick detection of camouflaged targets in a dynamic battlefield scenario. Though HSI data may facilitate 
detection of camouflaged targets but detection gets complicated due to issues (spectral variability, dimensionality). 
This paper presents a framework for detection of camouflaged target that allows military analysts to coordinate and 
utilise the expert knowledge for resolving camouflaged targets using remotely sensed data. Desired camouflaged 
target (set of three chairs as a target under a camouflaging net) has been resolved in three steps: First, hyperspectral 
data processing helps to detect the locations of potential camouflaged targets. It narrows down the location of 
the potential camouflaged targets by detecting camouflaging net using Independent component analysis and 
spectral matching algorithms. Second, detection and identification have been performed using LiDAR point cloud 
classification and morphological analysis. HSI processing helps to discard the redundant majority of LiDAR point 
clouds and support detailed analysis of only the minute portion of the point cloud data the system deems relevant. 
This facilitates extraction of salient features of the potential camouflaged target. Lastly, the decisions obtained have 
been fused to infer the identity of the desired targets. The experimental results indicate that the proposed approach 
may be used to successfully resolve camouflaged target assuming some a priori knowledge about the morphology 
of targets likely to be present.  
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1.  InTRoDuCTIon
Camouflaging is the concept that bears its origin from 

nature. This concept has been actively adopted and developed 
by humans particularly for defence applications, mainly for 
deceiving the enemy on battlefield. However, the battlefield 
today is now increasingly getting analysed using images 
acquired in different parts of the electro-magnetic (EM) 
spectrum1. Camouflaging too, therefore, aims at preventing 
detection of targets across different parts of EM spectrum using 
different techniques such as hiding, blending as summarised in 
Table 11.

Defence applications often require quick detection of 
camouflaged targets in a dynamic battlefield for an optimal 
allotment of limited resources. Additionally, military target 
detection puts very high qualitative demands2,8. Therefore, 
detection of the targets such as camouflaged military facilities/
uniforms is a challenging task1. Advancements in remote 
sensing data and technologies have greatly facilitated the 
detection of camouflaged targets in different regions of EM 
spectrum. These regions may be used either individually 
or collectively for detection of the camouflaged target. 

In particular, hyperspectral data, due to its high spectral 
resolution, offers an advantage of defeating camouflage6. 
Kim6 states that a large number of spectral bands provided by 
hyperspectral imaging can support detection of camouflaged 
targets. It can be done by selecting suitable spectral bands 
which are capable of discriminating the camouflaged targets. 
Experiments considered hyperspectral data consisting of 
1040 bands captured using a SPECIM_VNIR camera in 400 
nm - 1000 nm range. He proposed a distance metric and an 
entropy-based spatial grouping method for selection of bands 
that support detection of camouflaged regions. The detection 
rate (DR) obtained using the k-means clustering algorithm 
demonstrated very high DR (99 per cent) in comparison 
to principal component analysis (DR = 92 %). Therefore, 
HSI appears to have the potential to support the detection of 
camouflaged targets6,8,9. However, background clutter, target-
variability. under operational conditions can significantly 
degrade the accuracy of detection8. Further, the camouflaging 
process also adds to the existing target variability and thus may 
introduce more false alarms in detection. Therefore, detection 
of the camouflaged target using HSI is a challenging task1,8,9. 

Literature suggests that different datasets such as radio 
detection and ranging (RADAR), light detection and ranging  
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(LiDAR) provide uncorrelated information about the target 
and thus can aid in distinguishing the camouflaged target 
from its natural background5,6. Cheng5, et al. proposed joint 
usage of visible images (captured at 555 nm) and near-infrared 
polarimetric images (captured at 750 nm) using polarised 
modified soil adjusted vegetation index for detection of the 
camouflaged target under vegetation environment. Results 
demonstrated that camouflaged target was well separated from 
the background. Several researchers have used HSI and LiDAR 
for detection of numerous man-made objects such as buildings, 
streets, tree-species identification using methods involving 
fusion, supervised/unsupervised classifications6,7. Thus, 
combined use of different kinds of data can achieve higher 
detection accuracies over the data used from a single sensor8. 
However, these approaches require the use of specialised 
sensors and thus making data acquisition expensive, and may 
also require additional processing such as spatial scaling. The 
background clutter may still have an effect on detection. under 
these circumstances, shape-based methods may be useful 
for target identification8. Several shape-based methods i.e. 
rectangularity, contour-based models for target identification 
have been reported in the literature9,10. 

In this work, both spectral as well as shape information 
of targets have been used for detection and identification of 
camouflaged targets using HSI and LiDAR data. The work has 
been divided into two parts, first, detection of camouflaging 
material has been performed using spectral information from 
HSI data, which first has been pre-processed using independent 
component analysis (ICA). The pre-processing has assisted 
in selecting statistically independent components containing 
the camouflaging material11. ICA derived components were 
subjected to further detection processing. next, identification of 
underlying camouflaged target has been performed using shape 
information from LiDAR data. Several approaches namely, 
contours, volumes, manual/expert analysis. have been used in 
several studies for identification of targets12. Here in light of a 
priori knowledge about potential target, few parameters namely 
DSM, alpha shape, height, and context. along with expert/
analyst knowledge have been used for inferring identification 
of potential target using LiDAR data12. Lastly, identity of the 
target has been confirmed using decision level fusion of results 
obtained from HSI and LiDAR data processing. 

2.  ExpERImEnTAL DATA
The data available for the study consisted of 

Hyperspectral and LiDAR data collected as part of a 
multimodal data collection campaign13 conducted by 
Rochester Institute of Technology (RIT) in conjunction with 
SpecTIR, LLC, in the Rochester, new york, during July26-
29, 2010. 

2.1 Hyperspectral Data
The hyperspectral data has been captured using 

ProSpecTIR-VS2 in 360 bands ranging from 390 nm - 2450 nm 
with a spectral resolution of 10 nm and spatial resolution of  
1 m, as shown in Fig. 1(a). For the purpose of the experiments, 
following two spatial subsets of this data have been used:
(i) Image-I refers to the first spatial subset of size  

154 x 82 pixels (Fig. 1(b). It contains three camouflaging 
materials placed flat on road (i.e. green camouflaging-
net (gREEn_CAMo), tan camouflaging-net (TAn_
CAMo) and three instance of green camouflaging-tarps  
(gREEn_TARp1-3), (Fig. 2(a)). They do not have any 
underlying target.

(ii) Image-II refers to the second spatial subset of size 67x42 
pixels (Fig. 1(c)). This subset contains a camouflaging 
net (CAMo1) placed over a camouflaged target i.e. set of 
three chair (Fig. 2(b)). 

2.2  LiDAR Data
Co-registered LiDAR data of same area has been collected 

using Leica ALS60. The spatial resolution of the LiDAR data 
is 1 m and its point density is 8 ppm. From this data, only one 
subset corresponding to the area covered by image-II has been 
generated for the purpose of experiments and referred to as 
LiDAR-II. 

2.3  Ground Truth Data
Extensive ground truth data (ground photos, location 

(latitude and longitude) and high-resolution RgB ortho images 
as shown in Fig. 2 have also been also provided.

3.  mETHoDoLoGy AnD ImpLEmEnTATIon
The process of camouflaging makes detection of any target 

a challenging task by hiding the target under a camouflaging 
material. In this paper, an approach for detection and 
identification of a camouflaged target lying under camouflaging 
material has been evolved as shown in Fig. 3.     

A two step-process has been adopted. First, camouflaging 
materials have been detected by implementing ICA on the 
hyperspectral data followed by applying matched filter (MF) 
and adaptive cosine estimator (ACE) algorithm on ICA derived 
components. The locations (latitude-longitude) of the pixels 
of camouflaging materials, thus identified, have been stored 
as seed locations of potential camouflaged target15. Second, 
LiDAR point cloud data has been classified into user-defined 
classes. Next, the shape of classes at the seed locations have 
been estimated using alpha shape and DSM. Several other 
information about targets such as its height, structure, and 
context have also been obtained using LiDAR data. Lastly, 
decisions obtained from HSI, LiDAR and morphological 

Camouflaging technique
Em Region

optical IR/Thermal microwave

Hiding Earth-cover, vegetation net Earth-cover, screens, smoke Chaff, radar absorbing materials (RAM)

Blending Paint, vegetation Thermal paint, air conditioning Vegetation RAM, reshaping,  textured-mats
Disguising/disrupting Reshaping, paint Reshaping, paint Reshaping corner reflectors

Table 1. Camouflaging materials
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Figure 2. Ground photo (a) camouflaging material and 
(b) camouflaged target under CAmo1.

Figure 3. Workflow of the proposed camouflaged target detection 
approach.

Figure 1. (a) orthorectified true-color image of RIT-Campus and (b) Image-I, (c) Image-II

(a)

(b)

(a)

(b)

(c)
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analysis have been fused to infer the identity of desired 
targets8. 

3.1  HsI processing
ICA is a blind source separation approach that decomposes 

a complex dataset into statistically separable components. In 
this paper, Negentropy based Fast ICA algorithm has been 
implemented to generate 360 components11. The first 100 
components with higher values of kurtosis have been selected. 
next for detection of camouflaging material, ACE and MF 
have been implemented on data without and with ICA-based 
pre-processing (50, 100 and 200 ICA components). Lastly, 
the accuracy of detection of camouflaging materials has 
been assessed by computing detection statistics namely true 
positives (Tp), false negatives (Fn), false positives (Fp) and 
true negatives (Tn). The statistics have been computed using 
windows of different sizes covering a small area around 
camouflaging materials only. no detection statistics have 
been computed for image-II because all the three chairs of the 
camouflaged target lie entirely within one pixel only. 

3.2  LiDAR data processing 
LiDAR data has been used to first detect the camouflaged 

target by classification of LiDAR point cloud and then perform 
identification using shape-based analysis of the detections 
obtained. LiDAR detection assumes that the user has some a 
priori knowledge about the morphology of the target. Initially, 
seven user-defined classes have been identified in the LiDAR 
data on the basis of knowledge about the presence of these 
features in image-II. These classes include ground, building, 
low/medium/high vegetation, road and potential target (set 
of three chairs). The LiDAR raw point-cloud data has been 
progressively classified into these seven classes on the basis 
of height, intensity, contextual information and 3-dimensional 
shape. 

For classification, firstly points belonging to a ground 
class are separated from non-ground points using an algorithm 
based on progressive densification of triangulated irregular 
network (TIn) surfaces14. Second, all non-ground class points 
have been processed for finding points belonging to building 
class by finding points which along with its neighboring points 
form a planar surface with an area greater than a predetermined 
threshold and have single echo return. Next, remaining non-
ground class points have been classified into vegetation classes 
(i.e. low/medium/high) using macros defined on the basis of 
height(0.001 m - 0.3 m in low-vegetation class, 0.3 m - 3 m 
to medium-vegetation and 3 m - 20 m into high-vegetation 
class). Further, height-based classification of vegetation-class 
may misclassify LiDAR points belonging to several man-
made features like vehicles, road into vegetation class and thus 
need to be segregated. These points are further segregated into 
vehicle, road, and potential target class using features such as 
dimensions, intensity, shape and context information.

After classification, locations of points belonging to 
potential target class is compared with the seed locations 
of the potential targets obtained from HSI data. Targets 
at coincident locations have been considered as points of 
potential camouflaged target and thus have been used further 

for identification. Lastly, verification has been performed 
using LiDAR data and visible band images12. Different 
shape extraction approaches of the LiDAR point cloud, such 
as DSM and alpha shape have been employed to enhance 
the visualisation and interpretation of the potential target. 
Other information about the target such as height, structure, 
topological and contextual information has also been extracted 
from classified LiDAR data. These provide useful information 
for target recognition tasks15. Identification of the target requires 
manual user assessment with visible remote sensing images15,3. 
Therefore, all of the parameters obtained have been stored and 
analysed using a priori knowledge of the desired camouflaged 
target to infer the identity of the targets obtained. 

3.3  Decision Level Fusion
In this study, hyperspectral and LiDAR data have been 

fused using decision level fusion for detection and identification 
of the desired camouflaged target. Literature suggests that the 
choice of fusion method is highly dependent on application 
and data being processed16. Here, decision level fusion has 
been used since it preserves the unique characteristics of both 
the datasets used i.e. LiDAR and HSI16. Despite disparities in 
both the datasets, decision level fusion allows independent 
decisions to be collectively used for confirming the identity of 
the desired target16. Mathematically, two sources of information 
i.e. S1(HSI) and S2 (LiDAR) have been used to obtain local 
decisions d1 (on the basis of location and spectral identity) 
and d2 (on the basis of 3-Dimensional view, shape, height and 
morphological information). Lastly, both of the local decisions 
have been fused to obtain overall-decision, 1 2( )D d d= ∪
for confirming the identity of the target. Finally, location of 
identified camouflaged target from LiDAR point cloud has 
been matched with the georeferenced images for the purpose 
of accuracy assessment. 

4.  REsuLT AnD DIsCussIons
4.1  HsI processing

(a) Image-I: The ICA resulted into 360 components. Few 
components containing target information (encircled) are as 
shown in Fig. 4(a). next, MF and ACE are implemented for 
detection of camouflaging materials. The results obtained after 
applying MF are as shown in Fig. 4(b) and detections statistics 
for ACE and MF have been summarised in Table 2.

Following observations can be made from Fig. 4 and 
Table 2, 
i.  GREEN_CAMO: Most of the target pixels have been 

detected using both algorithms in all experiments with 

Figure 4. Image-I results : (a) ICA component and (b) binary 
image (detection for camouflaging-materials).

(a) (b)
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Tp>=8 out of 10. 
ii.  TAN_CAMO: Most of the target pixels have been 

detected using both algorithms in all of the four detection 
experiments with Tp>=13 out of 16. MF performed better 
than ACE. 

iii.  GREEN_TARP1: Most of the target pixels have been 
detected. MF performs better than ACE (with 200 ICA 

component). However, overall highest detection with 
lowest false alarms is produced by the proposed method. 
(b) Image-II: Few of the ICA components generated using 

image-II are as shown in Fig. 5(a). Figure 5(b) shows detections 
obtained using MF on selected 100 ICA components. 

It may be observed that MF, when applied on ICA 
components, leads to detection of pixels pertaining to 
camouflaging material CAMo1 (encircled and as shown in 
Fig. 5(b)) and several other pixels have also been detected 
as CAMo1. Here, detection statistics could not be computed 
since the size of the target (only one pixel) is very small 
with respect to spatial resolution. Next, all locations of the 
camouflaged material detected in image-II have been used as 
the seed locations of the potential camouflaged targets. 

GREEn_CAmo (no. of Target-pixels:10)
ACE

ACE 
(no-ICA)

ACE (50-
Component)

Proposed_Method 
(100-component)

ACE (200-
Component)

TP 10 10 10 10
FN 0 0 0 0
FP 1889 330 88 250
TN 10729 12288 12530 12368

MF
MF (no-
ICA)

 MF (50-
component)

Proposed_Method 
(100-component)

MF (200-
component)

TP 10 10 10 8
FN 0 0 0 2
FP 249 477 211 665
TN 12369 12141 12407 11953

TAn_CAmo (no. of target-pixels:16)
ACE

ACE 
(no-ICA)

ACE (50-
component)

Proposed_Method 
(100-component)

ACE (200-
Component)

TP 13 14 16 0
FN 3 2 0 16
FP 1 35 269 113
TN 12611 12577 12343 12499

MF
MF (no-
ICA)

 MF (50-
component)

Proposed_Method 
(100-component)

MF (200-
component)

TP 13 16 14 13
FN 3 0 2 3
FP 211 344 60 458
TN 12401 12268 12552 12154

GREEn_TARp1(no. of target-pixels: 15)
ACE

ACE 
(no-ICA)

ACE (50-
component)

Proposed_Method 
(100-component)

ACE (200-
Component)

TP 13 14 15 2
FN 2 1 0 13
FP 161 239 53 541
TN 12452 12374 12560 12072

MF
MF (no-
ICA)

 MF (50-
component)

Proposed_Method 
(100-component)

MF (200-
component)

TP 15 14 15 11
FN 0 1 0 4
FP 454 347 76 836
TN 12159 12266 12537 11777

Table 2. statistics for detection (camouflaging_materials)

4.2 LiDAR processing
The LiDAR point cloud has been classified into seven 

classes i.e. ground, building, vehicles, road, low/medium/high 
vegetation and potential target class based on height, intensity, 
contextual information, and shape, as shown in Fig. 6(a). next, 
LiDAR points of potential target class have been processed 
further for identification, as shown in Fig. 7. 

By comparing the shape of DSM (Fig. 7(c)) with the a 
priori known shape of the target (Fig. 7(a)), the camouflaged 
target can be visually identified. Additionally, three small peaks 
on the relatively flat ground can be observed from alpha-shape 
(Fig. 7(b)). These correspond to each of the three chairs in 

Figure 6. Classification of LiDAR point cloud (potential target 
encircled).

Figure 5. Image-II results (a) ICA component and (b) detection 
for CAmo1.

(a) (b)

Building

Ground

Road

Potential target

Low vegetation

Medium vegetation

High vegetation
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the desired camouflaged target being considered. Figure 7(d) 
summarises the approximate height measured for each of the 
peaks of the target and the referenced chair. next as observed 
from classified point-cloud, the potential target has a volumetric 
structure and is placed perpendicularly on the ground without 
any trees or buildings in close proximity. Therefore on the 
basis of comparing the results obtained with visible images and 
a priori knowledge, and the target detected appears to be most 
likely the desired set of three camouflaged chairs. 

Lastly, the identity of the potential target has been 
established using decision level fusion of spectral and 
shape information obtained from HSI and LiDAR analysis 
respectively. Therefore, combined decision 1 2( )D d d= ∪  has 
been obtained by fusing

d1= {Location, Spectral, Identity}, d2 = {3D shape, Alpha 
shape, Height, Contextual information, Exoert interpretation}

On comparison of D along with a priori knowledge about 
the target, potential target has been identified as a set of three 
chairs camouflaged under a net. Further, results obtained have 
been verified by comparing the locations of the detection with 
a priori known location of the targets which have been found to 
be almost similar (i.e. N 43 5 9.5, W 77 40 38.2 and N 43 5 9.3, 
W 77 40 38.4 respectively). Therefore, desired camouflaged 
target has been detected and identified by performing decision 
level fusion using hyperspectral and LiDAR data.

5. ConCLusIons 
The paper presents a simple and efficient approach for 

fusion of hyperspectral and LiDAR data that can provide 
more situational awareness on the battlefield for detection and 

identification of camouflaged targets. Both spectral and shape 
information has been used for resolving camouflaged target 
hidden under camouflaging materials. Results demonstrate 
that detection of camouflaging material has been improved 
by performing ICA analysis prior to detection using MF and 
ACE. Lastly, identity of the target has been established by 
performing decision level fusion of spectral identity obtained 
using hyperspectral data and morphological identity obtained 
using LiDAR data. The benefit of shape information appears to 
be a promising way of improving spectral detection of targets 
in the real operational environment. In addition, the presented 
approach may also be used to reduce the massive amount of 
data generated from airborne LiDAR sensors into manageable 
relevant components which analysts can use to identify the 
desired camouflaged target. Future work may be directed 
towards establishing a quantitative method for comparing the 
shape of the detected target with a reference target. 
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