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1. IntroductIon
Hypersingular integral equations play a vital role in the 

field of aeronautics1-3. These integral equations occur during 
the formulation of interference or interaction problems such as 
wing and tail surfaces problem, pairs or collections of wings 
(biplanes or cascades) problems2 and mathematical modelling 
of vortex wakes at the time of takeoff-landing operations4. 
Also, in study of theory of incompressible flow we face the 
problem of evaluating the hypersingular integral like Prandtl’s 
integral equation formulated as singular integral equation to 
calculate the circulation distribution5,6 of a finite span wing.

Apart from aeronautics, the problems of acoustics7, fluid 
dynamics8, fracture mechanics9 and water wave scattering10 
can be modelled as hypersingular integral equations. Many 
analytical and numerical methods such as polynomial 
approximation method9, complex variable function method11 
and reproducing kernel method12 for solving singular integral 
equations have been already explored. However, search for a 
method which is easy to understand, easy to implement and 
numerically stable is always there. In this article, we propose 
a residual based Galerkin method to find the approximate 
solutions of integral equations with hyper kernel.

The hypersingular integral equations that occur during 
the formulation of many boundary value problems of practical 
interest are of the form
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with ( 1) 0, ( ), ( , )where  z x  m x sξ ± =  are known real valued  
H¨older continuous13 functions and ( )xξ  is an unknown 
function. The function ( )xξ  is assumed to have the H¨older 
continuous derivative of first order on ( 1,1)−  which is required 
to ensure the existence of finite-part integral14. In Eqn. (1), the 
singular integral exists as Hadamard finite part integral (HFP) 
which is defined as
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2. Method of solutIon
A function ( )sξ  defined on [ 1,1]−  in Eqn. (1) with 

( 1) 0ξ ± =  can be represented as follows

 2( ) 1 ( )s s sξ = − φ                                                         (3)

where ( )sφ  is an unknown function defined on [ 1,1].−  Using 
Eqn. (3) in Eqn. (1), we obtain
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Now we approximate the function ( )sφ  as follows
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where 0{ ( )}n
j je s =  denotes the set of ( 1)n + orthonormalised 

Legendre polynomials on [ 1,1]−  and ; 1, 2, , ,j  j nα = …  are 
unknown constant coefficients. On using the approximation 
which is defined in Eqn. (5) for ( )sφ in Eqn. (4), the residual 
error   0 1 2( , , , ,..., )nR x α α α α   is as follows
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In Galerkin method, this  0 1 2( , , , ,..., )nR x α α α α  is 
assumed to be orthogonal to the space spanned by orthonormal 
polynomials, say  { ( )}n

j j 0E span e x ==   that is, we have

20 1 2( , , , ,..., ), 0, 0,1, 2, ,n j L
R x e j n〈 α α α α 〉 = ∀ = …         (7)

where 2L  is the space of all  real valued functions which are 
square integrable on [ 1,1]− .

Using Eqn. (6) for 0,1, 2, , ,j n= …   Eqn. (7) becomes
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We evaluate singular integral for

0,1, ,j n= … , in system (8) by using results15 (see  Eqn. 
(34)15)  and   we get a linear system of order  ( 1) ( 1).n n+ × +  
The matrix form of  the above system (8) is as follows
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We evaluate singular integral for 0,1, ,j n= … , in  Eqn. 
(8) by using results15 (see formula (34) of ref15) and we get a 
linear system of order  ( 1) ( 1).n n+ × +  

Solving  Eqn. (9), we obtain the value of unknown 
coefficients ; 0,1, 2,...., .j j nα =  the substitution of these jα
values in Eqn. (5) provides the approximate solution of Eqn. 
(4) and hence for Eqn. (1). This completes the description of 
proposed method used to find an approximate solution of Eqn. 
(1).

3.  convergence AnAlysIs 
In this section, we   show that sequence 0{ }n n

∞
=φ  converges 

to the exact solution  in 2L  space and we derive the error 
bound.

3.1 function spaces
We initialize this subsection by defining function spaces 

in which the error analysis of numerical method takes place.
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Hilbert Space of all square integrable real valued functions 
defined on [ 1,1]− , equipped with the  norm  2L

⋅   and inner 
product 2.,. ,

L
〈 〉  defined as 
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Now using the concept16, we define the set of functions
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The set V  is a subspace of 2L  space which is made into 
a Hilbert space with the following norm V

⋅  and inner product
.,. V〈 〉  
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where jd  is same as defined in Eqn. (14). Let ,k
k

k

e
h
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=  then

|| || 1.k Vh =  This set  0{ }k kh ∞
=  forms complete orthonormal basis 

for the Hilbert space ,V  that is if ,V∈  then we have 
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Now operating the operator S  which is defined 

in Eqn. (15) on orthonormalised Legendre polynomials 
( ); 0,1, 2, ,je x j n= …  and using the results15 (see Eqn. (34)15), 

we obtain  
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3.2 error bound
With the help of Eqn. (19), we can extend the operator 

2:S V L→  as a bounded linear operator and defined as
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Using Eqn. (20), we find the norm of bounded linear 
operator S
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j
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Hence using Eqn. (21), we obtain
|| || 1S =                                                                          (22)
Moreover, the mapping 2:S V L→  is one-one and onto. 

Therefore following Bounded Inverse Theorem17, the operator 
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1 2:S L V− →  exists as a bounded linear operator and which is 
defined as

21

0

( ), ( )
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x e x
S x e x

d

∞
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〈φ 〉
φ = ∑                                 (23)

Now, with the aid of Eqn. (23), we calculate the norm for 
linear operator 1S −  

2
1|| ( ) || || ( ) ||V L

S x x− φ = φ                                                  (24)                    
Finally, using Eqn. (24), the norm of bounded operator 

1S −   is
1|| || 1S − =                                                                       (25)

Now we consider the mapping 2 2:nQ L L→ , where nQ  is 
an orthogonal projection operator which is defined as 

2
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Q x e e x
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where n is the degree of orthonormalised Legendre 
polynomial by which ( )xφ is approximated. Now we write (4) 
in an operator equation from the spaces V  to 2L  

2( ) ( ) ( ), ( ) , ( )S M x z x  z x L  x V− φ = ∈ φ ∈                     (27)

where the operator S  is defined in  Eqn. (15) and we 
define  the operator 2:M V L→ as follows
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1
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−
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The operator 2: ,M V L→  defined in Eqn. (28) will be a 
compact operator with the following assumption
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Equation (27) will be having   a unique solution if and 
only if the inverse of the operator ( )S M−  exists as a bounded 
linear operator. We assume that the bounded linear operator 

1( )S M −−  exists. From Eqn. (7), we have 
[( ) ( ) ( )] 0n nQ S M x z x− φ − =                                        (30) 

Since the function ( )nS xφ is a polynomial therefore 
following the definition of operator , nQ  we get

( ) ( )n n nQ S x S xφ = φ                                                     (31) 
Using the above fact, Eqn. (30) becomes

( ) ( ) ( )n n n nS x Q M x Q z xφ − φ =                                      (32) 
Since the operator S  has a bounded inverse and the 

operator M  is compact, hence for all   1
0 , ( )nn n  S Q M −> −  

exists as a bounded linear operator13. Therefore, Eqn. (32) has 
a unique solution, which is as follows

1( ) ( ) ( )n n nx S Q M Q z x−φ = −                                         (33) 
Now from Eqns. (27) and (33), we have   
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Due to the assumption defined in Eqn. (29), 
the operator M  is a Hilbert-Schmidt operator13 and 

hence 2|| || 0  .n L
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On using Eqn. (36), Eqn. (35) can be written as follows
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Hence, sequence 0{ }n n
∞

=φ  converges to the exact solution 
in 2L  space.

3.3 theorem
If ˆ( )ncond C  denotes the condition number of coefficient 

matrix ˆ ,nC where ˆ( )ncond C  1ˆ ˆ|| |||| ||n n C C−= and the norm of 
matrices are the spectral norm. Then, we have
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where 1n+
  is a real vector space having ( 1)n + -tuples of real 

numbers.  Also, we have
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Following Eqns. (39) and (40), we get
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Further, we define a restriction operator13 1: n
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By orthogonality of  Legendre polynomials in Eqn. (5), 
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2, , 0,1, ,j n j L
e j nα = 〈φ 〉 = …                                         (43)

From Eqns. (42) and (43), we obtain
( )n n s Aφ =                                                                 (44)

where A  is defined in Eqn. (10). The existence of the operator 
1( )nS Q M −−  implies that ( )n sφ exists uniquely. Therefore, by  

Eqn. (44) it is clear that matrix A exists uniquely which proves 
that the system (9) has a unique solution. 

Now we have
1 1ˆ ˆ ˆ( )n n n n nC Z S Q M Z− −= −                                          (45)
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The boundedness of ( )nS Q M−  and 1( )nS Q M −−  implies 
condition number of Ĉ  is also bounded. Hence, our proposed 
method is numerically stable13. Since  || || 0,nM Q M− →  we 
obtain

|| ( ) ( ) ||  || || || ||
|| || || ||  

n n

n

S M S Q M S M S Q M
S Q M S M as n
− − − ≤ − + −

⇒ − → − → ∞     (50)

and
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|| ( ) || || ( ) || || ||

( )n n

n n

S M S Q M S M I S M S Q M

S M  S Q M  M Q M

− − − −

− −

− − − = − − − −

≤ − − −

(51)
where I is an identity operator.  From Eqn. (51), we obtain

1 1|| ( ) || || ( ) ||  nS Q M S M as n− −− → − → ∞                    (52)

Now, from Eqns. (49), (50) and (51), we  have
1 1ˆ ˆ|| || || || || || || ( ) ||  C  C S M  S M as n− −→ − − → ∞      (53)

4. exAMPles 
All the numerical calculations are performed on Wolfram 

Mathematica 11.0.
example 1.  The hypersingular integral equation 

              
21 1 2 2

21 1

( ) 1 1 1( ) ( ) 1 3 ,  | | 1
18 2 144( )

( )s s xds s x s s ds x  x
s x− −

φ −
+ + φ − = π + − <

−∫ ∫
 

(54) 
has exact solution  2( ) .x xφ =  
It can be seen from Table 1 that we are getting the exact 

solution at just n = 2. Table 1 contains all the numerical results 
for Example 1. The comparison of exact and approximate 

solutions for n = 1, 2 is shown in Figure 1. And, it is clear 
from the figure that the exact solution coincides with the 
approximate solution even for a small value of n which is in 
this case is n = 2.
Table 1. Details of obtained numerical results for different n 

for example 1

n Actual error (In L2 norm) error bound

1 0.483001 4.25580

2                        0     0

example 2. Consider hypersingular integral equation
                  21 1 2 3

21 1

( ) 1 17( ) 1 8 1 , | | 1
8( )

( )s s ds sx s s ds x x x
s x− −

φ −
+ φ − = π − + − <

−∫ ∫   

(55)
For which 3( ) 1 2x xφ = +  is the exact solution.

Table 2. Details of obtained numerical results for different  n 
for example 2

n Actual error (In L2 norm) error bound
1 0.46595 9.29106
2 0.46595 9.29106
3         0        0

Again, it can be seen from Table 2 that the approximate 
solution obtained is identical to the exact solution at just n 
= 3. Although, Chen12 also solved this problem up to n = 25 
by using method of   reproducing  kernel, but his method did 

figure 2. comparison of exact solution with approximate solutions of example 2.

figure 1. comparison of exact solution with approximate solutions of example 1.
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not give the exact solution.  Figure 2 shows the comparison 
between approximate solutions and exact solution for different 
values of n.

Further, it can be seen from the figure that both the 
solutions coincide. All numerical results are detailed in Table 
2.    

 example 3. Consider a hypersingular integral equation

 
2 2 21 1

21 1

( ) 1 ( ) ( ) 1 ( ), | | 1
36 12( )

s s x x s sds ds z x x
ss x− −

φ − + φ −
+ = π <

+−∫ ∫   (56)
 

where

2 2 3

4 5 6 7

8 9 10 11

1326099 1469711672063 84573531( )
655360 7864320 320 2

1470155415887 84573531 115527
7864320 10240320 2

4953727 88851 5394557 7571
16384 2560 10240 320

1453239 327 1793 45
5120 64 256 16

x xz x

x x x

x x x x

x x x x

= − + −

+ + +

− − + +

+ − − +
121885

128
x

 The exact solution of this example is
2 3

4 5 6 7

8 9 10 11 12

1( ) 252 45 4510 725
640
22258 2680 38000 2000

20252 252 45 150 725 .

(

)

x x x x

x x x x

x x x x x

φ = − + + − −

+ + −

+ + −

−

−

Table 3 contains all the obtained numerical results for 
Example 3. The comparison between approximate solutions 
and exact solution for n = 1, 2, . . . , 12, is shown in Figure 3. 
This figure shows, that the exact solution is in great agreement 
with the approximate solution at n = 12.  It is also clear from 
Table 3 that the actual error is lying with in the error bound 
which follows from our result defined by Eqn. (37).

5. conclusIons 
Our numerical method finds approximate solutions of 

hypersingular integral equations by converting it into a linear 
system of algebraic equations. The convergence of sequence of 
approximate solutions is proved in 2L  space and error bound is 
also derived. The existence and uniqueness for the solution of 

linear system  which is obtained as a result of approximation of  
Eqn. (1), is also shown.
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