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ABSTRACT

The changing nature of warfare has seen a paradigm shift from the conventional to asymmetric, contactless warfare 
such as information and cyber warfare. Excessive dependence on information and communication technologies, cloud 
infrastructures, big data analytics, data-mining and automation in decision making poses grave threats to business 
and economy in adversarial environments. Adversarial machine learning is a fast growing area of research which 
studies the design of Machine Learning algorithms that are robust in adversarial environments. This paper presents 
a comprehensive survey of this emerging area and the various techniques of adversary modelling. We explore the 
threat models for Machine Learning systems and describe the various techniques to attack and defend them. We 
present privacy issues in these models and describe a cyber-warfare test-bed to test the effectiveness of the various 
attack-defence strategies and conclude with some open problems in this area of research.
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1. INTRODUCTION
Machine learning (ML) and artificial intelligence are 

ubiquitous and have been extensively used to automate tasks 
and decision making processes. There has been a tremendous 
growth and dependence in using ML applications in national 
critical infrastructures and critical areas such as medicine and 
healthcare, computer security, spam and malware detection, 
autonomous driving vehicles, unmanned autonomous systems 
and homeland security. The critical nature of such systems 
and their applications demand a high level of defence against 
cyber attacks. While data scientists successfully automate 
tasks and use data mining techniques to uncover hidden, yet 
undiscovered knowledge from the vast unstructured data 
collected from disparate sources, there are serious concerns in 
the security issues and vulnerabilities present in data mining 
and ML systems. In such networks of data and knowledge 
sources spanning distributed databases of critical nature present 
in several public, private clouds, and government owned cyber 
infrastructures, run many ML algorithms to extract useful 
information and knowledge. They are highly vulnerable in the 
cyber ecosystem and become the weakest link in the entire 
chain which can compromise security of the entire system. 
Medical and health-care domains for instance, using ML need 
to ensure privacy and data leakage prevention. Recommender 
systems, Stock market prediction, and Sentiment analysis use 
ML algorithms for assessing market trends from the data and 
any malicious change in the data or the underlying algorithms 
effects the data distributions and end results. This field of ML 
is an important area of research owing to the growing concerns 
of security, privacy and over reliance of users on automated 

decision making. Security of ML models need to be evaluated 
against adversaries and defences are to be set up to ensure 
robust designs against adversarial attacks as shown in Fig. 1. 

In this study, we explore the emerging area of adversarial 
machine learning (AML) which is the design of machine 
learning algorithms that are robust to various attacks under the 
constraints of the knowledge and capabilities of the adversaries. 
The study of AML helps in two ways: first, we can plan 
strategies and course of actions to model and counter against 
adversarial behaviour; second is to understand and model 
the adversary in order to strengthen our defences against the 
actions. These are used for red teaming in a cyberwarfare test-
bed.

2. VULNeRABILITIeS IN MAChINe 
LeARNINg ALgORIThMS
Vulnerabilities exist in machine learning models 

implemented to generate information from data. An important 
source of vulnerability lies in the faulty assumptions made 
while designing and training the ML model. 

Data scientists design ML models to be robust and accurate, 
and they implicitly assume to preserve privacy; however this 
assumption is not true and leads to serious breach in privacy.

Researchers have modelled ML systems on linearly 
separable data and use linear function as decision function to 
reduce the computation complexity. This assumption increases 
the overall mis-classifications as an adversary can create 
adversarial examples to further degrade the performance of the 
model. 

In some cases, collection of data is done in unsupervised 
manner and in adversarial settings like collecting data from 
honeypot servers. This allows attackers to carefully craft Received : 25 November 2017, Revised : 19 March 2018 
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adversarial examples to be collected as data which may degrade  
the model since the adversary has direct access to the training 
data.

Different data instances are considered to be independent 
and identically distributed. Some authors, for convenience and 
ease of computation, assume that the features are independent 
of each other. however, an adversary can try to obtain the 
correlation between different data points and features to 
introduce instances from different data distribution to degrade 
the model’s performance.

One of the major vulnerabilities in ML models is that the 
models perform well on testing and training data as they are 
usually drawn from the same underlying distribution. If the 
data from some other distribution is used as an input, the model 
will behave differently. This is the basic vulnerability that is 
exploited by attackers to craft adversarial examples to evade 
the model or degrade its performance.

3.  MODeLLINg The ADVeRSARy
Due to the critical nature of the applications of ML, it is 

important to model the adversary and his strategies to attack the 
decision making algorithms, to represent a realistic adversary 
in a cyber warfare scenario.

The concept of AML was formally introduced by  
huang1, et al. who proposed a taxonomy of adversarial attacks 
and the adversary modelled using the triple: Capability, 
knowledge and goals.

3.1 Adversarial Capabilities
Adversarial capabilities refer to the possible impact or 

influence that an adversary can have by attacking the ML 
model. Attacks of the adversary based on the capabilities can 
be classified according to the following three dimensions:
• Influence
• Specificity

• Impact
Classification based on influence of adversary is based 

on the attempt to change the dataset or the algorithms of the 
target during the course of the attack. Such attacks can be 
further classified according to the influence as causative or 
exploratory.

Causative: Causative attacks alter the training process 
through influence over the training data. This requires the 
adversary to modify or influence both training and testing 
data.

Exploratory: Exploratory attacks do not alter the training 
process but use other techniques, such as probing, to discover 
information about training data. The adversary cannot modify 
or manipulate the training data and can only craft new instances 
based on the underlying data distribution.

The specificity of the attacks determines whether the 
attacks modify or effect the model as a whole based on multiple 
attack vectors or by using a specific attack vector to attack the 
model. Attacks can be classified according to specificity as:
• Targeted: In a targeted attack, the focus is on a single or 

small set of target points.
• Indiscriminate: An indiscriminate adversary has a more 

flexible goal like mis-classifying a very general class of 
points.
Four possible cases emerge based on the impact or effect 

the adversary has on the ML model6 (Fig. 2):
• Confidence Reduction: Adversary tries to manipulate the 

training data so that the prediction confidence of the ML 
model reduces. This can be done when the adversary has 
little or no information about the model and can corrupt 
the decision process of the critical ML system.

• Mis-classification: The goal of the adversary is to mis-
classify the ML model’s response to an input in any way 
possible. This includes modifying the input to make it fall 
on the wrong side of the decision boundary. The attack 

Figure 1. Major components of adversarial machine learning environment.
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is indiscriminate and adversary just tries to maximise the 
total number of mis-classifications to reduce the overall 
accuracy and confidence of the model. 

• Targeted Mis-classification: The adversary generates a 
carefully crafted adversarial example from random noise 
using various algorithms and the model mis-classifies the 
noise as a legitimate sample. The perturbation is carefully 
selected unlike the previous case.

• Source/Target Mis-classification: An input of particular 
type is modified by carefully adding perturbation to be 
classified as a specific target class which can subvert 
the logic of the entire ML system. Consider an example 
of a ML model checking for malware and one malware 
instance is modified by adding perturbation to be classified 
as benign. This usually takes place during test time and 
effects only the testing data.

3.2 Adversarial Knowledge
Knowledge of the underlying ML model plays a crucial 

role in determining the success of the attacks by providing the 
adversary an opportunity to make informed decisions as shown 
in Fig. 3. The knowledge of the ML system can be classified 
into:
• Data acquisition
• Data
• Feature selection
• Algorithm and parameters
• Training and output

The adversary may have either complete or perfect 
knowledge of the ML system or only a partial knowledge of 
the system. Adversary attacks can be classified into black box 
attacks and white box attacks based on the knowledge about 
the model an adversary has.

Complete/perfect knowledge: An adversary is said to have 
perfect knowledge if he has access to the knowledge of data 

acquisition, data, feature selection, ML algorithms and tuned 
parameters of the model. The attacker may or may not have 
access to the training data which can be easily acquired by 
using other knowledge. This is usually the case when the ML 
model is open source and everyone has access to it.

Limited Knowledge: In this case, the adversary only knows 
a part of the model. he does not have access to the training 
data and may have very limited information about the model 
architecture, parameters, and has access to only a small subset 
of the total knowledge available.

For the adversary to evolve from black box to white box, 
he iteratively goes through a process of learning using inference 
mechanisms to gain more knowledge of the model.

3.3 Adversarial goals
based on the goals and intent of the adversary for attacking 

the ML model we can classify them into the following:
Integrity violation: The adversary performs malicious 

activity without compromising the normal system operation 
but the output of the model is of attacker’s choosing. Poisoning 
attacks are an example of integrity violation.

Availability violation: The adversary compromises the 
system functionality with an intent to cause a denial of service 
to users during the operations. One way is to maximise the 
mis-classification or effect the output of model significantly to 
degrade the performance of the model and make it to crash.

Privacy Violation: The adversary tries to gain information 
about sensitive user data from the ML model and also extract 
key information about the model architecture. Model inversion, 
member inference, reverse engineering and side channel on 
ML models are examples of such attacks.

Figure 3. Adversary’s knowledge.

Figure 2. Impacts of adversarial capabilities.
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4.  ADVeRSARIAL ATTACKS
In this section, we explore the various attacks on ML 

models. An adversary implements attacks by generating 
perturbed data instances called adversarial examples. A data 
instance may be carefully modified where the perturbations 
are calculated using algorithms to cause the ML classifier to 
mis-classify with high confidence. The goal is to construct 
adversarial examples 'x such that it is very close to the input 
image x where ( ')F x T= , T being the target class, and F  
being the decision function. A simple indiscriminate approach 
is gradient ascent during training of ML model.

The fast gradient sign method (FgSM) is one of the 
ways to generate adversarial examples that was proposed by 
goodfellow2, et al. Let θ be the parameters of the model, x
denotes input to the model, y denotes the targets associated 
with x  (for a supervised learning paradigm) and ( , , )J x yθ
denote the cost function to train the neural network as shown 
in Fig. 4. The cost function can be linearised around the 
current value of θ , to obtain an optimal max-norm constrained 
perturbation of

( , , )xsign J x yη = ε ∇ θ                                                      (1)
Kurakin3, et al. showed that real world systems like 

cameras and sensors were vulnerable to adversarial examples 
by introducing the basic iterative method to generate 
adversarial images by modifying the FgSM. As an extension, 
they introduced label leaking effect which occurs when the 
accuracy on adversarial images becomes higher than the 
accuracy on clean images4. Dense adversary generation 
algorithm5 generates a large family of adversarial examples to 
exploit semantic segmentation and object detection. 

The Jacobian based saliency map approach to search for 
adversarial examples by modifying a small number of input 
pixels in an image was proposed by Papernot6, et al. They 
compute the Jacobian of a model to identify the sensitivity 
of model or decision boundary. They use adversarial saliency 
map that contains information about the likelihood of 
misclassification for a given input feature.

Carlini-Wagner adversarial example7 capable of evading 
all present defences including defensive distillation72. given an 
input x , we would want to find 'x and minimise ( , ')D x x such 
that ( ')F x T= and 'x is valid where D is the distance function. 
The minimisation problem was reformulated by adding a loss 
function ( ')g x that measures the closeness of ( ')F x  to T .

time attack that does not require accessing and manipulating 
the training data. The goal is to find a sample 'x such that the 
distance from target malicious sample 0x is minimised81:

' arg min ( )x g x=  s.t. 0 max( , )d x x d≤                            (2) 
Laskov9, et al. study the effectiveness of evading PDF rate 

ML system using adversarial examples by manipulating the 
header fields in PDF format. An improvement was proposed10 
using an oracle which uses a function threshold to classify 
them as benign or malicious. A secure learning model against 
evasion attacks on PDF malware detection was proposed by 
Khorshidpour11, et al. An attack on text classifiers trained using 
DNNs was proposed12 using three attack strategies, namely, 
insertion, modification and removal of text computed using 
FgSM algorithm.

4.2 Poisoning Attacks
Poisoning attacks force an anomaly detection algorithm 

to accept an attack point that lies outside of the normal set of 
data instances. The attacker adds such adversarial examples to 
the training data so that the ML model’s decision boundary can 
be manipulated. Poisoning is a train time attack and requires 
access to training data.

Kloft13, et al. introduced poisoning attacks and analysed 
online centroid anomaly detection and adversarial noise for 
poisoning. In face recognition, it is possible to poison face 
templates with limited attacker knowledge14. boiling frog 
attack1, a type of poisoning attack, poisons the model over 
several weeks by adding small amounts of chaff. The detector 
is gradually acclimated to chaff and fails to identify the large 
amount of poisoning done incrementally. An iterative attack 
by selecting inputs which results in highest degradation 
in classification accuracy was explored using healthcare 
datasets15.

4.3 equation Solving Attack
The equation solving attack16 is applicable on cloud 

providers who provide ML as a service via APIs and for models 
such as multi-layer perceptron, binary logistic regression and 
multi-class logistic regression where they are represented as 
equations in known and unknown variables. The goal is to use 
the data to find the unknown variables, which are usually the 
parameters used to train the models. These attacks are expected 
to reveal information about the model and its architecture to 
the attacker.

4.4 Path Finding Attack
Path-finding attacks16 are used to traverse binary trees, 

multi-n-ary trees, and regression trees. In these attacks, the 
value of each input feature is varied till the conditions at each 
node are satisfied, while the input traverses the tree. The tree is 
traversed until a leaf is reached or an internal node with a split 
over a missing feature is found. The value of the leaf node is 
the output which reveals the path followed.

4.5 Model Inversion Attack
Fredrikson17, et al. propose an algorithm that computes the 

optimal input feature vector close to the target feature vector 
using a weighted probability estimate that indicates the correct 

Figure 4. generating adversarial example using fast gradient 
sign method2.

4.1 evasion Attacks
Evasion attacks evade the ML model by passing an 

adversarial example so that the model misclassifies. It is a test 
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value. The least-biased maximum a posteriori (MAP) estimate 
for input feature vector further minimises the adversary’s 
incorrect predictions. This is used to create an overall model 
which is very close to the target model.

4.6 Black Box Attacks using Transferability 
Property 
In black box attacks, the adversary has no access to the 

data and the model. The attacker can only access the oracle 
that returns an output for the input chosen by the attacker. ML 
model on cloud is an example of black box scenario where 
the adversary has no access to internals of the model and the 
training data. The service provider provides a training API using 
which the user can send data to the cloud to train the model 
and a prediction API to query the model and obtain predictions 
as output. In such a scenario, the adversary needs to alleviate 
lack of knowledge of the model and lack of knowledge of the 
training data.

The lack of knowledge of model can be alleviated using 
the property of transferability which states that samples 
crafted to mislead model A are likely to mislead model b. 
The transferability property of adversarial examples exists 
as they span a contiguous subspace of large dimensionality 
which intersect enabling transferability18. Transferability can 
be achieved in two ways19:

Cross-training Data Transferability: There are two 
different instances of data: data A and data B. The attacker 
trains the local model which is the same as the target model and 
on local model using data A while data b is used to train target 
model. Adversarial examples are tested on the local model 
which is used to attack the target model as shown in Fig. 5.

the oracle and gets a confidence score for the prediction based 
on which the attacker decides the validity of the synthetic data. 
This data and the corresponding labels given as output by the 
oracle are used to create a substitute for the local data.

Papernot19, et al. use reservoir sampling to improve the 
previous training procedure for the substitute model. They 
developed a generalised algorithm for black box attacks using 
transferability that exploit adversarial sample transferability on 
broad classes of ML algorithms. This was demonstrated using 
a deep neural network (DNN) trained on google and Amazon 
cloud services20 as shown in Fig. 7. An ensemble based  
approach to generate transferable adversarial examples was 
proposed to attack black box models on the cloud21. hayes22, 
et al. introduce a direct attack against black-box neural 
networks (NNs) that uses another neural network to learn to 
craft adversarial examples and did not use transferability of 
adversarial examples unlike previous work.

Figure 5. Cross training data transferability (Same model, 
different data).

Figure 6. Cross technique transferability (Same data, different 
models).

Figure 7. Cloud based black box model.Cross Technique Transferability: In this case, the attacker 
has access to the same data that was used to train the target 
model. however, he does not have access to the model 
internals and the local model is different from the target model. 
The attacker tries various model combinations to get the most 
optimal pair to generate the adversarial examples as shown in 
Fig. 6.

The lack of knowledge of data can be alleviated by using 
synthetic data generation. The adversary sends synthetic data to 

4.7 Member Inference Attack
In member inference attacks, the attacker finds if a query 

passed to the prediction API is part of the training set and if 
so leak the training data information23.The authors implement 
shadow models which predict whether the input is part of the 
data or not. 
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5. ATTACKS ON VARIOUS MAChINe 
LeARNINg PARADIgMS
Various attacks on machine learning paradigms, namely, 

supervised, unsupervised and reinforcement learning are 
discussed here.

5.1 Supervised Learning
In supervised learning, the data passed to the ML model 

has labels associated with each input instance. This helps in 
supervising the model to classify or predict values for new data 
instances. If the target label is a continuous range of values, it 
is referred to as regression problem and if the target label is a 
discrete value, it is referred to as classification problem. Attack 
models on classification models, regression models, Support 
vector machines (SVM) and NNs are described as follows. 

Classification Models: biggio24, et al. present techniques to 
hide the classifier information from the adversary by introducing 
randomness in the decision function. Further, biggio25-26, et al. 
argue for improving the robustness of classifiers by an over/
under emphasis of input features of the data. The adversarial 
classifier reverse engineering (ACRE) learning problem27 was 
introduced to learn sufficient information about a classifier so 
as to construct adversarial attacks by reverse engineering linear 
classifiers with either continuous or Boolean features.

Regression Models: Regression problems in which an 
adversary can exercise some control over the data generation 
process were first studied by Grobhans28, et al. They model the 
problem as a bayesian game and characterise conditions under 
which a unique bayesian equilibrium point exists. 

Attacks on Support Vector Machines: SVMs have been 
shown to be vulnerable to label flip attacks where the data 
labels are flipped in training data. There are two different 
strategies for contaminating the training set through label 
flipping: random and adversarial label flips8. 

Random Label Flips: The attacker randomly selects a 
number of samples from the training data and flip their labels. 

Adversarial Label Flips: The adversary aims to find the 
combination of label flips which maximises the classification 
error on the untainted testing data. Different combinations 
of label flips are iterated to measure the classification error 
corresponding to each combination and retain that combination 
which gives maximum classification error and use it to attack 
the SVM.

A family of poisoning attacks using gradient ascent based 
on SVMs optimal solution have been shown to significantly 
increase the error29. A model for the analysis of label noise 
in support vector learning and modification of the SVM 
formulation that compensates for the noise by correcting the 
kernel matrix was suggested by biggio8. A novel technique 
where an optimisation function was used to find label flips to 
maximise error classification using Tikhonov regularisation 
was proposed by Xiao30. heuristic approach was used as an 
extension to improve the performance31. burkard32, et al. 
examine the targeted attack on a SVM that learns from a 
continuous data stream.

Attacks on Neural Networks: Szegedy33, et al. were the 
first to identify the misclassification of NNs due to perturbed 
images. A maliciously trained neural network or backdoor neural 

network that has good performance on the user’s training and 
validation samples, but performs poorly on specific attacker-
chosen inputs was introduced34. The Deep Fool algorithm35 
efficiently computes perturbations that fool deep networks 
by minimising the distance between the adversarial example 
and the target example corresponding to a target class. 
Munoz36, et al. extend the poisoning attacks to multi-class 
problems and propose a poisoning algorithm based on back-
gradient optimisation to compute the gradient of interest 
through automatic differentiation to drastically reduce the attack 
complexity. Adversarial attacks were shown to be effective 
against Convolutional NN37 and categorical and sequential 
Recurrent NNs using computational graph unfolding38.

5.2 Unsupervised Learning 
In unsupervised learning, data does not have any labels 

associated with it and only contains the input features. These 
are used to cluster or group the data together based on similar 
input features or learn a new representation of data. Attacks on 
unsupervised ML models can be categorised into generative 
Models, Autoencoders and Clustering algorithms.

Generative Models: A generative model learns the 
underlying probability distributions of training data to generate 
and give an estimate of function fitting the distribution which 
enables model to generate new samples. generative adversarial 
networks (gAN)39 are a type of generative models that generate 
new samples by using two networks to play a game against each 
other. A discriminator network estimates the probability that 
the data is real or fake while the generative network transforms 
input to randomly generated samples as output and is  trained 
to fool the discriminator network.MalgAN40 generates 
adversarial malware examples, which are able to bypass black-
box ML based detection models using a substitute detector. 
A generative network is trained to minimise the generated 
adversarial examples’ malicious probabilities predicted by 
the substitute detector,  making the retraining based defensive 
method against adversarial examples ineffective. APE-GAN41 
defends against the adversarial examples by eliminating the 
adversarial perturbation using a trained network and then feed 
the processed example to classification networks.

Autoencoders: Autoencoder is a neural network variant 
used for unsupervised learning where the number of neurons is 
same in the input and output layer. This reduces the image and 
represents it using less number of features (latent representation) 
thereby creating a sparse representation of input data for image 
compression, removing noisy images and creates new images. 
Three classes of attacks on the variational autoencoder (VAE) 
and VAE-gAN architectures were presented by Kos42, et al. 
The first attack attaches a classifier to the trained encoder of the 
target generative model which is used to indirectly manipulate 
the latent representation. The second attack uses the VAE loss 
function to generate a target reconstruction image from the 
adversarial example. The third attack is based on optimising 
the differences in source and target latent representations.

A method to distort the input image to mislead the 
autoencoder in reconstructing a completely different target 
image was given by Tabacof43, et. al. They design an attack 
on the internal latent representations to make the adversarial 
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input produce an internal representation similar to the target’s 
representation. Makhzani44, et al. propose the adversarial 
autoencoder (AAE), which is a probabilistic autoencoder 
that uses generative adversarial networks (gAN) to perform 
variational inference by matching the aggregated posterior of 
the hidden code vector of the autoencoder with an arbitrary 
prior distribution.

Clustering : Clustering is organising a set of data points 
into groups of similar features called clusters. A clustering 
algorithm can be formalised as a function : if x , where 
i={1,...,n}, and, ( )C f D=  is the clustering output and 

1 2{ , ,..., }nD x x x= . Clustering is extensively used to infer and 
understand data without labels and is vulnerable to two main 
categories of attacks:
• Poisoning : Adversary aims to maximise the distance 

between cluster C obtained from data D and cluster C' 
obtained from contaminated data 'D  where 'A  is a set of 
adversarial samples, i.e, ' ( )C f D A= ∪ A' ).

• Obfuscation or Bridging : The goal is to hide attack 
samples in clusters without effecting the output. Bridges 
are formed between clusters which result in combining 
in clusters. Attacker’s goal is to minimise the distance 
between Ctarget and C' arg ( ')t etC f D A= ∪ 46.
These models are vulnerable mainly due to the inter-cluster 

distance which solely depend on the distance between closest 
points in the cluster which when minimised, allows attackers 
to form a bridge and combine the clusters45. The single link and 
complete link hierarchical clustering are vulnerable to bridging 
and poisoning attacks47-48.

5.3 Reinforcement Learning 
In the reinforcement learning paradigm, an agent is 

placed in a situation without knowledge of any goals or other 
information about the environment. For every action made by 
the agent, it receives a feedback from the environment in the 
form of a reward. The agent tries to maximise the reward by 
optimising its actions over time and the agent learns to achieve 
its goals. In an adversarial setting, there are multiple agents and 
an agent wins a game when it is given a positive reinforcement 
and its opponent is given negative reinforcement. Maximising 
reward corresponds directly to winning games and over time 
the agent learns to act so that it wins the game.

uther49, et al. introduce algorithms to handle the multi-
agent, adversarial, and continuous-valued aspects of the domain 
by extending prioritised sweeping that allows generalisation 
of learnt knowledge over neighbouring states in the domain 
and to allow the handling of continuous state spaces.  
behzadan50, et al. establish that reinforcement learning 
techniques based on Deep Q-Networks (DQNs) are vulnerable 
to adversarial input perturbations and verify using the 
transferability of adversarial examples across different DQN 
models. They present attacks that enable policy manipulation and 
induction in the learning process of DQNs. huang51, et al. show 
that adversarial attacks are also effective when targeting neural 
network policies in reinforcement learning using transferability 
across policies to attack the Reinforcement Learning model. 
A method for reducing the number of adversarial examples 

that need to be injected for a successful attack based on the 
value function was proposed by Kos52. It was observed that 
retraining on random noise and FgSM perturbations improves 
the resilience against adversarial examples.

Lin53, et al. introduce two tactics, strategically timed attack 
and the enchanting attack, to attack reinforcement learning 
agents using adversarial examples. In the strategically-timed 
attack, the adversary aims at minimising the agent’s reward 
by attacking the agent at a small subset of time steps. In the 
enchanting attack, the adversary aims at luring the agent to 
a designated target state by combining a generative model to 
predict the future states and a planning algorithm to generate a 
preferred sequence of actions for luring the agent.

6. PRIVACy PReSeRVINg MAChINe 
LeARNINg
Privacy preserving techniques enable to use ML on data 

without knowing underlying content of user’s data. We study 
various privacy preserving models that have been proposed to 
ensure the protection of sensitive data. One of the main reasons 
for leakage of information through ML models is due to over 
fitting due to which generalisation becomes very important. 
Privacy preserving ML has followed three major directions: 
• Randomisation algorithms
• Secure multi-party computation
• homomorphic encryption (hE)

In CryptoNets54-55, the authors perform neural network 
computations on data encrypted using hE and used 
approximations to evaluate the Sigmoid, ReLu and max 
pooling. The computation is slow due to the noise generated 
from hE and security parameters of hE should be considered 
carefully based on the noise. Rouhani56, et al. propose a method 
to perform DL computation using garbled circuits (gC) and 
adopt pre-processing techniques to reduce the gC runtime by 
mapping the NN to a lower dimension. Ohrimenko57, et al. 
propose a solution for secure multiparty ML by using trusted 
Intel SgX processors and used oblivious protocols between 
client and server where the input and outputs are blinded. 
Mohassel58, et al. use a two server model and distribute the 
data into two parts for each server. The authors developed new 
privacy preserving protocols for linear regression, logistic 
regression and NNs and used garbled circuits for privacy and 
arithmetic with pre-computed triplets.

Differential privacy has been explored to ensure privacy 
guarantees for ML models for non-convex objective functions 
using differentially private stochastic gradient descent59,61.

Shokri60, et al. designed a model where participants use 
parameter sharing, allowing participants to benefit from other 
participants’ models without explicit sharing of training inputs. 
After each round of training, participants asynchronously share 
with each other the gradients they computed for some of the 
parameters.

7.  DeFeNCeS AgAINST ADVeRSARIAL 
ATTACKS
Many approaches to building defences against adversarial 

attacks have been proposed over the past few years. We present 
different possible defences that have been proposed over the 
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years and discuss their shortcomings.
gradient masking is based on the idea that if the model is 

non-differentiable or  the model’s gradient is zero at data points, 
then gradient based attacks are ineffective. Two major types of 
gradient masking are gradient hiding and gradient smoothing. 
Gradient Hiding uses models that are non-differentiable and 
are highly non-linear which prevent the adversary from finding 
the derivative. Gradient smoothing reduces the effectiveness 
of white-box attacks by smoothing out the model’s gradient, 
leading to numerical instabilities in attacks such as the FgSM. 
however, in both white-box and black-box settings, models 
are still vulnerable even after using gradient masking62.

Papernot63-64, et al. designed a defence based on distillation 
technique where the authors leverage the softmax layer of 
neural network. 
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A low value of temperature parameter T will result in 
high confidence but discrete probabilities while a high value 
of T will reduce confidence of prediction but smooth out the 
probability distribution which makes crafting of adversarial 
examples hard. Carlini65, et al. argued that the softmax layer 
and function used does not change output even if input is 
changed beyond certain values which was not considered in 
defensive distillation. They suggested dividing the inputs 
to the softmax by T before passing them to the function. To 
make it more robust, Papernot66, et al. improved the defence 
to extended defensive distillation and modified their previous 
defensive distillation to address the numerical instabilities in 
the previous model and attacks like black box attacks using 
transferability. They modified the algorithm and instead of 
using the probabilities from first model they measured the 
uncertainties in classifying output using dropout inference.

Szegedy33, et al. increase the model’s robustness by 
injecting adversarial examples to the training data referred 
to as adversarial training which was extended to ensemble 
adversarial training that additionally augments training data 
with perturbed inputs transferred from a number of fixed pre-
trained models67. Adversarial training to the text domain was 
explored by applying perturbations to the word embedded in a 
recurrent neural network68.

Xu69, et al. detect adversarial examples by reducing the 
colour depth of each pixel in an image, and spatial smoothing 
to reduce the difference among individual pixels. They compare 
the model’s output with and without using feature squeezing 
and differentiate between adversarial or benign based on the 
output. A safety net architecture was proposed by Lu70, et al. 
that consists of the original classifier and an adversary detector 
which looks at the internal state of the later layers in the 
original classifier to detect adversarial examples. Similar work 
was explored Metzen71. Reject on negative impact (RONI) 
defence72 is a technique that measures the empirical effect 
of each training instance and eliminates from training those 
points that have a substantial negative impact on classification 
accuracy.

Data transformations like dimensionality reduction 
using Principal component analysis and data anti-whitening 
to enhance the resilience of ML models were explored by 
bhagoji73, et al. however, adversarial examples can be made 
robust to data transformations like rescaling, translation, and 
rotation and an approach that produces images that remain 
adversarial examples even after transformations74.

The security of linear classifier itself can be improved by 
using evenly weighted feature weights as this would require 
the attacker to manipulate more features to evade detection75.

Feature selection methods are also compromised under 
attack76. An adversary-aware feature selection model that can 
improve classifier security against evasion attacks was proposed 
by selecting a feature subset that maximises the generalisation 
capability of the classifier77. It includes forward selection and 
backward elimination wrapping algorithms, which iteratively 
add or delete a feature from the current candidate set. Feature 
squeezing techniques successfully detect the recent Carlini-
Wagner adversarial examples69.

The various defences described in this section are specific 
to models using a particular learning algorithm. As a result, 
a defence mechanism that is applicable to one model is not 
applicable to some other model. however, there is no silver 
bullet to defend all ML systems against adversarial attacks.

8. DISCUSSIONS AND CONCLUSIONS
Cyberwargames are designed to examine how organisations 

and critical response teams respond to realistic/ simulated cyber 
crises and highly skilled adversaries. The wargaming process 
comprises of the identification, defence, response, and recovery 
phases to a cyberattack in depth. Cyberwargames that use game 
Theory to model the attackers and defenders are designed by 
setting up a cyber test-bed to exercise cyberattack scenarios on 
a network environment78-80. In the game theoretic framework, 
two approaches have been used: a probabilistic framework and 
a bayesian belief framework where the attack and defender 
try to anticipate the opponent’s strategy with complete and 
incomplete information with learning. In this paper, we 
describe the various components of cyber attacks in adversarial 
machine learning environments namely: Vulnerabilities of 
ML models in cyber warfare settings, adversary modelling, 
attack modelling, defence modelling and data privacy in ML 
models. In this comprehensive survey, we integrate the various 
adversarial machine learning techniques in the cyber warfare 
setting to analyse the dynamic attack and defence strategies to 
improve the security of the simulated system.
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