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AbSTRAcT

There are many approaches available to separate the background and foreground in image processing applications. 
Currently, researchers are focusing on wavelet De-noising, curvelet threshold, Edge Histogram Descriptor threshold, 
Otsu thresholding, recursive thresholding and adaptive progressive thresholding. In fixed and predictable background 
conditions, above techniques separate background and foreground efficiently. In a common scenario, background 
reference is blind due to soil surface moisture content and its non-linearity. There are many methodologies proposed 
from time to time by researchers to solve this blind reference background separation. But challenges still now remain, 
because there are two major problems in ground penetrating radar imaging such as targets like ground enhances the 
false alarm and non-metallic target detection, where the threshold decision is a critical task. In this paper, a novel 
real time blind adaptive threshold algorithm is proposed for ground penetrating radar image processing. The blind 
threshold was decided to use normal random variable variance and image data variance. Further, the image was 
smoothened by random variance ratio to image data variance. Experimental results showed satisfactory results for 
the background separation and smoothening the targeted image data with the proposed algorithm.
Keywords: GPR; Normal random variable; Variance; Adaptive threshold; Smoothenting

1. INTRODUcTION
The main difficulties associated with thresholding such as 

in GPR imaging applications occur when the associated noise 
process is non-stationary, correlated and non-Gaussian. Other 
factors such as scattering, variance of gray levels within the 
object and the background, inadequate contrast, object shape 
and size non-commensurate with the scene are complicating 
thresholding operation. Various researchers1-6 have proposed 
denoising algorithms to overcome/minimie these challenges by 
using wavelet, which is generally derived from the generalised 
Gaussian distribution. In these papers, Wiener filter based 
de-noising1 has been compared with adaptive wavelet based 
de-noising2 -6 using peak signal to noise ratio (PSNR). In high 
level noisy environment, wavelet based de-noising PSNR is 
higher than Wiener filter based de-noising. But tackling noise 
in wavelet based de-noising limits the performance. Another 
approach of adaptive thresholding is integrated neighbourhood 
search7, where image is segmented in the background and 
object region in a complex background environment. This 
thresholding approach is computationally faster and accurate, 
but the image resolution is poor. Two dimensional least mean 
squares (2D LMS) algorithm8 is also another approach to 
extract the target feature adaptively from the wideband ground 
penetrating radar system. The limitation of this algorithm is 

that it is not capable to discriminate the target/ natural clutter or 
target/anthropic clutter. Adaptive Thresholding Technique for 
Document Image Analysis9 uses the global and local statistics 
by selecting the appropriate window for contrast stretching. 
This method is robust for document images, but selection of 
window for thresholding is the main limitation of this method. 
When the background is uneven in image then the variational 
method of adaptive thresholding10 -11 is suitable for finding the 
boundaries of the object by setting the only one parameter 
for variable threshold. This algorithm can remove the noise 
influence in the image, but high iteration time for convergence 
and noise level limit the performance of variational method. 
Block-median pyramidal transform12 is a nonlinear multiscale 
pyramidal transform based on non-overlapping blocks 
decompositions using the median operation and a polynomial 
approximation for image de-noising. But this image de-
noising method is applicable only when noise is independent 
and identically distributed (i.i.d) in nature. Zhang14, et al. 
characterised the GPR data in three regions: singular, stationary 
region, which is the background and the transition region 
i.e. in-between. These characterisations have been done by 
adaptive 2-D entropy thresholding and OTSU method. But data 
homogeneity and stationary background are limiting factors 
of this method because data homogeneity and background 
conditions depend on soil and target characteristics (i.e. Terrain 
behaviour and target behaviour). Wu15, et al. analysed the GPR Received : 21 November 2017, Revised : 18 January 2018
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data using non-sampled contourlet transform and developed 
an adaptive threshold algorithm based on energy coefficient 
of GPR data for multiscale. This algorithm is a modification 
of wavelet thresholding and is performance limited by the 
strong noise environment. Nabelek16, et al. used non-negative 
matrix factorisation (NMF) in GPR to improve the detection 
of deeply buried non-metal objects. In this approach, the GPR 
signal return is interpreted as the sum of two independent 
components from two different sources, the background and 
the object with a detection confidence. This approach, however, 
is not adaptive and it is an extension of principal component 
analysis. Abeynayake17, et al. made up multiple background 
models for a variety of soil moisture levels to separate out the 
target response and background response from GPR response. 
If the test site is different from the predefined background 
models, then false alarm will increase. Zhang18, et al. 
used the curvelet transform threshold with Bayes shrink to 
remove the environmental noise, systematic noise, other radio 
frequency interference signals and strong clutters in GPR. This 
approach is limited by the standard deviation of ground surface 
in GPR measurement. Kalika19 used the mean and standard 
deviation normalisation, under the assumption that data with 
explosive threats have different statistical characteristics than 
the background/clutter; after normalisation, explosive threat 
data will have larger absolute normalised scores than the 
background/clutter. There is no adaptiveness, however, in this 
approach. Kenneth20, et al. used Bayesian statistics and student 
distribution to select the threshold to separate background 
and foreground from the GPR data. This Bayesian approach 
gives superior performance for all fixed guard-band sizes.  
Hichem21, et al. used an adaptive Edge Histogram Descriptor 
(EHD) to identify non-edge locations in the EHD feature 
extraction with the different edge types (vertical, horizontal, 
diagonal, and anti-diagonal), which have different dynamic 
ranges. This descriptor is capable of removing the soil specific 
edge background noise, which limit the performance of 
adaptive EHD.

So far, reported methods do not have sufficient capability 
to decide the threshold either to metallic target or for non-
metallic target in GPR images, because each tested area has 
a blind threshold value. Under testing area, the nature of the 
ground changes the variance at each observation point and 
the buried object characteristics also change the variance 
of observing area. Till now variance approach has not been 
undertaken carefully. Due to the complex nature of the ground, 
it is very difficult to enhance the detection accuracy and 
reduce the false detection. Therefore, in this paper, an adaptive 
thresholding algorithm is proposed to separate the background 
and foreground for GPR image processing applications. 

2. EXPERIMENTAL SETUP AND DATA 
cOLLEcTION
A GPR setup has been developed for detecting metallic 

and non-metallic targets as shown in Fig. 1. Overall experiment 
detail and developed SFCW GPR specifications show in Table 1. 
These specifications are shown for air as a medium. In present 
case soil moisture variation is from 5 per cent to 15 per cent for 
which dielectric constant varies approximately from 3-521. We 

have considered the average soil dielectric constant 4. If the 
medium has a relative dielectric constant  then range resolution 
for SFCW GPR is as given by following Eqn. (22)

2 r

cR
N f

∆ =
∆ ∈

                                                            (1)

where is the velocity of light = 3x108 m/s
N is the number of frequency points = 631

f∆ is the frequency interval between successive frequency 
points = 1.58 MHz (from Table 1) 

r∈ is the relative dielectric constant of medium = 4
R∆ is the range resolution

8 6 23 10 / 2 631 1.58 10 4 7.52 10  7.52 x x x x x m cm−= = =
When dealing with GPR images, there are several different 

types of ‘scans’. The simple GPR range profile is known as 
A-scan24, which is as shown in Fig. 2. In Fig. 2, three A-scan 
profiles like profile with target, profile without target and 

Figure 1. Monostatic ground penetrating radar system23.

Figure 2. A scan range profile with target-1 (Dataset21) and 
without target and after background subtraction.
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profile with background subtraction are shown with a number 
of reflection peaks23. As seen from A-scan profiles, clutter peaks 
behave like a target in without target A-scan profile, even after 
background subtraction techniques have been applied. This 
criticality shows the necessity of the development of efficient 
methodology to separate out the background and foreground 
signals.

Table 1.  Experiment details with (a) specifications of GPR 
system (b) field observations for practical readings 
and (c) targets descriptions for GPR system

GPR active radar 
parameter

Typical Value

Operating frequency 1 GHz-2 GHz
No. of frequency points (N) 631
Transmitted power 1 mW
Antenna type Double Ridge Horn Antenna 
Range resolution 15 cm
Antenna height from 
ground

15 cm

Investigated depth ≤ 1 m
No. of cross range points 20

Frequency step size (Δf0) 1.58 MHz

(a)

Field observations 
parameter

Typical Value

Soil Moisture of ground 5-15 % in 5 % interval, 
GND1 = 5 %, GND2 = 10 %
and GND3 = 15%

Depth of targets inside 
ground with soilmoisture 
content 

15 cm - 50 cm in 5 cm interval 
and each depth dataset measured 
with   5 %, 10 % and 15 % of soil 
moisture e.g. (Target-1, Dataset13) = 
35 cm depth and 10 % soil moisture

(b)

Targets used for GPR 
system

Targets description

Ground
Ground field area for experiment 
with soil moisture variation at IIT, 
Roorkee
(Results are as shown only for 
GND3 ground data)

Target-1
Type: Long PVC Pipe 
Material: PVC
Dimension : (300 cm x 5 cm)

Target-2
Type: Small PVC Pipe 
Material: PVC
Dimension : (150 cm x 5 cm)

Target-3
Type: Mine 
Material: Plastic
Dimension : (Height x Diameter =7 
cm x 25 cm)

Target-4
Type: Water Bottle
Material: Thin PVC
Dimension : (40 cm x 10 cm)

(c)
*Results are shown only for target-j Dataset21=35 cm depth and 15 % soil 
moisture, where j= 1,2,3,4.
*In Table 1, collected data have been denoted by (targets, Dataset’i).
*Targets may be ground, target-1 (i.e Long PVC pipe), target-2 (i.e. Small PVC 
pipe), target-3 (i.e. Mine) and target-4 (i.e. Water bottle).
*Dataset’i denotes collected data for corresponding target, where subscript i 
represents the collected data number for particular depth and moisture.

Usually, GPR data processing is based on a collection of 
a number of A-scans. It forms a 2D matrix for creating GPR 
images for the area of interest and is known as B-scan. More than 
thousands of data were collected with buried target and without 
buried target (i.e., ground only) in various field conditions with 
5-15 per cent moisture variation. The field was prepared for the 
specified moisture level with the help of a moisture meter for 
collecting the data at a variety of locations. Table 1 shows the 
considered four targets, where 24 datasets for each target have 
been collected with 15-50 cm buried target depth varies in 5 
cm interval of 5 %, 10 %, and 15 % soil moisture, i.e. for each 
depth there are 3 datasets. There are total 96 measured datasets 
for four targets and 3 datasets for ground. Each target dataset 
has been validated with burial depth and soil moisture, but in 
results only target dataset21 has been considered.

The main problem with the collected data was how to 
separate background and foreground data in the presence of 
soil moisture and clutters due to ground non-linearity. The 
proposed algorithm may resolve the stated problem, which will 
be discussed in subsequent sections.

3. THEORETIcAL bAcKGROUND
The thresholding is mainly a function of mean and variance 

of the image data. The image is segmented into two parts by 
taking a function of the mean and standard deviation as initial 
threshold and the values below this threshold is considered as 
background image and the values above as foreground image. 
The function can be changed as per the needs and uses. A proper 
trade-off is needed to be derived for proper imaging in GPR 
as well as in other methods. A higher threshold may lead to 
the exclusion of important details and even prevent detection, 
while a lower threshold would lead to inclusion of noise and 
may lead to clutter effects. As per above considerations, the 
thresholding of an image can be classified in following ways:
• Otsu’s Method7: The Otsu’s method is based on variances, 

which are derived from the probability theory. The 
procedure starts by defining the global mean.

• Recursive Thresholding Technique7: The recursive 
thresholding technique involves the iterative computation 
to compute the threshold value for an image.
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• Adaptive Progressive Thresholding (APT)7: This 
algorithm makes use of both Otsu’s technique and the 
recursive method. 
These methods are very popular and generalised image 

processing applications, but GPR images are contaminated by 
clutters as shown in Fig. 3. 

In Fig. 3(a) - 3(b), considered targets are ground and 
mine, which are as shown in the Table 1. There are only clutter 
components with a maximum strength of 0.7 index in Fig. 3 
(a) for ground data (Ground, Gnd3), but in Fig. 3(b), for mine 
target data (target-3, Dataset21), the clutter components are 
mixed with non-metallic target components (i.e. Mine) with a 
maximum strength of 0.7 index. Here, the index represents the 
pixel intensity for clutter and target, and the intensity scales 
may vary for ground and for non-metallic targets. Therefore, 
it cannot be determined as to ‘which components are clutter 
components and which target components are’. The main aim 
of this paper is to separate the clutter and target information. In 
the next section, an adaptive thresholding algorithm has been 
proposed to achieve the said objectives.

inverse Fourier transform, where M is sample point and N is 
the cross range position. Further, to reduce the additive noise, 
windowing is applied.

Pre-processed data have been obtained from Fig. 4 for 
further post-processing. In terms of random variable, the 
proposed algorithm methodology can be mathematically 
derived.

Let X be the normal distributed random variable with 
MxN  dimension. 2 randσ be the variance of X.

2 2 2 2 2
1 2 3, , ..  ,  1

T

rand N Nx σ = σ σ σ … σ                                   (2)

where ( ) ( )2
 ,      var X E X X X is themeanof X = −  

Equation (2) represents the estimated clutter/noise vector, 
when consider in GPR measurement asnormally-distributed13.

Minimum variance13 of X is calculated using the following 
equation:

2

21

1        1, 2 ..,
1randmin N

i
i

i N

=

σ = = …

σ∑
                            (3)

where 2 randminσ denotes the minimum noise level of random 
variable X. Now, for random variable X, the variance ratio19 

for N independent observations are
2

2     1, 2, ..,irand
rand

randmin
T irand Nσ= = ……

σ            (4)

where  randT is random variable ratio, 2 irandσ  is obtained from 
Eqn. (2) and 2

randminσ is obtained from Eqn. (3). Physically 
Eqn. (4) estimates the clutter content in the GPR image.Figure 3. (a) Raw image of ground for dataset (Gnd3) and (b) Raw 

image of buried mine data (Dataset21).

Figure 4. Flowchart of GPR signal processing23.

3.1 Proposed Adaptive Threshold Algorithm
In many applications of image processing, the intensity 

of the object pixels are quite different from the intensity of 
the background pixels. Thresholding is a simple but effective 
method to separate objects from the background. From GPR 
perspective, buried object information pixel’s intensity should 
be different from the pixel intensity belonging to clutter or 
background. The proposed algorithm is based on variance ratio 
estimation of buried non-metallic or metallic object, which 
decides the lower and upper threshold with polynomial curve 
fitting. Due to ground variation, an increase in failing to detect 
present target (type II error) results, which may either, be a 
false positive target or false negative target. Another aspect 
is that improper selection of the threshold may enhance the 
false positive and false negative target problems. So, the 
variance may play a major role is to minimising these false 
positive and false negative target detection problems. To solve 
these problems, a variance ratio based approach is proposed, 
which estimates the lower and upper threshold adaptively for 
actual GPR measurement with reference to normal distributed 
random data.

The raw GPR data are in frequency domain B-scan M×N 
data matrix. This frequency domain data matrix is converted 
into the time domain data matrix, which is also M×N using 
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3.2 clutter and Foreground Separation for GPR 
Data
Consider GPR measurement with N observations in the 

area of interest. Each measurement is corrupted by a variety 
of noise levels. Let 1 2 3,  , , ., ny y y y……  be the true GPR signal, 
that have to be estimated and 1 2 3, , , .., nd d d d…… denotes the 
noise vector for N observations. The GPR measurement model 
equation is

  S Ay d= +                                                                     (5)
where ( )1 2 3  , , , .., T

nS s s s s= …… is an N observation vector
 A is a constant vector and ( )1 2 3, , , .., T

nd d d d d= ……  is an 
observation noise. In general scenario, observation noise 
follows a normal distribution, then from the Eqn. (2)

2 2
d randσ = σ

                                                                      

 (6)

where 2 dσ  is the observation variance.
But,GPR measurement does not follow the normal 

distribution due to the non-Gaussian process, so
2 2

 d randσ ≠ σ               (7)
If 2

Sσ  is the variance of actual GPR measurement, then 
variance is

2 2 2 2 2
1 2 3, , ..  ,  1

T

S S S S SN Nx σ = σ σ σ … σ 

 

                              (8)

Minimum variance13 of GPR measurement from the Eqn. 
(3) is

2

21

1        1, 2 ..,
1Smin N

i
Si

i N

=

σ = = …

σ∑
                               (9)

where 2
Sminσ is GPR measurement, minimum variance.

Variance ratio19 for GPR measurement is obtained from 
the Eqn. (4) as

2

2     1, 2, ..,Si
S

Smin
T i Nσ= = ……

σ
                                (10)

Equation (10) represents the actual measured clutter 
content with respect to minimum clutter content. 

To separate out foreground and background, there is a 
need to derive the threshold level from the estimated clutter/ 
noise contents.

Let 1Th  denote upper threshold value, then lower threshold 
value can be estimated by Eqn. (11).

1
2

1

ThTh
N

=                                                                      (11)

where 2Th denotes lower threshold value, which is derived 
from upper threshold value and 1N is scaling factor for lower 
threshold.

To separate the clutter and foreground, apply threshold 
limit 

2

2 1

                      
 

S

S

If T Th Clutter
If Th T Th Foreground

≤ → 
 < ≤ → 

                            (12)

Once 1Th  and 2Th  are decided then, clutter and foreground 
can be easily distinguished.

3.3 Optimum Threshold Decision
The lower threshold value 2Th  and the upper threshold 

value 1Th can be estimated by Eqns. (11) and (12), respectively. 

The problem, however, in both threshold values is to determine 
their optimum values. As seen from Eqns. (11) and (12), 
both threshold values depend on the value of 1N . Therefore, 
inherently optimum value of 1N  will play an important role 
in deciding the optimum value of thresholds. To solve the 
problem, curve intersection approach has been applied. The 
linear model of nth order polynomial is

( ) 1 2
1 2 3 1 n n n

np x p x p x p x p− −
+= + + + ………+            (13)

where ( )p x  is nth order polynomial, 1 2 1,  , ., np p p +………  are 
polynomial coefficient and  is input row vector.

In polynomial curve fitting, data has been fitted with 
corresponding data in least square sense.

From Eqn. (8)
2

 *                
1, 2,3, ..

i Six N
i N

= σ
= ………

2
 *                

1, 2,3, ..
i Six N

i N
= σ
= ………                                      (14)

In the present case, linear curve fitting for Table 2 data is 
represented by the Eqn. (15).

( )1 1 2  f x p x p= +                                                           (15)

where    0.0046 ,     RMSE Root mean square error=
Similarly, 6th order polynomial fitting for Table 2 data is 

represented by the Eqn. (16):
( ) 6 5 4 3

2 1 2 3 4

2
5 6 7  

f x p x p x p x p x

p x p x p

= + + +

+ + +
                              (16)

where Error! Objects cannot be created from editing field 
codes.

Table 2. Data for Polynomial Fitting

Scaled measured clutter
2*i Six N= σ  (X-axis)

Estimated clutter using synthetic 

data
2

2
irand

rand
randmin

T σ=
σ (Y-axis)

0.366490839267332 0.440619108731061

0.665989625308906 0.440320663274159

1.17037613931152 0.439923517696339

1.34555140554018 0.447965349600226

1.66260931286166 0.436473819423967

2.24897461148112 0.440887498039732

2.41719315040346 0.441894842825221

3.00962163409210 0.433889507168937

3.09106289900514 0.436075574406000

3.76911762942385 0.448879095321608

4.13501630723191 0.440930269806022

4.47137540416587 0.452551804095571

4.91633552811514 0.443708208132163

5.62238600045579 0.451833401861123

5.54150053097929 0.447160591926667

5.29253801194672 0.442633185203154

6.59357060862760  0.454022745320899

5.85730792385215  0.449338450747496

6.40990756478422  0.450643657360696

6.78706816233295  0.451708768263113
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Intersection Point can be obtained by the Eqn. (17).

( ) ( )( ) ( )1 2                            17f x f x RMSE− <                                            (17)
Corresponding data for fitting is obtained from the Eqn.

(4), which is the variance ratio of random data. The polynomial 
fitting for 6th order is applied to the Eqn. (16) and for linear 
way, i.e. the 1st order is applied to the Eqn. (15). X-axis data 
in Table 2 are scaled measured clutter/noise and Y-axis data 
are estimated clutter/ noise for synthetic data as from Eqn.
(4) in least square sense and it is observed that both the fitted 
data intersect with each other according Eqn. (17) conditions. 
Statistics of 6th order polynomial fitting and of 1st order 
polynomial fitting i.e. linear fitting are as shown in Table 2. 
Coordinates of intersected points provide the upper threshold 
value on Y-axis and the lower threshold value scaling factor on 
the X-axis. If more than one intersection point occurs, then the 
maximum value of intersect point will be taken as threshold 
coordinate, because maximum value will take care all clutter/
noise levels. From Fig. 5, maximum values intersection points 
for linear fitting and for 6th order polynomial fitting provide the 
value of optimum upper threshold value on Y-axis and optimum 
scaling factor value on X-axis for optimum lower threshold 
value, where X-axis denotes the measured scaled clutters and 
Y-axis denotes the estimated clutter. 

Let rawX  be the GPR measured data in time domain with 
MxN  dimensions, where M  denotes number of measured 
data points and N  denotes number of observations. From Eqn. 
(12) 

2     1, 2, ,3,...,smooth siData T Th i N= ≤ =                        (18)

1      1, 2,3,  
N

Smoothii
smooth

Data
S i NN

== = …∑

             

(19)

where smoothData  represents background data in presence of 
target data and  denotes the smoothing factor, which equalises 
the background.

Final smoothed output data is
*out smooth foreX S X=                                                        (20)

where outX  represents final smoothed output data with equalised 
background intensity and foreX  denotes target information data 
(i.e. Foreground) after thresholding. After getting smoothed 
data, target signature can easily be detected, which is as shown 
in Fig. 6(b) for small PVC pipe (target-2, Dataset21).

The algorithm steps can be summarised as follows:
1. X be the normal distributed random variable with MxN  

dimensions. 2  randσ be the variance of X

2. 
2

21

1        ,     1, 2 ..,  
1randmin N

i
i

i N

=

σ = = …

σ∑
, is represents the  

 synthetic data minimum variance. 

3. 

2

2     1, 2, ..,  ,irand
rand

randmin
T irand Nσ= = ……

σ  Representing 
the synthetic data variance ratio for the estimation of value 
of upper threshold.

4.  S Ay d= + where y istrue GPR signal vector and d is 
noise/clutter

5. 2 2  d randσ = σ where 2 
    dσ represents the noise/clutter 

variance. This condition can be satisfied, if measured data 
will follow the normal distribution.

6. 2 2  d randσ ≠ σ , in actual, GPR noise/clutter does not follow 
the normal distribution.

7. 2     
Sσ is the variance of actual GPR measurement , which 

represents the overall noise/clutter variance.

8. 
2

21

1       1, 2 ..,  
1Smin N

i
Si

i N

=

σ = = …

σ∑
where 2

Sminσ GPR 
 

 measurement, minimum variance.
9. 

2

2     1, 2, ..,   Si
S

Smin
T i Nσ= = ……

σ
is the variance ratio 

 of actual GPR measurement, which is used to decide, 
whether GPR data is clutter or foreground.

10. ( ) 1 2
1 2 3 1     n n n

np x p x p x p x p− −
+= + + + ………+  

polynomial curve fitting is applied to select the scaling 
factor 1N  for lower threshold.

11. 1st order and 6thorder polynomial curve fitting for 
2 0.8R > are intersected with each other.

12. The intersection point is obtained by
  ( ) ( )( )1 2f x f x RMSE− <

13. If multiple RMSE values are obtained, the minimum 
RMSE will be considered for finding the intersection 
points.

3.4 Data Smoothening
In GPR measurements the data is corrupted by noise 

and clutter like Gaussian noise, non-Gaussian noise, surface 
variation effects and moisture. The data smoothening, 
which is used to reduce these unwanted effects and equalize 
the background intensity, may help to enhance the target 
characteristics. Therefore, after optimum threshold decision 
from Fig. 5, clutter and foreground are separated out. Example 
of thresholded and data smoothened images of small PVC pipe 
target from Table 1 are shown in Figs. 6(a)-6(b) for small PVC 
data (target-2, Dataset21). From Fig. 6(a) it is still difficult to 
visualize the target, therefore, Data smoothening has been 
applied, which has been derived as follows:

Figure 5. Optimal threshold detection using intersection of 
polynomial and linear curve fitting.
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14. Maximum value of intersection point has been considered 
for multiple intersect points.

15. The y-axis value of intersection point gives the upper 
threshold value ( 1Th ) and X-Axis value gives scaling 

factor for lower threshold ( 1
2

1

ThTh
N

= ).

 

2

2 1

                      
 

 
S

S

If T Th Clutter
If Th T Th Foreground

≤ → 
 < ≤ → 

16. 2
 *                1, 2,3, ..  Six N i N= σ = ……… is scaled actual 

measured noise/clutter.
17. 2              1, 2, ,3, ..,   smooth siData T Th i N= ≤ = ………

represent N number of clutter data.
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represent the average value of data smoothening factor.

19. *  out smooth foreX S X=  where   outX  represents final smoothed 
output data with equalised background intensity and foreX  
denotes target information data (i.e. Foreground) after 
thresholding.

4. RESULTS AND DIScUSSIONS
The proposed algorithm in section 3 has been as shown in 

the flow chart in Fig. 7. There is an input GPR data matrix of 
 MxN dimension, where M  represents the number of frequency 

points at one observation point and  represents a number of 
observation points. In the present case, value of   M is 631 and 
value   N is 20. Similarly, another synthetic normally distributed 
data matrix of  MxN dimension has been generated to estimate 
the lower and upper threshold values, respectively. 

Unprocessed GPR data matrix images for clutter (i.e., 
ground only) and target are as shown in Figs. 8(a) - 8(b). 
In these figures highest colour intensity represents the 
target signature, but both images have highest intensity 
components. Therefore, it cannot be decided that either 
Figs. 8 (a) - 8(b) contains target components or not. Due 
to this reason, variance ratio has been calculated from 
Eqns.(3) and (9) for synthetic data and for actual GPR 
measurement of Fig. 8(a) and 8(b) respectively. The 
upper threshold value and the lower threshold value are 
unknown parameters. To calculate the both threshold 
values, curve intersection technique has been used, where 
6th order polynomial ( 2 0.8R > ) has been used for curve 

intersection with a linear curve for the same data. As shown 
in Fig. 5, X-axis represents the Eqn. (13), where target 
signal variance 2

Sσ  with scaling of N  sweep. On the Y-axis 
random signal variance ratio as from the Eqn. (3) has been 
represented. The upper threshold value may be obtained 
from the maximum intersected value of both curves on 
Y-axis, which is found at 0.452 from Fig. 5. Similarly, the 
scaling factor for the lower threshold value may be obtained 
as the projection from the maximum linear region of the 
fitted curve to X-axis. Therefore, the scaling factor value is 
found to be ~6.588 as from Fig. 5 and the lower threshold 
value is 0.0684.

As seen from Fig. 7, if the variance ratio  ST  for actual 
GPR measurement is less than or equal to the lower value 

(0.0684), it can be declared that measured data has no target 
information, i.e. only clutter. On the other hand, if variance 
ratio   ST  for actual GPR measurement is greater than the 
lower threshold value (0.0684) and less than or equal to the 

Figure 6. (a) Thresholdeds mall PVC pipe image for target-2(Dataset21) 
without data smoothening and (b) Image of small PVC pipe 
for target-2 (Dataset21) after data smoothening.

Figure 7. Implementation of adaptive threshold and data 
smoothening algorithm.

Figure 8. Results of developed adaptive thresholding and data  
smoothening (a) Raw image of Clutter for ground data (Gnd-3) 
and (b) Processed image of clutter after Thresholding for 
ground data (Gnd-3).
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upper threshold value (0.452), then measured data has target 
information, i.e., foreground. If both these conditions are not 
satisfied, then the same process will be repeated for the next 
measurement. Once, it decides that measured data has target 
information (i.e., foreground) then further data smoothing 
process will be started. The data smoothing factor can be 
calculated by Eqns. (13) and (18). In present scenario, the data 
smoothing factor  smoothS value is 0.0279, which is multiplied 
by  foreX (Target information data) to equalise the background 
intensity and get the stable target information. 

The proposed algorithm has been experimentally applied 
to various buried objects and results are as shown in Figs. 
9 - 12. The considered targets are as shown in Table 1 and 
experimentally collected data have been denoted by (targets, 
Dataset’i). Where targets are ground, target-1 (i.e. Long PVC 
pipe), target-2 (i.e. Small PVC pipe), target-3 (i.e. mine) and 
target-4 (i.e. Thin Plastic bottle). The Dataset’i(where 
subscript i represents number of collected data of a target) 
are denoted the collected data for corresponding depth’s 
and moistures which is as shown in Table 1. Analyses 
of resultant images of various buried objects are the 
following:

In Figs. 8(a) - 8(b), considered ground as target with 
ground data (GND3), which is as shown in Table 1. The 
unprocessed clutter data (i.e. only ground data) has some 
target like components, denoted by dark brown colour. 
After applying blind thresholding and data smoothing 
(from Fig. 7), the lower threshold of 0.1233 and the upper 
threshold of 0.7829 are obtained. These threshold values 
totally remove the clutter and only clean ground data is left, 
which is denoted by blue colour. 

In Figs. 9(a) - 9(b), the considered target is long PVC 
pipe (target-1, Dataset21) from Table 1, i.e. long PVC pipe, 
which is buried at 35 cm depth with 15 per cent moisture 
and the data covers whole measurement cross range steps, 
i.e. from the start point of measurement to stop point of 
measurement. The unprocessed image shows a dark 
brown line with clutter components. There is no evidence 
to say whether “PVC pipe is buried or not” Because the 
detected line may be corresponded to clutter. Therefore, the 
unprocessed image is analysed by the proposed adaptive 
threshold algorithm as shown in Fig. 7, to get 0.1263 as 
lower threshold and 0.884 as upper threshold. With these 
threshold values for long PVC pipe a stable and smooth 
image for long PVC pipe is obtained, as shown in Fig. 
9(b).

In Figs. 9(a) - 9(b), the long PVC pipe is laid in whole 
cross range. Due to this, there is no discrimination possible 
between unprocessed image and blind thresholded image. 
Therefore, a small PVC pipe is considered as the target to 
validate the long PVC Pipe result, which is not covered in 
the whole cross range (i.e. Total GPR measurements). From 
Table 1, the results for small PVC pipe (target-2, Dataset21) 
data are as shown in Figs. 10(a) - 10(b). As seen from Fig. 
10(a), there is no information from the unprocessed image 
to decide whether the small PVC pipe has been detected or 
not. Since the whole cross range points are showing a dark 
brown line, it may or may not be a small PVC pipe. Further, 

after applying the blind threshold algorithm (Fig. 7), again we 
get the lower and upper threshold values, which are 0.1297 and 
0.9078, respectively. The thresholded small PVC pipe image is 
as shown in Fig. 10(b).

GPR can also be used to detect land mines. To check the 
blind threshold algorithm applicability on buried mine as a 
target, from Table 1 for (target-3, Dataset21), the results obtained 
with a mine are as shown in Fig. 11 (a)-(b). There is only clutter 
visualised (i.e. Two dark brown lines) in the unprocessed image 
as seen from Fig. 11(a). The mine signature has come out after 
applying adaptive threshold algorithm or blind threshold (from 
Fig. 7) on the unprocessed image of mine, which is as shown 
in Fig. 11(b). In this case, lower threshold and upper threshold 
values are 0.1312 and 0.7922, respectively.

From Table 1, the results for thin plastic water bottle data 
(target-4, Dataset21) are as shown in Figs. 12(a) - 12(b). There 

Figure 11. (a) Raw image of mine data (target-3, Dataset21) and (b) 
Processed image of mine after Thresholding (target-3, 
Dataset21).

Figure 9. (a) Raw image of Long PVC Pipe data (target-1, Dataset21) 
and (b) Processed image of Long PVC Pipe after Thresholding 
(target-1, Dataset21).

Figure 10. (a) Raw image of small PVC Pipe data (target-2, Dataset21) 
and (b) Processed image of small PVC pipe data after 
Thresholding (target-2, Dataset21).
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is no information about the water bottle from Fig. 12(a). Using 
the proposed adaptive threshold algorithm as shown in Fig. 7, 
the pixels, corresponding to water bottle are obtained (shown 
in Fig. 12(b)). The calculated lower and upper threshold values 
for water bottle are 0.1233 and 0.8631 respectively.

The developed algorithm can detect various material 
underground targets as well as distinguish the background and 
foreground. The algorithm has the advantage of generating 
the auto threshold value without reference data. Therefore, 
the proposed algorithm has equal applicability in other image 
processing applications, where threshold value is unknown.

5. cONcLUSIONS AND FUTURE WORK
In this paper, a blind threshold problem has been attempted 

for GPR applications. When the threshold reference value is 
not known, thresholding becomes a difficult task. The proposed 
blind threshold and data smoothening algorithm successfully 
separates the background, foreground and smoothens the 
data with the help of statistical analysis of random data and 
actual measured data. Statistical analysis helps to select the 
various parameters for implementing the algorithm. In GPR, 
threshold values change from surface to surface, due to soil 
moisture and surface roughness. Therefore, the algorithm has 
included a lower threshold and upper threshold, which is based 
on normal distributed random data. After thresholding, some 
clutter components may remain, which can be filtered out by 
using data smoothing factor. Proposed algorithm has been 
tested on various buried targets (e.g. PVC pipes, mine, thin 
plastic water bottle etc.). All targets have been detected with 
clutter free images by blind threshold algorithm. Future work 
is to incorporate the classification of detected targets and shape 
identification of detected targets.
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