
58

Defence Science Journal, Vol. 69, No. 1, January 2019, pp. 58-64, DOI : 10.14429/dsj.69.12294
 2019, DESIDOC

Methodology for Integrating Computational Tree Logic Model Checking in Unified
Modelling Language Artefacts: A Case Study of an Embedded Controller

K.H. Kochaleema* and G. Santhoshkumar#

*DRDO-Naval Physical and Oceanographic Laboratory, Kochi - 682 021, India
#Faculty of Technology, Cochin University of Science and Technology, Kochi - 682 022, India

*E-mail: kochaleema@npol.drdo.in

ABSTRACT

A unified modelling language (UML) based formal verification methodology that can be easily integrated into
an embedded system software development life cycle is suggested. The approach augments UML diagrams with
formal models through an interfacing domain and adds semantics to these diagrams. The suggested methodology;
commences from functional specification and use case modelling, selects the most critical behaviour where formal
verification can add value to the development cycle, analyses the selected behaviour using UML state transition
diagram, derives a state chart matrix from the same, and a high level language software translates the state chart
matrix to a labelled transition system. Safety properties are derived from system specifications and are expressed
as computation tree logic (CTL) formulae. CTL model-checking algorithm from the literature is used for model-
checking. The applicability of the suggested approach is established using a safety critical embedded controller
used for deployment and recovery of sensor structures from an airborne platform.

Keywords: Unified modelling language; State chart diagram; State chart matrix; Safety property specification;
Computational tree logic; Formal verification

1. INTRODUCTION
Verifying safety-critical embedded systems with

unyielding timeliness requirements is challenging. Apart
from mundane factors - size, design-complexity, unforeseen
environmental interactions, hardware-restrictions etc., there
are constraints for functional verification, particularly in
sea-faring defence systems. Simulation-based verification is
insufficient and sometimes impractical in these cases1. Even
though formal methods are best suited for better understanding
and verification of complex software requirements, the usage
of formal methods in model-based software development
is minimal. Majority of visual modelling community are
reluctant to adopt these methods, however complex and critical
the software being developed. It is broadly agreed that practice
of formal methods in software engineering is essential, while
there are several systems ascertaining the applicability of
formal methods in industrial applications presenting very good
results. But, embedded designers are still reluctant to adopt
formal methods, either due to the complex nature of formal
notations or the lack of awareness of the quality attributes they
provide in delivering robust systems.

The paper proposes a model-checking based
comprehensive system-level design methodology, facilitating
the use of the formal models in the development process,
adding confidence for realising correct and reliable systems.

It integrates formal methods into unified modelling language
(UML) such that the embedded system specification expressed
in natural language becomes mathematically verifiable, early
in the development cycle.

An airborne sensor array management system (SAMS)
is considered as a characteristic system for methodology
demonstration. SAMS is a safety-critical multidisciplinary
system carried on-board aircrafts and deployed at interest
marine locations. It enables smooth and safe sensor structure
deployment and retrieval in definite time-limits. The diverse
interface requirements and complex behavioural requirements
reveal the limitation of simulation-based testing and calls for
formal model generation and verification semantics thereafter.

2. RELATED WORK
Unified modelling language is the standard visual

modelling tool used for modelling complex software
systems23. Verification and validation of such systems’ UML
diagrams advance error detection to early development phases,
resulting in fail-safe and reliable operation. Integration of
formal methods with UML diagrams adds semantics to UML
diagrams, enabling formal verification and validation during
software development life cycle.

Existing literature focusses on integrating formalism in
UML diagrams. They mainly focus on UML class diagrams,
sequence diagrams, activity diagrams2 etc. and translate these
to formal specification language compatible with an existing Received : 06 November 2017, Revised : 12 December 2018

Accepted : 18 December 2018, Online published : 10 January 2019

KOChALEEMA & SANThOShKUMAR : METhODOLOgy FOR INTEgRATINg COMpUTATIONAL TREE LOgIC MODEL ChECKINg

59

model-checking tool. Object constraint language (OCL)
is established as the formal language for specification of
properties of object structures in UML models1. IBM and
OMg provide tool support, for verification of class diagrams
and state-chart diagrams. Research has been published in
integrating communicating sequential processes (CSp) into
UML state-charts, class and sequence diagrams, used in
safety-critical system-design. prototype verification system
(pVS) is the specification and verification language for
UML class diagrams and OCL constraints3, including use-
case diagrams24. pROMELA, SpIN, UppAAL, rCOS etc.
are used in model-checking of various UML diagrams25.

Consistency issues across modelling phases or
abstraction levels are studied only by a few, therefore
inconsistency problems across modelling phases are
considered promising8. The research here, focusses on
evolving a practitioner-friendly, but powerfull modelling
methodology that can be easily integrated with existing
methods.

3. PROPOSED MODELLING
METHODOLOGY

3.1 Lightweight Formalism Integrated Model
Checking Approach
UML is a semi formal modelling language with

graphical notations for expressing different views of the
system from different viewpoints. The modelling power
of UML’s modelling artefacts is augmented with formal
semantics5. The approach integrates UML-based visual
abstraction models with formal method based finite
automata. It smoothly couples UML visual models and formal
methods, synergising the benefits of visual modelling and
formal techniques.

The method is named light weight as it suggests
application in areas where formal specification accomplishes
specific quality objectives and skips areas where they aren’t
appropriate. The sequence of actions involved in the proposed
integrated model-checking approach is as shown in Fig. 1.
There are three distinct domains, UML domain, Interface and
Formal domain. The inventive part of the proposal lies in the
Interface, domain with which the UML and formal domains
are coupled.

The phases involved in the proposed methodology
are shown as major blocks in the diagram. It commences
with system specification in natural language and proceeds
through Use case modelling and state chart transitions. The
interfacing software links visual domain to formal model. The
model checking algorithm runs the model through various
runs and decides the entailment of property specification
in the model. The steps in the proposed methodology are
as follows.

3.1.1 Requirement Analysis of the Real-time System
The approach begins with a use case model depicting

the functional capabilities of the embedded system26,28. In
subsequent modelling abstractions, these capabilities manifest
themselves as the behaviour of the system or interactions
among the system and the environment7.

3.1.2 Generation of Detailed Specification of the use
Case using State Chart Diagram

This phase ensures the behavioural abstraction of the use
case scenarios using UML state chart diagrams26,28.

3.1.3 Generation of State Transition Matrix and
Conversion into Labelled Transition System

This phase encompasses two major steps.
(i) Generation of State Transition Matrix - The state transition

matrix (STM) tabulates the dynamics of the operation
(events) and the target state. The sample STM is as shown
in Table 1. The label arithmetic proposition (Ap), holds
true in a particular state. The transition Ap leads to state
change from Source to Target State.

Table 1. Sample state transition matrix

Source state Label AP Transition AP Target state
S2 I1=In1 I1> K S3

The tabulation of these transitions is done manually by the
modeller, and is repeated until all transition paths are covered.

(ii) Auto conversion of the State Transition Matrix to Labelled
Transition System- A high level language program is
developed to generate the labelled transition system
(LTS) from STM. The program accepts STM as input and
generates the formal model, LTS. LTS can be defined by
the tuple,

Figure 1. Integrated model-checking workflow.

DEF. SCI. J., VOL. 69, NO. 1, JANUARy 2019

60

LTS = (S, Actn, →, I, AP, Labl)
where S is the set of states, Actn is a set of actions, →

⊆ S × Actn× S is a transition relation, I ⊆ S is a set of initial
states, AP is a set of atomic propositions, Labl is a labelling
function.

here there is direct relationship between the UML model
and the generated formal model. The events in the state-charts
are mapped to transitions in LTS and the actions in the states
in state-chart diagram appear as labels in resulting LTS states.
This mapping ensures consistency between the two modelling
domains. The commonality of expressions in these diagrams,
gives a feel of UML modelling, even when the user is in the
formal modelling realm.

3.1.4 Formal Property Specification
Real time systems are designed to function continuously

and the perception of time-ordering of events is essential
in modelling them. pnueli put forward the idea of temporal
logics in 1970s, describing the temporal ordering of events for
modelling concurrent and real time systems. Temporal logics27
describe the temporal ordering of events without explicitly
mentioning time.

There are two popular temporal logics, liner temporal
logic (LTL) and computational tree logic (CTL). LTL is based
on sequential time lines and every instant has a unique possible
successor. CTL is reasoned over a branching timeline and each
time instant can get into many possible successors27-30.

LTL models system behaviour as an infinite sequence of
states and each state has a unique successor, based on a linear-
time perspective. LTL abstracts time as a discrete entity and is
characterised by distinct points12. But, there could be system
behaviours, which splits into sub behaviours based on events
and conditions. For modelling such behaviours, properties that
state the existence of a path have to be specified. LTL provides
only global quantifiers, and is inadequate while dealing with
properties that mix existential and universal path quantifiers.

CTL addresses the above problems by introducing path
quantifiers. The path quantifiers indicate whether a given
formula applies to all possible paths from a given state or only
some possible paths, using:

A – for every path
E – there exists a path
Most safety-critical systems are real time in nature and

interact asynchronously with the surrounding medium and
sensors. The behaviour of these systems will be decisive in
nature. Under such circumstances, branching time logic is
appropriate for the behavioural specification. The method
suggested here makes use of CTL formulae for property
specification.

3.1.5 Formal Verification
The CTL model-checking algorithm is used for formal

verification. The LTS model M generated by the high level
language translator software is checked for the entailment of
CTL property specification.

Model-checking is a widely accepted tool for automatic
verification of both hardware and software systems. It’s a
procedure that checks whether a given structure M is a model

of the logic formula ɸ24,25. M is an automata-like structure
representing the system and ɸ, a temporal logic formula
expressing the system’s desirable properties. The model checker
verifies whether M satisfies the property during execution13.
here the advantage is that the checking is exhaustive compared
to system-testing using multiple scenarios. Moreover model-
checking is carried out, well before system implementation
and thus streamlines system debugging and regression testing.

The inputs to a model checker are the system description
expressed as a finite state system and a few performance
specifications, i.e. property specifications, expressed as temporal
logic formulae18-19. The model checker runs an algorithm and
verifies that either the properties hold during model execution,
or confirms with a counter example that the property is violated
during the model-run. The counter example generated provides
insight into design errors overlooked at this stage.

4. CASE STUDY
The proposed methodology is substantiated by applying

the same in modelling, an embedded controller used in a safety
critical military system.

4.1 System Description
A sensor array management system (SAMS) for military

applications is chosen as the typical case for modelling and
verification purpose. SAMS is used in the context of dunking
sensor systems for acoustic data acquisition and processing
onboard military platforms. It operates as an airborne sensor
array deployment/retrieval mechanism, using which sensor
structures can be deployed from naval platforms. The major
subsystems of SAMS are as shown in Fig. 2.

There is a user interface and an embedded sensor
deployment controller (SDC) in the system which initiates
commands for positioning the wet end sensor array to desired
sea depth. SDC shall read the lower command from the
operator, initiated through the user interface. It shall also read
various winch sensors periodically, and using these values it
generates safety interlocks for ensuring the safety of the Winch

Figure 2. Sensor array management system.

KOChALEEMA & SANThOShKUMAR : METhODOLOgy FOR INTEgRATINg COMpUTATIONAL TREE LOgIC MODEL ChECKINg

61

and sensor array during operation. The major performance
requirements of SAMS are as follows
• The deployment and retrieval shall take minimum time
• It shall have the facility to monitor the various mechanical

sensors (speed, cable tension, cable drift)
• Jerks shall be avoided during deploying/hoisting
• There should be redundancy/exception handling for

retrieving the sensor, in case of any failure.
Undesired behaviour of SDC is to be avoided by design

itself, mainly because operational failures result in loss/damage
of SA, along with instigation of unsafe hovering positions of
aircraft, endangering lives of on-board crew.

4.2 Light Weight Formalism Integrated Model
Checking Approach

4.2.1 Analysis of the Real-time System Modelling
Operational Requirements

The major operational capabilities drawn from the above
system requirements are secure lowering and hoisting of the
sensor array. Lowering operation encompasses four use cases,
as shown in Fig. 3.

4.2.3 Formal Model Generation -Translation of UML
State Chart to Labelled Transition System

The major difficulty in generating the formal model of a
UML based visual model is the translation of the UML diagram
to a formal notation comprehensible by the model-checking
algorithm. The research work provides a hands-on method for
this translation.

Step1:
 UML State-chart to STM translation
Step2:
STM to LTS translation
The state-chart in Fig. 5 is mapped into STM as shown

in Table 2.

Figure 3. Sensor deployment use cases.

Figure 4. Sensor deployment state-chart representation.

Figure 5. WinchSensorHandling state chart –exploded view.

4.2.2 Generate a Detailed Specification of the use
Case using State Chart Diagram

There are four different parallel sequence of actions take
place in the lowering mode of operation (Fig. 4). They are:

 -WinchMotorhandling
- WichSensorhandling
- ArraySensorDatahandling
- AutopilotDatahandling
Amongst these, WinchSensorhandling sub behaviour

alone is considered for demonstration purpose. The independent
sequences of processing that take place upon reception of
various events are as shown in Fig. 5.

Secondly, the STM is converted into LTS, using high level
language translator (hLLT) software and is the most inventive
step in the approach. hLLT scans the input STM and generates
the corresponding LTS. hLLT facilitates the automatic
generation of the formal model and serves as the interface
for linking UML domain and formal domain, smoothly. The
output of the program appears as shown in Fig. 6.

DEF. SCI. J., VOL. 69, NO. 1, JANUARy 2019

62

Table 2. State transition matrix

Source state Label AP Transition AP Target state

S0 I1=In1 I1<=Angle S1

S0 I1=In1 I1>Angle S2

S1 I1Valid=TRUE I1Valid=TRUE
I2Valid=TRUE
I3Status=OFF

S7

S1 I1Valid=TRUE Timer S0

S2 I1Valid=FALSE Timer S0

S3 I2=In2 I2>Limit S2

S3 I2=In2 I2<=Limit S4

S4 I2Valid=TRUE I1Valid=TRUE
I2Valid=TRUE
I3Status=OFF

S7

S4 I2Valid=TRUE Timer S3

S2 I2Valid=FALSE Timer S3

S5 MSStatus=ON MSStatus=ON S2

S5 MSStatus=OFF MSStatus=OFF S6

S6 I3Status=OFF I1Valid=TRUE
I2Valid=TRUE
I3Status=OFF

S7

S6 I3Status=OFF Timer S5

S2 I3Status=ON Timer S5

4.2.4 Formal Property Specification
CTL is used for formalising the property to be verified in

the above model. The arithmetic propositions involved are:
Ap = {I1> Angle, I2> Limit, I3 Status = OFF, STOp,

ERROR)
The safety specification states that whenever I1 sensor

values are beyond limits, lowering shall be suspended and
error be indicated to the operator. This is treated as the safety
property of the system, as it is a bad behaviour which shall
never be exhibited during operation. Thus, the system’s
informal performance requirement is translated into formal
CTL formula, using the above set of arithmetic propositions.

SafetyProperty1 (ɸ1)
If the I1sensor value> Angle defined, eventually Lowering

is suspended and Error is indicated to the Operator.
ɸ1 = Ag((I1>Angle) →AF (STOP ˄ ERROR))
Similarly for the second safety requirement based on I2

sensor.
SafetyProperty2 (ɸ2)
If the I2 sensor value > Limit Specified, eventually

Lowering is suspended and Error is indicated to the Operator.
ɸ1 = Ag((I2> Limit) →AF (STOP ˄ ERROR))

4.2.5 Formal Verification
The formal model is generated and the property

specification is available in formal language. The next
objective is to verify that the model generated satisfies the
safety properties during various runs of the system.

Model-checking
In this particular case-study, the LTS generated from the

UML state diagram is the formal model M and ɸ1, ɸ2 form
the formal property specification. The prevalent CTL model-
checking algorithm is used as the model checker. It verifies if
model executions of the initial states s of M satisfy the CTL
formula (M |= ɸ).

Model-checking Algorithm
1. Construct the denotation of ɸ where the formula holds:
 [ɸ] :={s ∈S:M,s|= ɸ}
 (Denotation [ɸ] is the set of states where ɸ holds)
2. Then compare with the set of initial states:
 I ⊆ [ɸ]?
 To compute[ɸ]:

 proceed ‘bottom-up’ on the formula structure, computing
[ɸi] for each sub formula ɸi

Model Running
The sub formula [(STOP ˄ ERROR) holds in state S2
1. (STOP ˄ ERROR)]; [S2]
2. [AF (STOP ˄ ERROR)] [S0, S2]
3. [(I1> Angle)] [S0, S2]
4. [(Drift>Angle)→AF(STOP˄ERROR)][S0, S2]
5. [AG((Drift>Angle)→AF(STOP ˄ ERROR))] [S0, S2]
Initial state S0 is a subset of denotation of ɸ, [ɸ]. This

proves that the model satisfies the safety property ɸ1. Once
proven that the model satisfies the desired properties, a direct
translation of the model into implementation ensures reliable
system operation in field.

Figure 6. WinchSensorHandling formal model – labelled
transition system.

KOChALEEMA & SANThOShKUMAR : METhODOLOgy FOR INTEgRATINg COMpUTATIONAL TREE LOgIC MODEL ChECKINg

63

5. CONSISTENCY ACROSS MODELLING
PHASES
A continuous symbols trace exists throughout the

modelling phases, in this approach. It starts from the use case
names in the use case model. Secondly, these names label the
state-chart diagram. The same are used in generating STM.
The hLLT software uses this matrix as input and generates a
formal model in terms of the same symbols and expressions
appearing in STM. The performance requirements of the
system expressed in natural language is the basis for generating
the safety properties. The arithmetic expressions generated
from these are mapped into CTL property specifications.

6. BENEFITS
The approach’s major gains are as follows

i. Consistent abstraction across modelling phases:
Direct mapping exists between the UML model and the
generated formal model, by way of events(instate-charts)
to transitions (in LTS) and actions (in state-charts) to
labels (in LTS).

ii. Smooth progression from informal to formal domain: This
transition phase is made automatic for the modeller, he
is freed from acquiring knowledge and skill in formal
modelling.

iii. Easy blending with model driven development process:
Easily integrated into a UML based model driven
development process.

iv. Modular and flexible abstraction of complex embedded
system behaviour: Allows selection of critical behaviour
for abstraction and modelling. Modeller can adopt it
for modelling complex behaviours wherein he can
exhaustively analyse the various system states under
different input conditions. This built-in modularity
addresses the tediousness in handling compound systems
with numerous states.

7. LIMITATIONS
The entire approach is dependent on STM generated

from UML state-charts. If the modeller makes mistakes, or
omits states during this phase, the subsequent steps will be
incorrect.

8. CONCLUSIONS AND FUTURE WORK
UML is an accepted visual modelling language with

precise notations and expressive power to handle complex
software systems. The methodology illustrated, integrates
formalism into UML diagrams, by way of STM. This is
simple and comprehensive for adoption in embedded software
development life cycle. generation of exhaustive STM is
significant in this approach and is a modeller driven activity.
This could be an overhead, but is simple and straight forward
as compared to existing formal methods.

The state transition diagrams, in the behavioural
abstraction phase, translated into a tree like structure can be
traversed for reachability. If a path exists from the root to
destined nodes, its treated as a valid trace/run and leads to
behavioural property verification during model-checking.
This is a proposal with research potential.

REFERENCES
1. Cabota, J.; Clarisób, R. &Rierab, D. On the verification of

UML/OCL class diagrams using constraint programming.
J. Sys. Software, 2014, 93, pp. 1–23.

 doi:10.1016/j.jss.2014.03.023
2. Berardi, Daniela.; Calvanese, Diego. & De giacomo,

giuseppe. Reasoning on UML class diagrams. Artificial
Intelligence, 2005, 168(1-2), 70-118.

 doi: 10.1016/j.artint.2005.05.003
3. holzmann, g. The model checker SpIN. IEEE

Transactions on Software Engineering, 1997, 23(5).
 doi: 10.1109/32.588521
4. Mota, E.; Clarke, E.M.; groce, A.; Oliveira, W.; Falcão,

M. & Kanda, J. VeriAgent: an approach to integrating
UML and formal verification tools. Electron. Notes Theor.
Comput. Sci., 2004, 95, 111–129.

5. hooman, Jozef; Kugler, hillel; Ober, Iulian; Votintseva,
Anjelika & yushtein, yuri. Supporting UML-based
development of embedded systems by formal techniques.
Software Sys. Model, 2008, 7, 131–155

 doi: 10.1007/s10270-006-0043-7
6. Lucas, Francisco J.; Molina, Fernando &Toval,Ambrosio.

A systematic review of UML model consistency
management. Info. Software Technol., 2009, 51, 1631–
1645.

 doi:10.1016/j.infsof.2009.04.009
7. Clarke, Edmund M.; Emerson, Allen E. & Sifakis,

Joseph. Model Checking: Algorithmic Verification and
Debugging. Commun. ACM. 2009, 52.

 doi:10.1145/1592761.1592781
8. harel, David. Statecharts: A visual formalism for complex

systems. Sci. Comput. Programming, 1987, 8, 231-274.
9. harel, D. & gery, E. Executable object modeling with

statecharts. IEEE Computer, 1997, 30, 31–42.
10. Lima, V.; Talhi, C.; Mouheb, D.; M. Debbabi, M. &

Wang, L. Formal verification and validation of UML
2.0 sequence diagrams using source and destination
of messages. electronic notes in theoretical computer
science, 2009, 254, pp. 143–160.

 doi: 10.1016/j.entcs.2009.09.064
11. Alawneh, L.; Debbabi, M.; hassaıne, F.; Jarraya, y.

& Soeanu, A. A unified approach for verification and
validation of systems and software engineering models.
In proceedings of the 13th Annual IEEE International
Symposium and Workshop on Engineering of Computer
Based Systems (ECBS’06).

 doi: 10.1109/ECBS.2006.17
12. Linzhang, W.; Jiesong, y.; Xiaofeng, yu.; Jun, hu.;

Xuandong, Li & guoliang, Z. generating test cases from
UML activity diagram based on gray-box method. In
proceedings of the 11th Asia-pacific Software Engineering
Conference (ApSEC’04). 1530-1362/04

13. Clarke, Duncan & Lee, Insup. Testing real-time
constraints in a process algebraic setting. In proceedings
of the 17th International Conference on Software
Engineering(ICSE’95). pp. 51-60.

 doi: 10.1145/225014.225019
14. Van, Marcel F.; Christian, Amstel F.J.; Michel, Lange &

DEF. SCI. J., VOL. 69, NO. 1, JANUARy 2019

64

Chaudron, R.V. Four automated approaches to analyze
the quality of UML sequence diagrams. In 31st Annual
International Computer Software and Applications
Conference (COMpSAC 2007).

 doi: 10.1109/COMpSAC.2007.6
15. Addouche, N.; Antoine, C. & Montmain, J. Methodology

for UML modeling and formal verification of real-time
systems. In International Conference on Computational
Intelligence for Modelling Control and Automation
and International Conference on Intelligent Agents,
Web Technologies and Internet Commerce (CIMCA-
IAWTIC’06).

 doi: 10.1109/CIMCA.2006.144
16. gnesi, S.; Latella, D. & Massink, M. Model checking

UML statechart diagrams using JACK. In proceeding of
4th IEEE International Symposium on high-Assurance
Systems Engineering, 1999 (hASE’99), pp. 46-55.
ISBN:0-7695-0418-3

17. Alur, R. & henzinger, Thomas A. Logics and models of
real time: A survey. AT&T Bell Laboratories, Murray hill,
NJ / Computer Science Department, Cornell University,
Ithaca, Ny 14853. https://hdl.handle.net/1813/7102

18. Frits, Juho. Model checking embedded control software.
TKK Reports in Information and Computer Science, Espoo
2010. http://lib.tkk.fi/Reports/2010/isbn9789526031033.
pdf.

19. Lee, David. & yannakakis, Mihalis. principles and
methods of testing finite state machines - A Survey. AT
&T Bell Laboratories Murray hill, New Jersey.

20. Formal methods specification and analysis guidebook for
the verification of software and computer systems. Vol. ii,
a practitioner’s companion. NASA-gB-001-97.

21. Tawhid, Md Bin Waez.; Dingel, Juergen & Rudie, Karen.
Timed automata for the development of real-time systems,
Technical Report 2011-579

22. Sgroi, M.; Lavagno, L. & Alberto, Sangiovanni-
Vincentelli. Formal models for embedded system design.
University of California, Berkeley/Università di Udine,
Italy

23. gagnon, patrice.; Mokhati, Farid & Badri, Mourad.
Applying model checking to concurrent UML models.
University of Québec at Trois-Rivières, Canada/University
of Oum-El-Bouaghi, Algeria/University of Québec at
Trois-Rivières, Canada.

24. Madl, gabor.; Abdelwahed, Sherif. & Schmidt, Douglas
C. Verifying distributed real-time properties of embedded
systems via graph transformations and model checking.
Institute for Software Integrated Systems, Vanderbilt
University, Nashville/ Center for Embedded Computer
Systems, University of California, CA.

 doi: 10.1007/s11241-006-6883-y
25. Alhumaidan, F. State based static and dynamic formal

analysis of UML state diagrams. College of Computer

Sciences and Information Technology, King Faisal
University, hofuf, KSA- May 2012.

 doi: 10.4236/jsea.2012.57056
26. Manna, Z. & pnueli, A. The temporal logic of reactive and

concurrent systems, specification. Springer-Verlag, 1992.
 doi: 10.1007/978-1-4612-0931-7
27. Baier, Christel. principles of model checking. ISBN: 978-

0-262-02649-9
28. Clarke, Edmund M. Model checking. ISBN:

9780262038836
29. Douglass, Bruce powel. Real-time UML: Developing

efficient objects for embedded systems. 3rd Edn, 2003.
30. hubris, h. & Frappier, M. Software specification methods,

iSTE, 2006. ISBN: 9781905209347
31. Miles, R. & hamilton, K. Learning UML 2.0, O’Reilly

Media, Sebastopol, 2006, ISBN-13: 978-0-59-600982-3
32. Booch, g.; Rumbaugh, J. & Jacobson, I. The unified

modeling language user guide. Addison Wesley, 1999...
ISBN: 0-201-57168-4

33. Drusinsky, Doron. Modeling and verification using UML
statecharts: A working guide to reactive system design,
runtime monitoring and execution-based model checking,
2006... ISBN: 0750679492

34. Object Management group, UML Specification 1.5,
http://www.omg.org/uml, 2003.

 doi:10.1016/j.entcs.2004.04.008
35. Beato, M.E.; Barrio-Solórzano, M.; Cuesta, C.E. &

Fuente, de la p. UML automatic verification tool with
formal methods. Electron. Notes Theoretical Comput.
Sci., 2005, 127, 3–16.

 doi: 10.1016/j.entcs.2004.10.024

CONTRIBUTORS

Ms K.H. Kochaleema received her MSc and MTech in Software
Engineering from Cochin University of Science and Technology,
Kochi, Kerala. Currently working as Scientist g in DRDO-
Naval physical and Oceanographic Laboratory, Kochi. She is
heading the Independent Verification and Validation Division
of Systems Engineering group. She has research experience in
the field of design and development of embedded controllers
of sonar systems.
In the present work, she is responsible for the methodology
proposal, identification of a suitable application as case
study.

Prof. G Santhoh Kumar received his MTech in Computer and
Information Science and phD in from Cochin University of
Science and Technology (CUSAT), Kochi, Kerala. Currently,
working as professor and head of the Department of Computer
Science in the Faculty of Technology of CUSAT. his areas of
interest include : Formal modelling and verification, computer
vision and artificial intelligence.
In the current work, he has helped in problem formulation and
provided overall necessary guidance and support to carry out
this study successfully.

