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ABstRAct

 Aerodynamic parameter estimation involves modelling of force and moment coefficients and computation 
of stability and control derivatives from recorded flight data. This problem is extensively studied in the past using 
classical approaches such as output error, filter error and equation error methods. An alternative approach to these 
model based methods is the machine learning such as artificial neural network. In this paper, radial basis function 
neural network (RBF NN) is used to model the lateral-directional force and moment coefficients. The RBF NN is 
trained using k-means clustering algorithm for finding the centers of radial basis function and extended Kalman filter 
for obtaining the weights in the output layer. Then, a new method is proposed to obtain the stability and control 
derivatives. The first order partial differentiation is performed analytically on the radial basis function neural network 
approximated output. The stability and control derivatives are computed at each training data point, thus reducing 
the post training time and computational efforts compared to hitherto delta method and its variants. The efficacy of 
the identified model and proposed neural derivative method is demonstrated using real time flight data of ATTAS 
aircraft. The results from the proposed approach compare well with those from the other. 
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1. INtRoDUctIoN
The mathematical modelling of aerodynamics is an 

inevitable activity in aerospace realm. Such models find 
applications in multi-disciplinary activities which include 
performance optimisation, high-fidelity simulators for pilot 
training, design enhancements and additions, synthesis of 
flight control laws, flight envelop expansion, and upgrades 
of autopilot systems, etc. The mathematical model typically 
characterises nondimensional force and moment coefficients. 
Numerical values for these parameters appearing in the 
mathematical model are often derived from ground test 
methods such as wind-tunnel test and computer aided tools. 
However, the wind-tunnel test conditions and assumptions in 
software implementation typically do not replicate the actual 
flight environment. Consequently, it is desirable to derive 
estimates for these coefficients directly from flight test data.

Aerodynamic parameter estimation using classical 
methods both in time domain and frequency domain are well 
documented1-4. The most widely used system identification 
methods have been the output error method (OEM), filter 
error method (FEM) and equation error method (EEM). These 
methods require postulation of a mathematical model of the 
aircraft and also noise dynamics. Although highly nonlinear 
models can be estimated applying these methods, it may involve 
significant, time consuming, efforts to arrive at appropriate 
model structure based on the physics of the problem in such 

cases. Such phenomenological models often turn out to be 
quite complex.

Machine learning methods such as artificial neural 
network (ANN) provide another approach to investigate 
the same phenomenon, which is rather quick and easy. The 
artificial neural network is a computational model based 
structure method and functions as a biological neural network. 
Potential uses of ANNs in aerodynamic system identification 
are reported5-20 due to its universal function approximation 
capability21. The multi layer perceptron (MLP) feed forward 
neural network (FFNN) is used5-18 as a base model for nonlinear 
mapping between input and output spaces. The stability and 
control derivatives are then computed using delta method9. 
The delta method is based on finite difference approximation 
and successfully applied9-13,19-20 for modelling and estimation 
of aerodynamic parameters. The MLP FFNN consists of input 
layer, hidden layers and output layer. The neurons in input and 
output layers are determined by input and output dimensions. 
The judicious choice of number of neurons in hidden layers 
and number of hidden layers is essential for optimal modelling. 
There is no analytical solution to this problem. It is an iterative 
procedure and poses a difficulty in finding the optimum 
network design parameters. There are also some drawbacks 
of FFNN such as slow convergence, computational memory, 
sensitiveness to outliers, etc. These difficulties can be avoided 
by using alternate neural network architecture based on radial 
basis functions. Broomhead & Lowe22 proposed the radial 
basis function neural network (RBF NN). The RBF NN has Received : 03 September 2017, Revised : 11 January 2018
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equivalent capabilities as those of the MLP FFNN model. The 
RBF NN has become a good alternative to FFNN due to its fast 
learning feature. The RBF NN also has universal approximation 
and regularisation capabilities23. The application of RBF NN in 
rotorcraft modelling is reported in19-20. 

Alternate to delta method proposed by Kuttieri14, et. al 
is neural partial differentiation method (PDM). This method 
is based on the partial differentiation of FFNN output in 
terms of network parameters.  The approach adopted14 and 
applied in various aerodynamic problems15-17 is extended and 
a new neural partial differentiation method using RBF NN is 
proposed to estimate the stability and control derivatives. In 
this paper, the application of RBF NN is presented to model 
the nondimensional force and moment coefficients. The RBF 
NN is trained using hybrid learning proposed by Moody and 
Darken24. In the present application, k-means clustering is used 
at first stage to find the centers of radial basis functions and 
extended Kalman filter (EKF) in the second stage to obtain the 
weights in the output layer.

2. RADIAl BAsIs FUNctIoN NEURAl 
NEtwoRK
The Radial Basis Function neural network (RBF NN) 

is a layered structure as shown in Fig. 1. The RBF NN is 
represented by input layer, hidden layer and output layer22. The 
input layer constitute by the input vector x , where mR∈x and 
m is number of inputs. The hidden layer consists of Κ number 
of computational units (neurons) and each unit is described by 
a radial basis function ψ . The RBF NN differs from the feed 
forward neural network architecture in respect of number of 
hidden layers. The RBF NN is constructed by single hidden 
layer unlike multiple hidden layers in FFNN. The parameter 
Κ is a network design parameter, to be selected to yield the 
best performance in terms of specified cost function.

Many types of radial basis functions and their desired 
properties are given25. Popularly used radial functions are 
thin plate spline by Duchon26, multiquadrics and inverse 
multiquadrics by Hardy27, Gaussian function by Schagen28, 
In this paper, a Gaussian function 2( ) exp( )r rψ = −  is used 
as a radial basis function for implementation of RBF neural 
network. The hidden layer outputs are computed as ( )i idψ = ψ ; 

1, 2,......,i = Κ , where 
2i

id = −x c . The vector mR∈c is 
called center of the radial basis function.

The function approximation model describing the mapping 
of input space to output space, m nR R→ is given by

0
1

( )k k ki i
i

y w w d
Κ

=

= + ψ∑ ; 1,2,.........,k n=           (1)

The complete model response for multi input, multi output 
(MIMO) system is given in matrix form as
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The closed form system model is 
y W= ψ                            (3)

where, output vector [ ] { } 1,2,.....,1 k k nn
y y

=×
= , weight matrix 

[ ] { } 0,1,2,.......,

1,2,........,( 1)

i
ki k nn

W w = Κ

=× Κ +
= , and [ ] { } 1,2,.....,( 1) 1

1
T

i i= ΚΚ + ×
 ψ = ψ .

The input and output layers in RBF NN operate in different 
ways and, therefore, corresponding parameters (RBF centers 
and weights) have different meaning and properties. Hence, 
it is appropriate to use different learning algorithms for them. 
Accordingly, function approximation using RBF NN becomes 
a two stage optimisation problem. The first stage optimisation 
is performed at input layer for selection of radial basis function 
centers, c . The second stage optimisation is used to find 
weight matrix, W . 

Hybrid learning process used24 consists of two different 
stages: 
(i)  Self-organised learning stage which estimates appropriate 

locations for the centers of the RBF in the hidden layer, 
and 

(ii)  Supervised learning stage for estimating the weights of 
the output layer. 
Self-organised learning process is based on the 

unsupervised learning and need a clustering algorithm.
Clustering is a technique in which input data points are 
partitioned into clusters in such a way that the measure of 
similarity between any pair of data points to each cluster 
minimises a specified cost function. There are many clustering 
techniques available in literature such as SoC, fuzzy C-means, 
EM clustering, GG clustering, IMC and GK clustering29-34, 
etc. In this paper, k-means clustering algorithm is used due 
to its simple implementation and yet effective performance. 
Once, the radial basis function and its centers are fixed, the 
network is linear in the weight parameters. Various derivative 
based methods have been used to train the RBF NN including 
gradient descent35, Kalman filter36, and the back propagation37. 
Derivative free methods such as learning automata38, simulated 
annealing39 and genetic algorithms40, have also been used 
to train the neural networks. Derivative free methods are 
advantageous because they do not require derivatives of the 
cost function with respect to network parameters and also 
provides global minimum solution. The drawback of these 
methods is the slow rate of convergence. The derivative based Figure 1. Radial basis function neural network architecture.
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methods are advantageous in fast convergence, but they suffer 
by convergence to local minima. In this paper, we formulate 
RBF NN training method based on extended Kalman filter 
(EKF). Standard EKF is reformulated for multi input- multi 
output system to estimate the weights in hidden layer. 

2.1 k-means clustering
The k-means clustering, proposed32 and applied in this 

paper, is a representative of one of the unsupervised learning 
used to compute the centers of radial basis functions. 

Consider { }
1

N

j j=
x denote a set of multidimensional 

measurements that is to be partitioned into a set of Κ clusters. 
The objective of k-means clustering is to find cluster centers 
c such as to minimise total intra-cluster variance as the cost 
function:

2

1 1

N

j i
i j

J x c
Κ

= =

= −∑∑                                                      (4)

Defining the binary membership matrix M  as
{ }ijM m=  for 1, 2,.........,i = Κ  and 1,2,..........,j N=

where 1ijm =  if  
2 2

j i j kx c x c− ≤ − for each k i≠
                0= otherwise
Since the measurement vector jx fall in any one of the  

Κ clusters, the binary membership matrix M possesses the 
following properties

1
1, 1,2,..........,ij

i
m j N

Κ

=

= ∀ =∑
   1 1

N

ij
i j

m n
Κ

= =

=∑∑
Now, if ijm  is fixed, the cluster centres that minimised 

Eqn. (4) are calculated as

1

k
k

i N

ij
j

x
c

m
=

=
∑

∑
                                                                    (5)

Here k  refers the number of measurement vectors (input 
points) in ith cluster.

Algorithm:
1. Select Κ points at random from the measurement 

data as cluster centers
2. Form Κ clusters by assigning each point to its closest 

center according to the Euclidean distance function
3. Compute the centroid or mean of each cluster using 

Eqn. (5)
loop on steps 2 and 3 until Centroids do not change
There is no analytical method to find the optimal value 

of Κ . A rule of thumb is to compare the outcomes of multiple 
iterations with different Κ  and choose the best one.  

2.2 Extended Kalman Filter 
The extended Kalman filter (EKF) algorithm is used to 

estimate state vector from measurements. In this paper, the state 
vector is considered to be the weights of RBF neural network. 
Derivations of the EKF are available in literature41-42. In this 
section a brief and how it is applied to RBF neural network to 
obtain the weights of the output layer are presented. 

Consider the system model given as
State equation: 

1 ( )k k kf+θ = θ + ϑ , where (0, )k kQϑ →           (6)
Output equation: 

( )k k k ky h= θ + ν , where (0, )k kRν →                         (7)
where kϑ and kν are noise parameters represented by normal 
distribution with zero mean and Q and R  as covariance 
matrices.

The computational steps of EKF are as follows: 
For 1,2,............k N= , perform the following
1. Compute the system (state derivate) matrix as

1

1
1

k

k
k

f
A

+
−

−
−

θ

∂
=

∂θ 

                                                              (8)

2. Perform the state estimate and estimation error 
covariance as follows

1 1 1 1
T

k k k k kP A P A Q− +
− − − −= +                                                  (9)

1 1( )k k kf− +
− −θ = θ

 

                        (10)
3. Compute the output matrix as

k

k
k

h
C

−θ

∂
=

∂θ 

                                                                  (11)

4. Execute the following Kalman filter equations
1( )T T

k k k k k k kK P C C P C R− − −= +                                        (12)

( ( ))k k k k k kK y h+ − −θ = θ + − θ
  

                                           (13)

( )k k k kP I K C P+ −= −                                                    (14)
Consider the RBF neural network of Fig. 1 with m  inputs, 

Κ hidden nodes with c centers, and n  outputs. We use vector 

[ ]1 2
T

ny y yy =  to denote the true/measured value for 

the RBF NN outputs and [ ]1 2
ˆ ˆ ˆ ˆ( ) T

k nh y y yθ =   to denote 

the actual output of the network at the thk  time instant. 
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    ψ 





     





                 (15)

The states of the system can be represented as
( )10 11 1 20 21 2 0 1

T
K K n n nw w w w w w w w w Κθ =    

 

The system model to which the Kalman filter can be 
applied is

1k k k+θ = θ + ϑ                                                               (16)
 

( )k k ky h= θ + ν                         (17)
The kϑ  and kν  are artificially added process and 

measurements noise to execute a stable Kalman filter 
algorithm.

3. NEURAl PARtIAl DIFFERENtIAtIoN 
MEthoD
The first order partial derivatives form the basis for linear 

combination for modelling of force and moment coefficients. 
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The derivatives are calculated numerically using different 
methods such as delta and zero methods9, neural partial 
differentiation using MLP FFNN14. 

The proposed first order partial differentiation method 
is explained using RBF neural network in this section. This 
methodology is based on the partial differentiation of the RBF 
neural network output and is exactly computed at every training 
data point. Therefore, it reduces the post-training efforts for 
partial derivative computation unlike the delta method9 and its 
variants.  The thk  output of RBF NN described in Eqn. (1) can 
be rewritten as 

0 1 1 2 2.1 .............k k k k ky w w w w Κ Κ= + ψ + ψ + + ψ            (18)
Defining the following vector calculus used to compute 

the partial derivative of thk  output, ky with respect to input 
x  as

1 2

k k k k

m

y y y y
x x x

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 



x
                                     (19)

where 
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Equation (23) is the required relation to compute the 
partial derivatives of thk  output, ky with respect to input x  for 
multi input-single output (MISO) system. The same result can 
be extended for multi input-multi output (MIMO) system.   

To do this, define the vector calculus of a vector quantity 
as
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Now, putting the values of k

p

y
x

∂
∂

in the above expression 
we get
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                                       (25)
This is the required relation for computing the first order 

derivatives in the framework of radial basis function network.

4. FlIght tEst DAtA
The flight data of ATTAS aircraft of DLR is used to 

demonstrate the aerodynamic parameter estimation capability 
using the proposed neural partial differentiation method. The 
flight data of three different manoeuvers performed at altitude 
16000 ft and at 200 kts nominal speed are analysed here. 
The three manoeuvers are: (i) short period motion excited by 
multistep elevator, (ii) bank-to-bank motion by aileron input, 
and (iii) Dutch roll motion by the doublet rudder input. The 
elevator input is considered in lateral-directional dynamics to 
extract the cross coupling effects. The three manoeuvers are 25 
s, 30 s, and 30 s long respectively. The flight data is recorded at 
a sampling rate of 25 Hz. 

The time history of motion variables ( , , )p rβ  and applied 
control  inputs ( , )a rδ δ  during these three flight manoeuvers 
are as shown in Fig. 2. 

5. PARAMEtER EstIMAtIoN FRoM FlIght 
DAtA
The lateral-directional nondimensional coefficients YC , lC  

and nC  are derived from analytically computed side force ( )Y
, rolling moment ( )L and yawing moment ( )N respectively. 
The Y , L  and N are computed using flight measured linear 
accelerations and angular rate gyros. All the relevant equations 
are well explained2,40. 

The model for lateral-directional aerodynamic force and 
moment coefficients is postulated as follows:

0

* *
p r a rY Y Y Y Y Y a Y rC C C C p C r C C

β δ δ
= + β + + + δ + δ         (26)

0

* *

a rl l l l p l r l a l rC C C C p C r C C
β δ δ

= + β + + + δ + δ            (27)

0

* *
p r a rn n n n n n a n rC C C C p C r C C

β δ δ
= + β + + + δ + δ        (28) 

where aδ : the aileron deflection, rδ : the rudder deflection, β : 
the angle of sideslip, * *( , )p r : the normalised angular rates. 

The unknown aerodynamic stability and control 
derivatives are , , , , , , , ,

p r p r p rY Y Y l l l n n nC C C C C C C C C
β β β

and 
, , , , ,

a r a r a rY Y l l n nC C C C C C
δ δ δ δ δ δ

respectively.
The coefficient parameters ( YC , lC  and nC ) are used 

to train the RBF neural network. The neural network input 
and output vectors for aerodynamic parameter estimation are 
defined as

Input: * * T

a rp r = β δ δ x

Output: [ ]T
Y l nC C C=y
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The RBF neural network applied for aerodynamic 
parameter modelling is illustrated in Fig. 3.

For the purpose of mathematical explanation one of the 
output and associated single derivative is explained. However, 
similar mathematics is applicable for all other outputs and 
their derivatives. Lateral side force coefficient ( YC ) and 
stability derivative ( YC

β
) are considered as network output 

and associated partial derivative respectively for mathematical 
derivation. Rewriting the RBF neural network output as

 
10 11 1 12 2 1,10 10............YC w w w w= + ψ + ψ + + ψ        (29)

where nonlinear functions 1 2 10, ,.......ψ ψ ψ  are defined as
1 2 * 1 2 * 1 2 1 2 1 2
1 2 3 4 5[( ) ( ) ( ) ( ) ( ) ]

1
a rc p c r c c ce− β− + − + − + δ − + δ −ψ =

2 2 * 2 2 * 2 2 2 2 2 2
1 2 3 4 5[( ) ( ) ( ) ( ) ( ) ]

2
a rc p c r c c ce− β− + − + − + δ − + δ −ψ = , and

10 2 * 10 2 * 10 2 10 2 10 2
1 2 3 4 5[( ) ( ) ( ) ( ) ( ) ]

10
a rc p c r c c ce− β− + − + − + δ − + δ −ψ =

Then  lateral force stability derivative YC
β

 is computed by 
partial derivative of YC  w.r.t. β as

101 2
11 12 1,100 ............YC w w w

∂ψ∂ ∂ψ ∂ψ
= + + + +

∂β ∂β ∂β ∂β    (30)

where 

1 2 * 1 2 * 1 2 1 2 1 2
1 2 3 4 5[( ) ( ) ( ) ( ) ( ) ]1 11

1 1 12( ) 2( )a rc p c r c c cc e c− β− + − + − + δ − + δ −∂ψ
= − β − = − β − ψ

∂β

2 2 * 2 2 * 2 2 2 2 2 2
1 2 3 4 5[( ) ( ) ( ) ( ) ( ) ]2 22

1 1 22( ) 2( )a rc p c r c c cc e c− β− + − + − + δ − + δ −∂ψ
= − β − = − β − ψ

∂β

, and so

10 2 * 10 2 * 10 2 10 2 10 2
1 2 3 4 5[( ) ( ) ( ) ( ) ( ) ]10 1010

1 1 102( ) 2( )a rc p c r c c cc e c− β− + − + − + δ − + δ −∂ψ
= − β − = − β − ψ

∂β

1 2 10
1 1 11 1 2 12 1 10 1,102( ) 2( ) ............ 2( )YC c w c w c w∂

= − β − ψ − β − ψ − − β − ψ
∂β  

        
 

                                                                               (31)
As already pointed out, the RBF NN is trained by k-means 

clustering algorithm at input layer and weights in output layer 
are obtained using nonlinear Extended Kalman Filter. 

Judicious choice is necessary on K, the number of neurons 
in the hidden layer.  Simulations show that seven  or more 
neurons are able to model the aerodynamic charactesistic of the 
aircraft. However, increasing the value of Κ in hidden layer 
improves the residual error performance but at the increased 
cost of computational efforts. In the present case, 10Κ =  is 
used for simulation. 

The process and measurement noise covariance matrices 
used in output layer weight estimation using EKF are chosen 
as  7

33 3310Q I−
×=  and 2

3 310R I−
×=  respectively. These values 

are determined  by Monte-Carlo simulations for 10000 runs.
The EKF algorithm modified for training to RBF neural 

network is formulated by adding fictitious noise to the system 

Figure 2. time histories of motion/control inputs.

Figure 3. Aerodynamic force and moments modelling using 
RBF neural network.
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model with zero mean and covariance Q .
1k k kw w+ = + ϑ                                                              (32)

( )k k k ky h w= + ν                                                           (33)

1 1 1 1
T

k k k k kP A P A Q− +
− − − −= +                                                (34)

1( )T T
k k k k k k kK P C C P C R− − −= +                                      (35)

1ˆ ˆ ˆ( ( ))k k k k k kw w K y h w+ = + −                                        (36)

where  ( )10 11 1 20 21 2 0 1
T

K K n n nw w w w w w w w w Κ=    w

( )10 11 1 20 21 2 0 1
T

K K n n nw w w w w w w w w Κ=    w

The function h  is described by the RBF neural network 
outputs mentioned in Eqn. (26-28). The state Jacobian matrix 

kA is the identity matrix. The measurement Jacobian matrix 

becomes 
ˆk

k
w

hC
w

∂
=

∂ .

The training algorithm is iterative in nature and starts 
with any random initial weights (zero or non-zero), the EKF 
algorithm repeats for all data points to update the weights 
recursively. The mean square error is computed after each 
iteration defined by

1

1
ˆ ˆ( ) ( )

N

i

TMSE
Nn =

= ∑ y - y y - y                                            (37)

In this paper, the MSE was used as stopping criterion for 
termination of RBF neural network learning. 

Simulations were carried out for all lateral-directional 
force and moment coefficients. Lateral side force and 
associated stability and control derivatives are illustrated for 
the sake of brevity. Figure 4 shows a comparison between 
flight measured force coefficient and neural network estimate 
during the training phase. The result show good matching. 
The stability and control derivatives calculated using RBF NN 
neural partial differentiation method (PDM) during training 
at each data point is as given in Table 1. The average values 
of lateral-directional derivatives using RBF NN neural partial 
differentiation method are compared with RBF NN delta 
method, partial differentiation with multi-layer feedforward 
neural network and equation error method. It is observed that 
derivatives obtained by proposed method are consistent with 
other methods.   

The side force control and stability derivatives are 
illustrated in Fig. 5.  It is obvious that there is a little contribution 
of aileron in side force and same is noticed in Fig. 5. However, 
there is a slight disturbance in 

aYC
δ

when excited through the 

Figure 4. Comparison of RBF NN estimate and measured side force coefficient ( YC ).

table 1.  Average value of estimated stability and control derivatives using RBF neural partial differentiation, 
delta method for RBF Neural Network, MlP partial differentiation and equation error 

Method 0YC
0l

C
0nC YC

β lC
β nC

β pYC
pl

C
pnC

RBF NN PDM -0.0072 -0.0001 0.0029 -1.0620 -0.1149 0.2610 0.1786 -0.7788 -0.0843
RBF NN delta method -0.0072 -0.0001 0.0029 -1.0599 -0.1150 0.2607 0.1784 -0.7757 -0.0844    
FFNN PDM14 -0.0071 -0.0002 0.0029 -1.0557 -0.1134 0.2587 0.2027 -0.7584 -0.0912
EEM14 -0.0071 -0.0002 0.0029 -1.0483 -0.1127 0.2572 0.2058 -0.7557 -0.0921

Method rYC
rl

C
rnC

aYC
δ alC

δ anC
δ

rYC
δ rlC

δ rnC
δ

RBF NN PDM 0.5823 0.2535 -0.1156 0.0046 -0.2034 -0.0108 0.1877 0.0380 -0.1432
RBF NN delta method 0.5847 0.2532 -0.1192    0.0046 -0.2028 -0.0108    0.1867 0.0380 -0.1446
FFNN PDM14 0.6116 0.2809 -0.1252 0.0080 -0.1934 -0.0118 0.1902 0.0442 -0.1419
EEM14 0.6157 0.2866 -0.1265 0.0083 -0.1928 -0.0119 0.1909 0.0439 -0.1430
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aileron. This is may be due to the adverse yaw effect. Side force 
is majorly due to side slip angle β and yawing angular rate 
r and is the reason why stability derivatives YC

β
and 

rYC are 
dominant among the derivatives. Apparently remaining terms 
are not so effective. The RMS values of derivatives obtained 
using RBF NN PDM is illustrated in Fig. 6. The training of 
RBF NN converges within 5-10 iterations and is confirmed 
through result as shown in Fig. 6.  

The predictive capability of the identified lateral-
directional model is proved in two ways
(i)   A separate set of flight data is applied to identified RBF 

NN model, and 
(ii)  Identified stability and control derivatives are used to 

reconstruct the force and moment coefficients for this 
flight data. 
Result for validation method 1 is illustrated in Fig. 7. 

Neural network identified model output is compared 
with measurement values and show good matching. The 

reconstructed side force coefficient is illustrated in Fig. 8. Both 
the model output and reconstructed coefficient values are in 
close agreement with the measured values. This proves the 
acceptance of the identified model and derivative values.       

6. coNclUsIoNs
Applicability of the RBF neural network is investigated 

to model the aircraft dynamics. Model for lateral-directional 
nondimensional force and moment coefficients are identified 
for ATTAS aircraft. The model is validated using a different 
data set and reconstruction method. A new analytical method 
for estimation of stability and control derivatives is proposed 
using RBF neural network. The first order partial differentiation 
is performed at each training data point to obtain the stability 
and control derivatives. The analytically computed derivatives 
by the proposed method are compared with hitherto methods 
such as delta method, partial differential method using MLP 
and equation error method. The results so obtained are 

Figure 6. RMS values of stability and control derivatives of side force (Y) at each iteration.

Figure 5. Stability and control derivatives associated with side force (Y) computed using RBF NN PDM.
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consistent with other methods. The advantage of using RBF 
neural network provides faster convergence compared to MLP 
neural networks. The proposed method can be applied for 
complete aerodynamic characterisation of fixed wing as well 
as rotorcraft flight vehicles. 
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