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1. INTRODUCTION
An image may be subjected to noise during its 

formation by an imaging device. The presence of noise 
may lead to blurring and distortion of the acquired 
image that may hamper both the quantitative and visual 
analysis of the image. The noise present in an image 
may be additive or multiplicative and may be distributed 
according to a probability distribution function depending 
on the application. For example, additive noise in an 
image normally follows the Gaussian distribution. Speckle 
noise which is multiplicative in nature may be present 
in ultrasound images, synthetic aperture radar (SAR) 
images, digital holographic images, optical coherence 
tomography (OCT) images, etc. Speckle noise in 2-D 
B-scan ultrasound images follow Rayleigh’s probability 
distribution; speckle noise present in SAR imagery follows 
k-distribution and noise present in magnetic resonance 
imaging (MRI) follow Rician distribution. Depending 
upon the type and statistics of noise a specific noise 
removal filter is required for restoration of a particular 
image. The basic purpose of an image restoration method 
is to model the degradation phenomenon using a priori 
knowledge of the degradation process to restore the 

fine details in the original image which results in an 
improved analysis of the image. In case, where a priori 
information is not available and image is restored by an 
image restoration model derived from the information 
retrieved from the noisy image and considering all other 
possibilities that may have lead to the degradation of 
the acquired image then such type of restoration process 
is referred to as blind restoration problem.

For Poisson’ noise corrupted digital images such as 
in fluorescence microscopy1-4,9, the sample to be studied 
is itself the light source and this technique is used to 
study specimens, which can be made to fluoresce. The 
fluorescence microscope is based on the phenomenon that 
certain material emits energy detectable as visible light 
when irradiated with the light of a specific wavelength. 
The sample can either be fluorescing in its natural form 
like chlorophyll and some minerals, or treated with 
fluorescing chemicals. The basic task of the fluorescence 
microscope is to let excitation light radiate the specimen 
and then sort out the much weaker emitted light to make 
up the image. First, the microscope has a filter that only 
lets through radiation with the desired wavelength that 
matches the given fluorescing material. The radiation 
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collides with the atoms in the given specimen and electrons 
are excited to a higher energy level. When they relax 
to a lower level, they emit light. To become visible, the 
emitted light is separated from the brighter excitation 
light in a second filter. Here, the fact that the emitted 
light is of lower energy and has a longer wavelength 
is used. The fluorescing areas can be observed in the 
microscope and shine out against a dark background 
with high contrast. Fluorescence microscopy is a rapid 
expanding technique, both in the medical and biological 
sciences. The technique has made it possible to identify 
cells and cellular components with a high degree of 
specificity. For example, certain antibodies and disease 
conditions or impurities in inorganic material can be 
studied with the fluorescence microscopy. In fluorescence 
microscopy1-3, the captured image may be noisy due to 
various reasons that may be extrinsic or intrinsic in 
nature. The extrinsic noise may be induced due to lens 
miss-focus, environmental factors, instrumental error, 
light detectors and sensors. The extrinsic noise can be 
caused by various sources such as dark current, electronic 
noise, detector readout which are Gaussian distributed, 
and quantization noise which is uniformly distributed4. 
The intrinsic noise may be induced by the detection of 
photons. A light detector is said to be photon-limited if 
the extrinsic noise is negligibly small compared to the 
amount of intrinsic noise induced by the detection of 
photons. Measurements show that scientific CCD cameras 
and PMTs can be regarded as photon limited2,4. 

OBJECT PSF BLURRED OBJECT NOISY IMAGE

Figure 1.  The image formation in a fluorescence microscope, where 
the symbol  denotes convolution of the object with 
point spread function (PSF) of the microscope2.

In the fluorescence microscopy, fluorescent molecules 
in the illuminated object are excited by an incident light 
of wavelength

 
λ1 and the excited molecules emit light 

of wavelength λ2 which is collected by the microscope 
forming a fluorescent image. The difference of light 
wavelengths  λ=λ1- λ2 between λ1 and λ2 is called the 
Stokes shift of the fluorescent molecule9. The light may 
be considered as a series of particles called photons where 
each photon carries a certain amount of energy E = hc/λ, 
where c is the speed of light and h is Planck’s constant. 
Photon production by any light source is a statistical 
process governed by the laws of quantum physics where 
the source emits photons at random time intervals and 
the number of photons in a fixed observation interval 
results in a number that follows Poisson statistics. Each 
observation measures a number p with a probability 
given by the Poisson distribution2,9.
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where T is the observation interval or exposure time and 
ρT is the photon flux. The average of a large number of 
observations approximate the expected photon production 
ρT .This photon detection induced Poisson noise is 
sometimes referred to as intrinsic noise, and is unavoidable 
when acquiring an image. A method is proposed to deal 
with intrinsic Poisson noise for the photon limited light 
detectors.

To construct a model for the image formation of a 
digital image such as fluorescence microscope2,5,10 both 
the wave description and quantum nature of light can 
be used where the incoherent nature of the fluorescence 
light allows one to model the fluorescence microscope 
as a linear translation invariant system. The image is 
in that case a convolution of the object with the point 
spread function of the fluorescence microscope. The 
detection of photons in a finite time interval distorts 
the observed image with Poisson noise. Extrinsic noise 
sources can further hamper the image. Finally it is 
common in fluorescence microscopy to measure a non-
zero background level arising from auto-fluorescence, 
inadequate removal of fluorescent staining material, glare 
and reflections, and/or offset levels associated with the 
gain of the detector or other electronic sources. Therefore, 
the image formation of a fluorescence microscope can 
be modelled as follows 

u x y h x y u x y x y
0

( , ) ( ( , ) ( , ) ( , )= ⊗ +[ ]η β
       (2)

where u0(x,y) is the observed or recorded fluorescence 
image, u(x,y) is the original true image without distortion, 
β ( , )x y  a background signal, h(x,y) is point spread function 
(PSF) of the microscope, and η  is a general noise 
distortion function which in the case of scientific grade 
light detectors is dominated by Poisson noise. For images 
with a relatively high signal-to-noise ratio and small 
dynamic range the Poisson process can be approximated 
by additive Gaussian noise. This approximation of an 
inhomogeneous Poisson process will in general lead to 
a different sigma (standard deviation) of the Gaussian 
distribution for each recorded data point i.e., pixels of 
image because the variance of a Poisson process is equal 
to its intensity. However, for images with a relatively high 
signal-to-noise ratio and small dynamic range Poisson 
process can be approximated with constant sigma, making 
the Gaussian noise independent from the pixel intensity. 
Under these conditions, the image observation model1 
given by Eqn. (2) reads

u x y h x y u x y x y
0

( , ) ( ( , ) ( , )) ( , )= ⊗ + β

which can be written as u
0

= Hu + β      
 The various restorations methods1,5-8,10-13 available 
in literature for the model given by Eqn. (4) can be 
categorised in three broad categories. The first being the 
linear methods; the second being the iterative nonlinear 
filters; and the third being the maximum likelihood (ML) 

(3)

(4)
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estimation based on expectation-maximization (EM) 
algorithm5,12. The approaches for designing linear filters 
are based on the concepts of Minimum mean square 
error (MMSE) and least square restoration. Examples of 
MMSE and least square filters include the popular Wiener 
filter5,6. The Wiener filter de-convolves an image using 
Wiener filter returning de-blurred image. The assumption 
is that the input image was created by convolving a true 
image with a point-spread function PSF and possibly by 
adding noise. The Wiener filter is optimal in a sense 
of least mean square error between the estimated and 
the true images, and utilizes the correlation matrices of 
image and noise. In the absence of noise, the Weiner 
filter reduces to the ideal inverse filter. Examples of 
iterative nonlinear filters and ML estimation based on EM 
includes regularised filter5 and iterative constrained Lucy-
Richardson filter5,7,8. The regularised filter5 is a constrained 
optimum in a sense of least square error between the 
estimated and the true images under the requirement of 
preserving image smoothness. The accelerated, damped, 
Lucy-Richardson filter5,6 maximizes the likelihood that 
the resulting image, when convolved with the PSF, is an 
instance of the blurred image, assuming Poisson noise 
statistics. The Lucy-Richardson filter can be effective when 
one knows the PSF but know little about the additive 
noise in the image. The limitations of these filters are: 
the Wiener1,2 filter is linear and convolution filter and its 
linear nature makes it incapable of restoring frequencies 
for which the PSF has a zero response and in general 
the PSF of a 3-D fluorescence microscope has large 
regions with zero response known as the missing cones2. 
Further, linear filters can’t restrict the domain in which 
the solution should be found and this property is a major 
drawback since the intensity of an object represents light 
energy, which is non-negative. Also, linear filters are 
very sensitive to errors. Further, all the other methods 
explained as above are based on approximation of the 
Poisson noise with Gaussian noise. Further all above 
filters perform better for additive Gaussian noise but do 
not perform for Poisson noise in fluorescence microscopic 
images. They are also not capable of preserving edges 
and radiometric information such as luminance and 
contrast in the restored image. Therefore, to recover the 
fluorescence microscopic images an effective method 
adapted to Poisson noise is required. 

In recent years, some authors14-19 have proposed 
partial differential equation (PDE) based filters for the 
restoration of digital images corrupted with additive 
noise. These filters are capable of restoring the images 
and are also well capable of preserving the edges. The 
PDE based filters can be modified to remove the intrinsic 
Poisson noise from fluorescence microscopic images in an 
effective manner. The PDE based filters can be derived 
in variational framework where the energy of a noisy 
image may be defined in terms of gradient norm of the 
image15,17,18 and further, this energy functional is minimized 
to minimize the variations or noise in an image using 

Euler-Lagrange minimisation technique combined with 
gradient descent approach. After minimization, PDE is 
obtained which acts as the nonlinear filter whose initial 
condition is the noisy image. The processed or restored 
image is obtained after certain iterations of the obtained 
PDE till it converges to the solution. 

A nonlinear PDE based filter adapted to Poisson 
noise is proposed in this paper to remove photon-limited 
intrinsic noise which has Poisson distribution from the 
digital microscopic images. Further, the performance of 
the proposed scheme is evaluated both quantitatively 
and qualitatively and results are compared against some 
well known filters in literature such as Wiener filter5,6, 
Regularised filter5,6, Lucy-Richardson filter5,7,8 and another 
proposed nonlinear complex diffusion-based filter.

 
2. METHODS AND MODELS
2.1 Anisotropic Diffusion-based Model

To overcome the problems associated with the restoration 
methods a nonlinear anisotropic diffusion-based filter 
adapted to Poisson noise is proposed to restore the digital 
images corrupted with Poisson noise. The proposed filter 
is based on a maximum a posterior (MAP) approach to 
the image reconstruction problem. Given an initial noisy 
image u0, then we reconstruct the filtered image u that 
maximizes the log-posterior probability

where p(u/u0) is the likelihood term of noise model 
and p(u) is the prior. The formulation of the filtering 
problem as maximization of a posterior is useful because 
it allows one to incorporate the Poisson likelihood term 
as a data attachment which can be added to an image 
prior model. In this work, the Gibb’s image prior model 
based on energy functional defined in terms of gradient 
norm18 of the image is used.

In fluorescence microscopy and other imaging 
applications such as medical imaging and astronomical 
imaging, the elements of noisy image u0 belongs to 
noisy photon counts which follows Poisson distribution. 
Therefore, the statistical model that models the error 
in these systems reads u0 = Poisson(Au+b)Poisson(X). 
Where Poisson(Au+b) is an independent and identically 
distributed (iid) Poisson random vector with Poisson 
parameter vector X. 

The probability distribution function of the Poisson 
noise20 is given as

0.( / )0 0

uue up u u u
−

=
∠

          
Given image data ouarising from model u0 = Poisson(Au+b)

Poisson(X), whose pdf is described by Eqn (6), the maximum 
likelihood estimate of u is obtained by maximising p(u/
u0)with respect to subject to u ≥ 0. Alternatively, we 
can calculate the maximum likelihood estimate of u by 
minimising the negative log likelihood of Poisson pdf 
given by  uML= argmin {–In p(u/u0)}= argmin {u–u0Inu}

u≥0 u≥0

(5)

(6)

/log( ( / )) log( ( )) log ( )0 0p u u p u u p uα +
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to restore the image data u.
The log likelihood of Poisson pdf reads
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 For obtaining the maximum likelihood of u, the derivative 
of log likelihood of Poisson pdf wrt u reads

∂

∂
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−log( ( / )) ( )p u u
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B =
(u - u)

u
0

   
                   

               
The term B acts as the data attachment term or 

data likelihood term i.e. B is the maximum likelihood 
estimate of u assuming Poisson noise.

The Gibbs image prior model is considered as the 
image prior model for MAP based restoration method. 
The Gibbs prior model is based on the energy functional, 
which is defined in terms of the gradient norm of the 
image, related to anisotropic diffusion-based PDE18 for 
additive noise removal. The Gibb’s prior model reads

p u E u( ) = 1
z exp( ( ))−

Where energy functional18 is defined as

E u u d( ) arg min( )= ∫ ∇λ  
Ω

Ω
2

Using the Euler-Lagrange minimization technique 
combined with gradient descent approach the Eqn. (11) 
leads to following PDE for anisotropic regularisation of 
the image data18

∂

∂
= ∇ ∇ ∇

u

t
c u uλ .( ( ) ) 

 
By adding the data likelihood term B given by Eqn. 

(9) with the regularisation term given by Eqn. (11), the 
update equation for the filtered image reads

∂

∂
= + ∇ ∇ ∇

u

t
B c u uλ .( ( ) ) 

Where the diffusion coefficient is defined as18,

c u
u

k

( )
( )

 ∇ =
+

∇
1

1
2

Therefore, the anisotropic diffusion-based model 
adapted to Poisson noise reads

∂

∂
=

−
+ ∇ ∇ ∇

u

t

u u

u
c u u

( )
.( ( ) )0 λ  

with initial condition being the observed noisy image, 
i.e., u(t = 0) = u0           (15b)  
  The first term, which is first derivative of log 
likelihood of Poisson probability distribution function 
(pdf) with respect to estimated image, acts as the data 
attachment term and measures the dissimilarities at a 
pixel between observed image and its estimated value 
obtained during filtering process there by making the 
whole filtering process adapted to noise. The second 

term is responsible for regularisation and smoothing of 
the image data by minimising the variance of pixels.

The image restoration models given by Eqns (15a) 
and (15b) derived using MAP approach can also be 
alternatively derived in minimisation framework using 
calculus of variations and Euler-Lagrange minimisation. 
Therefore, the anisotropic diffusion penalized Poisson 
maximum likelihood estimation can also be obtained 

by minimising u T u u u
o

u
λ λ

λ
= = − + ∇{ }arg min ( ) ( ln )

2
| u |

2
u≥0  

resulting in Eqns (15a) and (15b).

2.2  Proposed Complex Diffusion-based Model
Another filter-based on the concepts of complex 

diffusion-based processes19 is proposed and its efficacy 
is also examined. The major advantage of complex 
diffusion-based filter over anisotropic diffusion filter 
is that more generalized and efficient19. To derive the 
filter based on complex diffusion-based processes, if in 
second term of the anisotropic diffusion-based model 
given by Eqn. (15a), real time factor t is replaced by 
the complex time factor it and the diffusion coefficient 
c(|∆u|) by c(Im(u)), where Im(u) is the imaginary part 
of the image as computed in paper19, then it leads to 
following proposed nonlinear complex diffusion-based 
model19 adapted to Poisson noise:

( )0 ( (Im( )) )
u uI div c u ut u

−∂ = + λ⋅ ∇
∂

With initial condition  u(t = 0) = u0         (16b)
The diffusion coefficient c(Im(u)) is defined as 

follows19 

2(Im( ))
Im( )1

iec I
I

k

θ

=
 +  θ 

where k is edge threshold parameter and the value of k 
ranges from 1 to 1.5 for digital images19. For nonlinear 
complex diffusion process defined by Eqns (16) and 
(17) the evolution of real part of the image is controlled 
by the linear forward diffusion, whereas evolution of 
imaginary part of the image is controlled by both the 
real and imaginary equations. A qualitative property 
of edge detection, i.e., second smoothed derivative is 
described by the imaginary part of the image for small 
value of θ, whereas real values depict the properties of 
ordinary Gaussian scale-space. For large values of θ, the 
imaginary part feeds back in to the real part creating 
the wave like ringing effect which is an undesirable 
property. Here, for experimentation purposes the value 
of θ is chosen to be π

30 
. 

2.3  Discretisation of the Proposed Model
For digital implementations, the Eqn. (15) can 

be discretised using finite differences schemes21. The 
discretised form of the anisotropic diffusion-based model, 
given by Eqn. (15), reads

(8)

(7)

(9)

(10)

(11)

(12)

(13)

(14)

(15a)

(16a)

(17)
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( )1 0.[ .( ( ) )]
nu un n n nu u t c u unu

−+ = + ∆ + λ∇ ∇ ∇

u(t = 0) = u0
And the discretised form of the proposed complex 

diffusion-based model reads
( )1 0.[ .( (Im( ) )]

nu un n n nu u t c u unu

−+ = + ∆ + λ∇ ∇
  

u(t = 0) = u0                
For the numerical scheme, given by Eqns (18) and 

(19) to be stable, the von Neumann analysis21, shows 
that we require ∆

∆

t

x( )2  < ¼. If the grid size is set to 1=∆x

, then t∆ < ¼ i.e. t∆  < 0.25. Therefore, the value of t∆  
is set to 0.25 for stability of Eqn. (18). In the similar 
fashion, the nonlinear complex diffusion model given 
by Eqn. (16) can be discretised using finite difference 
scheme. 

Out of the two proposed schemes, the complex 
diffusion-based model adapted to Poisson noise is performing 
better to all other schemes in consideration which is 
validated by the results.

2.4  Estimation of Regularisation Parameter λ
The regularisation parameter λ, used in Eqns (15), (16) 

and (19) are computed dynamically from the information 
present in the fluorescence microscopic image. Initially 
it was set to 0 and in successive iterations of the 
proposed PDE based model the specific value of λ is 
calculated. The regularisation parameter λ is responsible 
for making a balance between the two terms which are 
data attachment term and regularisation term in the 
proposed model. The regularisation parameter is defined 
in terms of the inverse of average signal-to-noise ratio 
(SNR) computed from mean and standard deviation of 
the image in specific iterations. The average SNR is 
defined as follows:

( ( )). . ( ( )) 2
mean I tAvg SNR std deviation I t

n

µ= =
σ

 

1
.Avg SNRλ =

The lower value of SNR denotes that more noise 
is present in image whereas the higher value of SNR 
denotes that the image is of better quality and contains 
less noise in comparison to its previous more noisy 
version. Therefore, for lower SNR value, the value of λ 
increases allowing more weight to the second term in the 
proposed model which is responsible for regularisation or 
smoothing of data. For higher SNR value, the value of λ 
decreases allowing less weight to the second term in the 
proposed model which is responsible for regularisation 
or smoothing of data.

3.   RESULTS AND PERFORMANCE ANALYSIS
The performance of the proposed anisotropic diffusion-

based scheme adapted to Poisson noise and other noise 
reduction schemes available in literature such as Wiener 
filter5,6, Lucy-Richardson filter5,7,8, Regularised filter5,6 

and another proposed complex diffusion-based filter have 
been evaluated both qualitatively and quantitatively and 
comparative study of their performances is presented for 
four sample microscopic images.

3.1  Performance Metrics
The metrics for comparing the performance of various 

schemes in considerations for digital images corrupted 
with Poisson noise are defined as follows:
Mean square error5: 

2'

1 1

1 ( , ) ( , )
m n

i j
MSE I i j I i j

m n = =

 = − × ∑∑

where is I' the
 

original image without noise, I' is the 
filtered noise reduced image, m x n is the size of the 
image and i = 1.......m, j = 1........n.

Peak signal-to-noise ratio5:

     
10

25520logPSNR
RMSE

 =   
Here RMSE is the root mean square error. For 

optimal performance, measured values of MSE should 
be small and that of peak signal-to-noise ratio (PSNR) 
should be large.

Correlation parameter22: Correlation parameter (CP) is 
a qualitative measure for edge preservation. To evaluate 
the performance of the edge preservation or sharpness, 
the correlation parameter is defined as follows:

^ ^

1 1

^ ^
2 2

1 1 1 1

( ) ( )

( ) ( )

m n

i j

m n m n

i j i j

I I I I
CP

I I I I

−

−

−

= =

−

= = = =

∆ − ∆ × ∆ − ∆

=

∆ − ∆ × ∆ − ∆

∑∑

∑∑ ∑∑

where ΔI and ΔÎ are high pass filtered versions of original 
imageand I filtered image Î obtained via a 3 x 3 pixel 
standard approximation of the Laplacian operator. The 
ΔĪ and ΔÎ  are the mean values of I and Î  respectively. 
The correlation parameter should be closer to unity for 
an optimal effect of edge preservation.

Structure similarity index map23: Structure similarity 
index map (SSIM) is used to compare luminance, contrast 
and structure of two different images. It can be treated 
as a similarity measure of two different images. This 
similarity measure is a function of luminance, contrast 
and structure. The SSIM of two images X and Y can 
be calculated as:

1 2
2 2 2 2

1 2

(2 ) (2 )
( , )

( ) ( )
x y xy

x y x y

C C
SSIM X Y

C C
µ µ + × σ +

=
µ + µ + × σ + σ +

where µi (i = X or Y) is the mean intensity, σ i i( )= Χ Υor (i = X 
or Y) is the standard deviation,σ σ σxy x y= .  and Ci (i=1 or 

(23)

(24)

(22)

(18a)

(19a)

(19b)

(20)

(21)

(18b)

(25)



DEF. SCI. J., VOL. 61, NO. 5, SEPTEMBER 2011 

457

2) is the constant to avoid instability when µ µx y
2 2+  is 

very close to zero and is defined as 2)( LkC ii =  in which 
ki <<1  and L is the dynamic range of pixel values e.g. 
L = 255 for 8-bit gray scale image. To have an overall 
quality measurement of the entire image, mean SSIM 
is defined as 

1 1

1( , ) ( , )
m n

ij ij
i j

MSSIM X Y SSIM X Y
mn = =

= ∑∑

The MSSIM value should be closer to unity for 
optimal measure of similarity.

3.2  Results and Discussions  
The performances of all schemes in consideration 

have been compared in terms of MSE, PSNR, CP and 
MSSIM for the all four sample microscopic images. 
The Poisson noise was introduced artificially in the test 
images. It has been tested through experimentation that 
after 50 iterations the proposed diffusion-based PDEs in 
consideration converge to the desired level of solution 
i.e., produces acceptable quality of de-noised images. 
After 50 iterations the PSNR values of the proposed 
PDE based schemes start decreasing. Therefore total 
numbers of iterations were fixed to 50 for the proposed 
schemes. The value of  was set to 0.25 for stability 
reasons. The initial condition of the proposed PDE 
based filter is the noisy image and the final solution is 
the de-noised image. The initial value of the dynamic 
regularisation parameter λ(0)is set to zero and the value 
of λ was calculated in each iteration of the proposed 
PDE-based model by Eqns (19) and (20). All schemes 
have been implemented using MATLAB 7.0 software. For 
implementing the proposed method, the Eqn. (19) was 
used for evolving the solution. The diffusion coefficient  
C(Im(u))is defined by Eqn. (17). The value of threshold 
parameter k used in Eqn. (17) lies in between 1 and 1.5 
for de-nosing the image corrupted by Gaussian noise19. 
For images corrupted with Poisson noise, the value of 
edge threshold parameter k for the nonlinear complex 
diffusion-based scheme was set to 0.0001 and is the 
optimal choice as tested by experimentations. For other 
values of k, the performance decreases. For implementing 

the anisotropic diffusion-based model Eqn. (18) was used. 
The diffusion coefficient )( IC ∇  defined by Eqn. (14) 
was used, where the value of threshold parameter k used 
in Eqn. (14) was set to 20 as proposed18. It has been 
tested through experimentation that, for other values of 
k the performance decreases. For implementing nonlinear 
complex diffusion-based technique, the discretised versions 
of Eqn. (16) was used. 

The results for four test cases are shown in this paper 
though the performances of all schemes in considerations 
were evaluated for several other test images and the 
performance trend almost remained same. Tables 1-4 lists 
the performance results for the four sample microscopic 
images cheek3oilmicroscopic.jpg of size 480 x 640, 
microscopicobject.jpg of size 80 x 80, cos12.jpg, 504 
x 700, and bpae3.jpg, 504 x 700 respectively for the 
proposed scheme and other schemes in consideration 
in terms of MSE, PSNR, CP and MSSIM. Figures 2-5 
show comparison of visual results of various filters for 
the four sample microscopic images in consideration. 
From Tables 1-4, it can be observed that the proposed 
complex diffusion-based model for Poisson noise reduction 
is associated with minimum MSE, maximum PSNR, CP 
and MSSIM values in comparison to other schemes for 
all four sample microscopic images in consideration. The 
maximum values of CP and MSSIM associated with the 
proposed method, which are very close to one, indicate 
that the proposed scheme is well capable of preserving 
edges and structures of microscopic images in addition 
to effective reduction of intrinsic Poisson noise. 

Therefore, from the results obtained it can be concluded 
that the proposed complex diffusion-based model is a 
better choice for reduction of the intrinsic Poisson noise 
from microscopic images and it also preserves the edges 
and other radiometric information such as luminance and 
contrast of the image.

4. CONCLUSIONS
A nonlinear PDE based filter, i.e., nonlinear complex 

diffusion-based filter adapted to Poisson noise is proposed 
in this paper to restore and enhance the degraded 
microscopic images corrupted by intrinsic Poisson noise. 

Table 1. Results for sample microscopic image cheek3oilmicroscopic.jpg, 480 x 640

Method MSE PSNR [dB] CP MSSIM

Wiener filter 363.5397 22.5253 0.8154 0.8188

Lucy-Richardson 366.7085 22.4876 0.8142 0.8190

Regularised filter 208.1105 24.9479 0.9016 0.8350
Anisotropic diffusion-
based  

75.4699 29.3531 0.9631 0.9162

Nonlinear complex 
diffusion-based

68.5302 29.7720 0.9667 0.9195

(26)
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Table 2. Results for sample microscopic image, microscopicobject.jpg, 80 x 80

Method MSE PSNR [dB] CP MSSIM

Wiener filter 80.8127 29.0560 0.6051 0.8940
Lucy-Richardson 84.5945 28.8574 0.5935 0.8944
Regularised filter 29.4429 33.4410 0.8553 0.9189
Anisotropic diffusion-
based  

26.9030 33.5687 0.8298 0.9227

Nonlinear complex 
diffusion-based  

22.8276 34.5462 0.8817 0.9344

Figure 2. Comparison of visual results of various filters for the sample image cheek3oilmicroscopic.jpg, 480 x 640.

Figure 3. Comparison of visual results of various filters for the sample image microscopicobject.jpg, 80 x 80.
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                  Table 3. Results for sample microscopic image cos12.jpg, 504 x 700

Method MSE PSNR [dB] CP MSSIM

Wiener filter 77.6263 29.2307 0.5524 0.9638
Lucy-Richardson 77.0228 29.2646 0.5536 0.9643
Regularised filter 18.5729 35.4466 0.8799 0.9758

Anisotropic diffusion-
based 

19.6436 35.1986 0.8339 0.9807

Nonlinear complex 
diffusion-based 

16.7447 35.8920 0.8605 0.9820

                 Table 4. Results for sample microscopic image bpae3.jpg, 504 x 700

Method MSE PSNR [dB] CP MSSIM

Wiener filter 198.7639 25.1474 0.7339 0.9536
Lucy-Richardson 198.3279 25.1570 0.7346 0.9541
Regularised filter 91.3658 28.5230 0.8812 0.9613

Anisotropic diffusion-
based 

62.3711 30.1810 0.9323 0.9522

Nonlinear complex 
diffusion-based 

61.1120 30.2695 0.9320 0.9665

LUCY-RICHARDSON

 Figure 4. Comparison of visual results of various filters for the sample microscopic image cos12.jpg, 504 x 700.
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NL COMPLEX DIFFUSIONREGULARIZED FILTER ANISO DIFFUSION

LUCY-RICHARDSONORIGINAL IMAGE NOISY IMAGE WIENER



SRIVASTAVA, et al.: ENHANCEMENT AND RESTORATION OF MICROSCOPIC IMAGES CORRUPTED WITH POISSON’S NOISE  

460

The proposed filter is based on a maximum a posterior 
(MAP) approach to the image reconstruction problem. 
The first term in the proposed model is the log likelihood 
term that makes the overall filtering procedure adapted 
to Poisson noise and the second term is responsible for 
the regularisation and smoothing of the image data. In 
the similar framework, another nonlinear anisotropic 
diffusion filter is proposed and its efficacy was also 
examined. For digital implementations, the proposed 
PDE based filters were discretised using finite difference 
scheme. The value of regularisation parameter λ was 
calculated dynamically in each iteration. Performance 
and efficacy of the proposed scheme were examined for 
several microscopic images and results and performance 
analysis for four sample microscopic images are presented 
here. The performance of the proposed scheme has also 
been compared with other standard techniques available 
in literature such as Wiener filter, regularised filter, 
Lucy-Richardson filter and another proposed nonlinear 
anisotropic diffusion-based filter in terms of mean square 
error (MSE), peak signal-to-noise ratio (PSNR), correlation 
parameter (CP) and mean structure similarity index map 
(MSSIM). From the results and performance analysis it 
can be concluded that the proposed complex diffusion-
based filter adapted to Poisson noise performs better in 
comparison to other filters and is a better choice for 
reduction of intrinsic Poisson noise from the microscopic 
images and it is also well capable of preserving edges 
and radiometric information such as luminance and 
contrast of the restored image.  
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