
1. INTRODUCTION
The use of entropy in an image retrieval system is not as 

popular as compared to other methods which utilize wavelets 
or colour, texture, and shape descriptors. But the potentiality 
of entropy as a descriptor cannot be ignored and in the recent 
past, many researchers have started exploring the possibility 
of using entropy in different domains. Entropy has been found 
effectively useful in image indexing4,16,11,18 and in similarity 
measures12,16,20.

The term entropy as a scientific concept was first used in 
thermodynamics by Clausius17. Its probabilistic interpretation 
in the context of statistical mechanics is attributed to 
Boltzmann19. Shannon1 has used this concept to describe the 
properties of long sequences of symbols, and applied the 
results to a number of basic problems in coding theory and 
data transmission. Later the definition of entropy was extended 
to the field of information theory. The entropy of a system as 
defined by Shannon1 gives a measure of uncertainty about the 
actual structure of the image. Shannon’s definition based on 
the information gain from an event is inversely proportional to 
its probability of occurrence.

The entropy of an image is used for different applications 
in image processing. The interpretation of entropy in an image 
depends on how an event is defined and also the definition of 
its posterior probability. In general, gray level is considered 
as an event and colour histogram as its probability density 
function. In addition to this, it is assumed that gray levels are 
statistically independent. Pun5 and Kapur6, et al. have used the 
Shannon’s concept to define the entropy of an image assuming 
that an image is entirely represented by its gray level histogram 

only. Leung7, et al. have attempted to isolate an object from 
the background by using the Gray-scale Image Entropy. 
The entropy (Shannon’s) of the histogram may be taken as a 
measure of information content in an image; such entropy is 
also called global information measure of the image. A low 
value of entropy indicates the skewness of the distribution of 
gray values, while a high value may be taken as an indicator 
of nearly uniform distribution of gray values. Definitely 
the histogram and the global entropy are not dependent on 
the spatial distribution of gray values in the image. The co-
occurrence matrix2 captures the spatial details of an image to 
some extent. The entropy of the co-occurrence matrix gives 
another measure of image information known as local entropy 
or second order entropy. Likewise the conditional entropy of a 
partitioned image can also be defined. 

In texture analysis, an important approach to region 
description is to quantify its texture content. The randomness is 
the basic property of texture. By exploiting this fact, entropy as 
a statistical descriptor of texture could measure the variability 
in the image.

Pal and Pal8 define a new entropy function based on the 
exponential behavior of information gain and applied co-
occurrence based entropy methods for image thresholding. 
Zachary16 attempts to use entropy as a visual feature of an 
image and showed how effectively entropy can be employed 
for indexing and also as a similarity measure of images in an 
image retrieval system. In IKONA11, a region-based image 
retrieval system, human faces are identified and preprocessed 
using the entropy map which assigns a saliency for each pixel 
in the face. This saliency is expressed as the entropy of a local 
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gray level distribution in a region around each pixel. 
A new entropy function is presented in this paper. This 

entropy function is so designed that it can be efficiently used 
for image analysis. The properties and proofs of the proposed 
entropy function are presented. This new function is compared 
with the well known entropy functions. Two entropy based 
features with one feature representing the colour information 
and the other representing the texture information are derived 
from an image. Apart from this, another visual descriptor of the 
image called the dominant colour is described. These entropy 
based features are further used in the multi dimensional indexing 
technique. An interim result set is created using the indices of 
images for improving the performance of the retrieval system. 
The results of image retrieval will be compared with those of 
the classical model proposed by Swain and Ballard15.

2. New eNTROpy FUNCTION 
Most of the entropy functions are not suitable for 

representing the information in a fuzzy set. These include 
Shannon1, Renyi9 and Pal10 et al. entropy functions. These 
entropy functions are generalised by introducing a polynomial 
in the exponential gain function. The proposed entropy function 
is shown to satisfy the basic properties of entropy and then Pal 
and Pal’s entropy function is proved to be the special case of 
this function.

The function involved in the entropy need not be a 
membership function; it could be any feature. It may be 
noted that when we use a membership function, the unknown 
parameters of this membership function will parameterize the 
entropy function indirectly. However, the choice of a suitable 
membership function is not easy. Hence, the main motivation 
behind development of the entropy function is our concern to 
represent the information/uncertainty contained in a fuzzy set.

Here, authors are mainly concerned with a single fuzzy 
set. However in a fuzzy rule usually many fuzzy sets are 
encountered, but this case will be addressed in the future work. 
The definition of Pal and Pal10 entropy function is now extended 
considering the exponential behavior of the gain function. 
This will pave the way to devise a new entropy function for 
representing the information in a fuzzy set.

2.1 Definition and properties
The information gain corresponding to the occurrence of 

the ith event is defined as
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                           (1)
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and a, b, c and d are the real-valued parameters. 

The entropy is expressed by
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Note that the above entropy function is an expectation of 
the information gain function. Some of the important properties 
associated with this function are stated now. 

Property 1: 
3 2( )( ) i i iap bp cp d

iI p e- + + +=  is a continuous function 

for all [0,1]ip ∈  

Property 2: ( )iI p is bounded 
Property 3: With the increase in pi, I(pi) decreases.

Property 4: ( ) * ( )i iH P p I p= ∑  is a continuous function 

for all [0,1]ip ∈  real valued a, b, c and d 
parameters.

Property 5: If p1 = p2 = …= pn = 1/n then H(P) is an increasing 
function of n.
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where, 0 1 and 1i ip p≤ ≤ =∑  is a concave function.

Property 7: Consider a partition A = [A1, A2, … An] with the 
probabilities, pi = Pr[Ai] and assume that p1<p2. 
If p1 is increased and p2 is decreased by an equal 

amount, say δ ( 2 1>0 and ( ) / 2p pd d ≤ - ), then 
the entropy increases.

Property 8: Entropy is maximum when all pi’s are equal. In 

other words, ( ) (1/ ,1/ ,...,1 / )H P H n n n≤
Property 9: Entropy is minimum if and only if all pi’s except 

one are zeros and that single pi is equal to 1.
Property 10: Consider the partition of the event space as A = 

[A1, A2, … An] and the probability pi = Pr(Ai). If 
a new partition B is formed by subdividing one 
of the sets of A, then H(B) ≥ H(A).

The proofs of some of the above properties are 
consigned to Appendix ‘A’.

2.1.1. Normalised Entropy
The normalised entropy HN can be defined as 

( )( ) /a b c d
NH H e- + + += - λ                                              (3)

where, The constant 3 2( )
( )

a b c d
a b c dnn ne e

- + + +
- + + +λ = - ; a, b, c and 

d are real valued parameters; and n is the number of events 
in the probabilistic experiment (or the number of states in the 
system). 

The normalised entropy satisfies all the properties of an 
entropy function. 

2.1.2. Conditional Entropy
Consider two partitions A = [A1, A2, … An] and B = [B1, 

B2, … Bm] and let us define that the product of two partitions, 
A = [Ai] and B = [Bj] is a partition whose elements are all 
intersections AiBj and the product of partitions is denoted by 
A.B = [AiBj]. Let pij be the probability of the event AiBj, i.e., pij 
= Pr [AiBj] and the marginal probabilities pi = Pr[Ai] is defined 
as,

1

m
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j

p p
=

= ∑
Similarly the marginal probability, qj = Pr [Bj] can be 

enumerated as,

1
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The conditional entropy of Ai given that Bj has occurred 
is denoted by 

|Pr[ | ] Pr[ ] / Pr[ ] /i j i j j ij j i jA B A B B p q p= = =                (4)
Similarly, 

|Pr[ | ] Pr[ ] / Pr[ ] /j i i j i ij i j iB A A B A p p q= = =                 (5)
Therefore the entropy of a partition A, given that Bj has 

occurred is given by H[A|Bj] as:
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therefore:
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Now the entropy of the product of the partitions, A.B is 

easily found to be
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2.2 Comparison with other entropy Functions
In the last few decades treatment of uncertainty is one 

of the concerns in the research circles. Shannon’s entropy1 is 
the pioneering work on the information measure. This entropy 
function is defined in the domain of probability with n-states 
and in that the information gain is inversely related to its 
probability of occurrence.

1
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Renyi9 has extended the definition of Shannon’s entropy 

to an incomplete probability distribution. The Renyi’s entropy 
of order α is of the form 
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It is noted that as α tends to 1, Renyi’s entropy matches 
with Shannon’s entropy. In contrast to Shannon’s entropy, Pal 
and Pal’s entropy function considers the information gain as an 
exponential function: (1 )ipe -
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The normalised Pal and Pal’s Entropy is given by
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Following the above entropy function, an exponential 

entropy function is devised with an eye on incorporating 
information into it. A significant feature of this entropy function 
is that it captures the inherent uncertainty in the fuzzy sets. 

The uncertainty in a fuzzy set is non-statistical in nature and it 
plays an important role in fuzzy image processing. Moreover, 
the use of a polynomial in the exponential function yields the 
gain function bestowed with four tunable parameters. The 
parameters of the new entropy function provide controls on the 
information gain and proper tuning of these parameters by way 
of optimisation leads to the correct measure of uncertainty.

Recall the new entropy function defined above as 
3 2( )
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and its corresponding normalised entropy is as follows 

3 2( )
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- + + + - + + += - -   (14)
This entropy function behaves like Pal and Pal’s entropy 

function for a = 0, b = 0, c = 1 and d = -1. The curves in Figs 
1 and 2 show Shannon’s entropy, Normalised Pal and Pal’s 
entropy and Normalised new entropy for a two-state system 
for the two sets of parameter values. It may be observed that 
though the new entropy function behaves like the Shannon’s 
and Pal and Pal’s entropy functions yet it expands and contracts 
for varying values of the parameters.

Figure 1. Curves for Shannon’s, normalised pal and pal’s & 
normalised fuzzy entropy (a = 0, b = 1, c = 3.2).

Figure 2. Curves for Shannon’s, normalised pal and pal’s & 
normalised fuzzy entropy (a = 5, b = 0, c = 0).
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2.3 possible Applications 
Biometrics: In finger print identification, we can • 
model the minutiae points by finding their distances 
with respect to a reference point which may be 
selected as the one with the highest curvature. In the 
palm print, we can model the points on the primary 
lines (there are mainly three such lines) and use this 
information for authentication.
Medical Image processing: Breast cancer and brain • 
tumor detection can be easily attempted by the entropy 
based modeling. In both these problems, issues in 
the affected organs undergo textural changes on the 
infringement of malignancy. The tumour regions can 
be extracted by applying the entropy function in a 
shifting window. The tissues in the affected portions 
naturally show entropy values different from those 
of the benign tissues for a chosen set of coefficients 
of the entropy function.
Cryptography: The power of the proposed entropy • 
can be best utilized in the encryption of secrete keys 
for secure transmission. In the above we have cited a 
few problems but one can harvest many fields should 
the ingenuity and imagination permit. However, in 
this paper its application to image retrieval will be 
discussed by way of indexing.

3. FeATURe exTRACTION AND INDexINg
Many visual features have been explored in the literature 

on content-based image retrieval (CBIR) for the purpose of 
depicting colour, texture, shape and other properties of an 
image. Combining the various features usually achieves better 
performance in retrieval. Although a large number of features 
could represent the image very accurately, the inherent problem 
with this approach is the shortage of storage capacity for large 
image database. Hence an efficient multidimensional indexing 
technique is required for dimension reduction.

The objective of this section is to reduce the dimensionality 
of the feature space and to improve the performance of the 
retrieval process. For this, the entropy-based features are 
extracted from the images. The entropy of an image, by 
definition, is the measure of information content in the image8. 
As will be seen, the entropy function maps an n-dimensional 
vector to a single real number (i.e. one dimensional space) and 
so it can be regarded as a dimension reduction operator.

The extracted features from an image are stored to serve 
as an index of that image. Since the expensive management 
of storage and comparison time is less significant than the 
retrieval accuracy, only three concise and precise features are 
used to describe the contents of the image. These are colour 
entropy, texture entropy and dominant colour of the image.

3.1 entropy-based Image Features
The entropy of a system as defined by Shannon1 gives a 

measure of uncertainty about its actual structure. Shannon’s 
definition based on the information gain from an event is 
inversely proportional to its probability of occurrence. Pun5 and 
Kapur6, et al. have used Shannon’s concept to define entropy of 
an image assuming that the image is entirely represented by its 

gray level histogram only. unlike the logarithmic behavior of 
Shannon’s entropy, the gain function in our entropy definition 
is of exponential nature as discussed in Section II. Two entropy 
based image features – colour entropy and texture entropy are 
now presented.

3.1.1  Colour Entropy
The RGB colour space is chosen to represent the image. 

Let F = {f(x, y)}M × N be an image of size M × N where f(x, y) 
is the colour vector (r, g, b) in the RGB space at (x, y) point and 
N(r, g, b) is the frequency of the colour vector (r, g, b). 

Then, 
( , , )r g b

r g b
N M N= ×∑∑∑

In a natural image, it has been observed that out of 2563 
different colour levels, a small fraction of different colour 
levels are actually used. So instead of considering all colour 
levels, the colour levels of an image are quantized adaptively. 
To achieve this, the available colour levels are clustered into 
colour bins.

The number of bins is not preset; it depends on the 
distribution of colour in that particular image. The above 
algorithm adaptively clusters all the colour levels into bins. 
Pun5 and Kapur6, et al. use the gray-level histogram to represent 
the image; here the histogram is extended to the colour bins. 
It is generally assumed that the distribution of colours across 
an image follows the uniform distribution, i.e. each colour has 
a 1/(M × N) probability where the image size is M × N. The 
algorithm for forming bins is given Algorithm 1. 

Let, Z = {z1, z2, … zn} be the set of events that corresponds 
to the colour bins. Let us consider the probability of the colour 
bin zi as p(zi) = (Number of pixels in the colour bin Zi)/ M × N. 
In this context, the colour entropy is taken in the normalised 
form, HN, Colour given by

( )
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- + + +λ = - and n is the number of 
colour bins.

3.1.2  Entropy Optimisation
The entropy optimisation is resorted to estimate the four 

tunable parameters: a,b,c and d. The derivatives of HN with 
respect to a,b,c and d are obtained from:
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where, 
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Then the parameters are updated using gradient descent 
learning as 

1( )New Old NHa a i
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where the learning rates ε(i). As this learning has convergence 
problems we propose reinforcement learning.

3.1.3  Reinforcement Learning 
The reinforcement learning requires some re-use policy of 

how to use the past information. 
Exploitation: In this we exploit the Reuse policy which 

requires integrating knowledge of the past policy into the 
current learning process. Here we need to bias the exploratory 
process of the new policy with the past one. We have used 
here the sigmoid function for ε in which cumulative of the 
past errors is biased by the term k2 and the slope or gain of the 
function is changed by the term k1. 

Exploration: In the earlier work k1 and k2 were incremented 
by constant, but they are updated here by random numbers thus 
boosting exploration. The proposed11 reinforcement learning 
gets stuck up in the local minima. This has been modified to 
incorporate evolutionary feature27. In this each parameter is 
updated by a number of updating laws called a population each 
having a pair of random numbers for k1 and k2. The law yielding 
the minimum is considered as the global solution. Because of 
this it overcomes the drawback of local minima by taking into 
account both exploitation and exploration strategies.

If n is the population size, then we make use of the 
Reinforced learning law given by Hanmandlu and Murthy27

1 2( ( ) ( , ) ( ))( ) l lk i err j i k i
l i e- +∑ε =                                           (18)

where, ( , ) ( , ) ( 1, ) ( , )new
N N Nerr j i H j i H j i H j i= - - = ∆ ;

l=1,1,..,4 , i =1 to n and j is the current iteration. 
The initial values of k1l (i) and k2l (i) are taken both as 

random numbers. We use the following policy to adjust the 
values of k1l (i) and k2l (i). This consists of the following steps:

If ( , )err j i∑ is increasing, then ε(i) must decrease. So k1l (i) 
should increase.

(a) If ( , )err j i∑ is decreasing, then ε(i) need not change. So 2lk

(i) should increase.
(b) If ( , )err j i∑ is constant, then ε(i) should not change. So k1l 

(i) and k2l (i) are not changed.
If HN(j,i) is not differentiable then parameter of interest, 

say a, is updated as follows:

1.  for (All available colour levels)
     { 
2.  for (All available Bins)
 {
3.          if ( any two colours of Colour_level (r, g, b) matches with the respective two colours of Bin_Center (r, g, b) and the third              
       colour of Colour_level lies in the predefined interval of the third colour of Bin_Center )
  {
4.        Include the Colour_level into the respective Bin
     } 
5.    if (Colour_level is not included in any Bin)
    {
6.        Create a new Bin and include the Colour_level into that Bin;
7.        Set Colour_level as Bin_Center;
    }
8.     } // End of for (existing Bins)
9.   } // End of for (all available colour levels)

Algorithm 1. Algorithm for bin formation
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( ( )  ) ( ( ))
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p
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+ = - ε

∆
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(19)
where, p = 0.0001.                                

The evolution is bestowed by the following procedure: We 
create a population of solution processes (particles) for each 
parameter. Let this population be denoted as n (taken to be 10). 
The function values of all particles HN(j,i) are arranged in the 
ascending order. After that half of the populations with high 
values of function are eliminated as they are unfit to propagate 
to new generation. Thereafter reproduction is carried out by the 
rest half of the population. This procedure continued until we 
reach the global minimum of the function.

3.1.4  Colour Entropy Results 
In this sub-section, colour entropy values are computed for 

different natural images. The parameters a, b, c, d are initialized 
to one and then the entropy optimisation technique is applied 
to find the normalised entropy value termed as colour entropy. 
Table 1 shows the colour entropy values and the corresponding 
optimised parameter values.

3.2 Texture entropy
The ambiguities in texture arising due to the fuzzy nature 

of image function allow us to devise fuzzy texture features. So 
rather than using the colour histogram to represent an image, 
the fuzzy features that capture the fuzziness in the texture 
property are extracted about the neighborhood of each pixel. 
Since texture is region based, arrangement of image functions 
(i.e., intensities) of pixels in a local region, say, a window 
is made use of in order to characterize the texture using the 
Gaussian type membership function. The cumulative response 
about the central pixel from this window replaces the pixel 
intensity giving rise to the texture image when taken over the 
entire image. 

3.2.1  Extraction of Fuzzy Features
To convert the spatial domain image into the fuzzy domain, 

the spatial arrangement of gray levels of pixels over a window 
is utilised. The fuzzy property can be expressed in terms of a 
membership function. A membership function to this effect is 
represented by the Gaussian type function.

{ }2
( , ) ( , ) exp ( ( , ) ( , )) /k l i j x i j x k l µ = - - τ                   (20)

where, x (i, j) is the gray level of the pixel at the (i,j)th position 
and τ is the fuzzifier which is specified to be the window size 
(τ is taken as 5) 

We note that
( , ) ( , ) 1i j k lµ =  if ( , ) ( , )x i j x k l=                                    (21)

To consider the response from the neighboring pixels, the 
cumulative response of (i,j)th pixel is obtained as

( , ) ( , )
, ,

( , ) ( , )* ( , ) / ( , )k l k l
k l k l

y i j i j x k l i j= µ µ∑ ∑
               (22)

This is the defuzzified response of the (i,j)th pixel over 
the window of size 5. This process is repeated for all pixels in 
the image resulting in a texture feature image consisting of all 
the defuzzified values. For convenience of notation, the matrix 
formed by y(i,j) is designated as the response matrix, Y which 
in turn would represent the texture feature image. 

Let Z = {z1, z2, … zn} be the set of distinct responses of 
Y. Let us consider the probability of the texture response zi as 
p(zi) = (Number of pixels having the texture response zi)/ M × 
N. On the heels of the normalised colour entropy, here comes 
the normalised texture entropy HN,Texture as 

( )
, ( ) /a b c d

N Texture TextureH H e- + + += - λ

With 3 2{ * ( ) * ( ) * ( ) }

1
( )* i i i

n
a p z b p z c p z d

Texture i
i

H p z e- + + +

=

= ∑
    (23)

where, 
3 2( )

( )[ ]
a b c d

a b c dnn ne e
- + + +

- + + +λ = - and n is the number of 
distinct responses.

Image Colour 
entropy

Optimised parameter values
a b c d 

828

0.997806 0.999999 1 1.00002 1

1739

0.99871 0.999999 0.999999 1.00001 1

8658

0.999563 1 1 1 1

Table 1. Colour entropy



HANMANDLu & DAS: CONTENT-BASED IMAGE RETRIEVAL By INFORMATION THEORETIC MEASuRE

421

In the entropy function (22, 23), a, b, c and d are four 
tunable parameters with 0≤HN,Texture ≤1. Here the texture entropy 
is optimised to estimate these parameters using the optimisation 
technique described earlier.

In order to compute the texture entropy values for 
different natural images, the values of the parameters - a, 
b, c, d are initially set at 1 and then the normalised entropy 
value is calculated using the entropy optimisation technique. 
The texture entropy values and the corresponding optimised 
parameter values are shown in Table 2.

3.2.2  Visual Image Feature
It may be noted that the images might have the similar 

statistical features yet they are visually different. The choice of an 
appropriate visual feature plays an important role in classifying 
the visually similar images. There are several visual features – 
colour, texture, shape, contrast, coarseness, normalised area of 
an object etc. proposed by earlier researchers13, 14. In the present 
work, we make use of another visual feature – dominant colour 
of an image.

Dominant colour of an image is the particular colour 
level that has the highest frequency in the image. It is a 
perceptual property of an image. As the CIE Lab colour space 
is perceptually uniform, the dominant colour is transformed to 
the lab colour space consisting of luminance component L and 
chrominance components C = {a, b}. Table 3 shows the RGB 
values and the CIE Lab values of the dominant colour and the 
percentage area covered by this colour.

The images of sea and sunset category, shown in Table 
3, have distinct dominant colour, which is necessarily an 
important visual feature. The images of the same category will 
have nearly the same dominant colour, therefore in the retrieval 
system, CIE Lab values of the dominant colour could be used 
to classify similar images.

It is possible that the images of different categories have 
the same dominant colour, so the dominant colour is appropriate 
to be one of the visual features for classification.

3.2.3  Indexing through Feature Vector
As the image collection is getting larger and larger, the 

retrieval speed is becoming a bottleneck. Hence effective high 
dimensional indexing techniques need to be explored. The high 
dimensionality of feature vectors is normally of the order of 
102. Applying the dimension reduction on the feature vectors, 
an embedded dimension much lower than the initial dimension 
though still higher for linear ordering is obtained. Therefore 
a multi-dimensional indexing scheme is required to index the 
reduced embedded dimensional feature vectors. From this 
discussion it follows that the multi-dimensional indexing owes 
its allegiance to the high dimensionality of the feature space. 

As there are only three features, viz., colour entropy, 
texture entropy and dominant colour used in this work, the 
dimension of feature space is too small to apply any dimension 
reduction algorithm. An entropy-based two dimensional 
indexing is employed here using both colour and texture 
entropy values. In our method, the dimension of the feature 
vectors is not dynamic; i.e., it remains fixed as there is no need 
for any sophisticated tree-data structure for multidimensional 
indexing. 

A feature vector of an image indexed by a pair of entropy 
values of colour and texture becomes a point in the two-
dimensional feature plane whose axes are colour entropy and 
texture entropy.

The concept of interim result is invoked here. The interim 
result set is a subset of image search space containing images 
semantically similar to the query image. The above indexing 
scheme would improve the retrieval performance by creating 
an interim result set. For a particular query image, the colour 
entropy and texture entropy, say (qColourEnt, qTextureEnt) 
can be easily calculated. Now here is the algorithm for creating 
an interim result set (Algorithm 2).

Image Texture
entropy

optimised parameter values
a b c d 

1574
0.997884 0.999999 0.999999 1.00002 1

4585

0.997416 0.999999 0.999999 1.00002 1

5237

0.9352 0.999977 1.00004 1.00048 1

Image

739 3078
RGB 229, 107, 0 85, 100, 129

CIE lab 76.244, 20.2398, 
125.801

68.4903, 3.45487,
-5.34797

Dominant 
colour

  

Table 3. Dominant colour

Table 2. Texture entropy

Figure 3. Image feature plane.
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In the above procedure, the choice of ε is very crucial, 
because the size of the interim result set is directly proportional 
to the value of ε. It is important to note that the value of ε 
should depend on the size of the feature space and also on the 
entropy values of colour and texture of the query image.

Let 2
Colorx  and 2

Texturex  represent the second order 
moments of entropy values of colour entropy and texture of 
the query image respectively. The expressions for the statistical 
descriptors are as follows:

xColor
2

1

1 ( )
n

Color i
i

cEnt qColorEnt
n

x
=

= -∑
 (24)

xColor 
2

1

1 ( )
n

Texture i
i

tEnt qTextureEnt
n

x
=

= -∑
                          (25)

where, n is the size of feature space, cEnti and tEnti denote the 
colour entropy and texture entropy of ith image respectively. 

An expression for ε is coined by

ε = k*Max( Colorx , Texturex )                                            (26)
where, k is any positive real number.

The interim result set contains all the feature points having 
a distance of less than or equal to ε from the query image. One 
of the purposes of creating the interim result set is to reduce 
the search space without sacrificing the correctness of results 
of the retrieval process.

3.2.4  Experimental Results 
A set of 9907 images from low resolution web-crawled 

miscellaneous database26 used in WBIIS25 is our benchmark 
dataset for generating the query results. Next the interim result 
set for different query images is created. The recall for the 
interim result set denotes the percentage of correct retrieved 
images out of all correct images in the image database. The 
ratio of the size of the interim result set to the original size of 
the image database gives the reduction factor. Therefore a large 
recall value with high reduction factor indicates the efficiency 
of the algorithm. 

It may be observed from Table 4 that the reduction factor 
increases by decreasing the value of ε. For lower value of ε 
naturally recall also decreases. The higher recall value indicates 
the correctness of the system; hence the reduction factor is 
increased so as to keep the recall value higher. Here are the 
results for other query images on the same image database.

4. IMAge ReTRIevAL pROCeSS
Any search engine, text-based or otherwise, is plagued 

by the problem of un-related matches. Often in the case of 
text based search engines, this hitch arises from the use of 
ambiguous keywords, such as bank, interest. Content-based 
image retrieval system allows a user to set query by an example 
image21, which ideally removes the ambiguity in setting up of 
queries. But the success of the image retrieval depends on the 
extraction of image features and measurement of similarity 
of query image with the images in a large data collection. In 
continuation of the feature extraction and the effective indexing 
methodology in Section 3, the distance measures between any 
two images in the interim result set are the necessary ingredients 
for comparison. Furthermore, the performance of the retrieval 
process will be compared with the traditional colour histogram 
matching15.

4.1 Image Distance Measure
To represent an image the required are the entropy 

based feature descriptors: colour entropy and texture entropy 
and a visual colour feature – dominant colour. These feature 
descriptors allow us to define a distance metric that closely 
matches the human perception. The idea is that the similarity 
between the two images should be measured in terms of not 
only the closeness of colour and texture distributions but also 
the closeness of the dominant colour of the image. 

Consider two images, a query image IQ and a target image 
IT to measure the distance. The dominant colours of both the 
images are denoted by CQ(Lq, aq, bq) and CT(Lt, at, bt) and the 
other two entropy based features – colour entropy and texture 
entropy, for query image and target image by ColourEntQ, 
ColourEntT and TexEntQ, TexEntT respectively. Then the distance 
between the images is computed as a linear combination of two 
L2 distances. The first L2 distance is measured between the two 
dominant colours; the lower value of this distance indicates the 
visual closeness in terms of colour ignoring the information 
in the image, which is given by the entropy. So, the distance 
between the dominant colours is:

2 2 2
1 ( ) ( ) ( )q t q t q tD L L a a b b= - + - + -

                    (27)
The second L2 distance is measured between the entropy 

based feature vectors (colour entropy, texture entropy). 
The entropy is a real number which indicates the amount 
of information contained in an image in terms of colour 
distribution and textural pattern. The lower value of second 
distance indicates the similarity of images in terms of content.

Algorithm for interim result set
1.    for( Each feature point in Feature Database)
2.   { Let cEnt = Colour Entropy of a feature point and 
3. tEnt = Texture Entropy of a feature point
4. if( Euclidean_distance( (qColourEnt, qTextureEnt), (cEnt, tEnt)) < ε)
 {
5. Include Image (cEnt, tEnt) into the interim result set
6. }// End of if ( )
7.    }// End of for ( )

Algorithm 2
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Query image Interim 
result 

set size

k ε Recall 
(%)

Reduction 
(%)

1649

8703 1.5 0.170843 100 12.15
8405 1 0.113895 100 15.16
8183 0.75 0.085421 100 17.40
7833 0.5 0.056947 98.98 20.93

Query image Interim 
result 

set size

k ε Recall 
(%)

Reduction 
(%)

817

8700 1.5 0.172226 99.03 12.18
8398 1 0.114817 99.03 15.23
8168 0.75 0.086113 99.03 17.55

7820 0.5 0.057408 97.09 21.07

Query image Interim 
result 

set size

k ε Recall 
(%)

Reduction 
(%)

1792

8696 1.5 0.173055 100 12.22
8387 1 0.11537 99.64 15.34
8154 0.75 0.086527 99.64 17.69

7801 0.5 0.057685 98.94 21.26

Query image Interim 
result 

set size

k ε Recall 
(%)

Reduction 
(%)

2766

8688 1.5 0.173493 97.53 12.30
8381 1 0.115662 95.62 15.40
8147 0.75 0.086746 94.16 17.76

7780 0.5 0.057830 91.58 21.46

Table 7. Interim result set for pattern on the database of size 
9907

Table 6. Interim result set for seaside query on the database of 
size 9907

Table 5. Interim result set for rose query on the database of size 
9907

Table 4. Interim result set for car query on the database of size 
9907

2 2
2 ( ) ( )T Q T QD ColorEnt ColorEnt TexEnt TexEnt= - + -

                                                                                     (28)
The distance between two images IQ and IT is defined as 

1 2( , ) * (1 )*100*Q TDist I I D D= α + - α                       (29)
where, 0 1≤ α ≤

The value of D2 lies between 0 to 1 and it is also 
very low in comparison to D1. To scale both the distances 
at the same level, a weight of 100 is assigned to D2. 
The value of α in the distance measure formula can 
be interpreted as the relative importance between the 
dominant colour and the information content. The range 
of α varies from 0 to 1. The higher value of α assigns 

more importance to the dominant colour than the 
information content in the retrieval of similar images. 
In sunset image, dominant colour has more importance, 
so the user could set the value of α more than 0.5 
(which stands for equal importance) in forming the 
query for the image retrieval. It is important to note 
that the background colour or dominant colour might 
be irrelevant in many images but this would mislead 
the retrieval process. The value of α should be set to 
0 for the queries where the dominant colour does not 
have any importance.  

Table 8 shows that the distances between the similar 
images are comparatively less than the distances between 
the different categorical images. In this table, the distances 
between the query image and sample images are measured 
for α = 0.5.

4.2 Image Retrieval by Querying 
A search engine whether text-based or otherwise is 

prone to unwanted matches. There are several reasons to get 
incorrect matches; one of them is due to the use of ambiguous 
keywords like interest, bank, etc., and another due to the use 
of inappropriate words to describe the desired images. In the 
proposed content-based image retrieval (CBIR) system, the 
user can set the query by an example from the query image 
set. In our system, the natural and real image databases 
are categorized into different classes of images, namely, 
animal, aircraft, architecture, landscape, sea shores, vehicles, 
flowers, human activities, etc. A small set of query images is 
presented in Table 9.

4.3 Colour Histogram Matching 
The axes used for the histograms are the three opponent 

colour axes, assigned as follows:
gr r g= -                                                                   (30)

2yb b r g= × - -                                                        (31)
bw r g b= + +                                                            (32)

Here r, g, and b represent red, green, and blue signals, 
respectively. The rg, by, and wb axes are analogous to the 
opponent colour axes used by the human visual system22. 
They are used here simply to allow the intensity (wb) axis 
to be more coarsely sampled than the other two, because the 
intensity axis is more sensitive to the variation in lighting 
from shadows and distance from the light source. The wb 
axis is divided into 8 sections while the rg and by axes are 
each divided into 16 sections, for a total of 2048 bins. As the 
total intensity limits the colour differences possible, only a 
fraction of them can actually receive counts. To clarify this 
point, suppose that the camera outputs a maximum number 
of intensity levels, M on each channel. Letting wb = 0(r = g 
= b = 0) or wb = 3M (r = g = b =M), both axes by and wb turn 
out to be 0. Thus the maximum intensity level restricts the 
available axes.

Several measures have been proposed for the 
dissimilarity between two histograms, H = {hi} and K = {ki}. 
The bin-by-bin dissimilarity is determined by comparing 
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the contents of the corresponding histogram bins, i.e. hi and 
ki for all i but not hi and kj for i≠j. The dissimilarity between 
the two histograms is determined as a sum of all pair-wise 
comparisons and it implies a binary ground distance with a 
threshold depending on the bin size. 

Minkowski-Form Distance: This distance is commonly 
defined as:

1/

( , )
r

r
Lr i i

i
d H K h k

 
= - 

 
∑

                                       (33)
The L1 distance is often used for computing dissimilarity 

between colour images15.
Kullback-Leibler Divergence and Jeffrey Divergence: 

The Kullback-Leibler divergence appears as:

( , ) log i
KL i

i i

hd H K h
k

= ∑
                                              (34)

From the information theory point of view, the K-L 
divergence measures how inefficient it could be to code one 
histogram using the other as the code-book23. However, the 
K-L divergence is non-symmetric and is sensitive to histogram 
binning. The empirically derived Jeffrey divergence is a 
modification of the K-L divergence that is numerically stable 
and robust with respect to noise and the size of histogram 
bins24. The Jeffrey divergence is determined from:

( , ) log logi i
J i i

i i i

h kd H K h k
m m

 
= + 

 
∑

                         (35)

2χ  statistics:

2

2( )( , ) i i

i i

h kd H K
mχ

-
= ∑

                                            (36)

where, 2
i i

i
h km +

=
                                

Given a query image with histogram H, each database 
image with histogram K receives a measure of dissimilarity 
for the query image. It is then easy to rank the database images 
based on their dissimilarity measures and return the best 
matches.

5. ReSULTS AND DISCUSSION
The experimental configuration for a process as subjective 

as computing similarity between the images must be carefully 
set up to gauge the results with other methods and we need to 
remove any perceptual biases of an experimenter. To minimize 
the human subjectivity, the random samples of different sizes 
are used and also a large sample space is taken as the image 
database. The large image database rules out the possibility of 
having dominancy of any particular category of images.

Our retrieval system is tested using 9907 images from 
the low resolution database26 as mentioned above. This image 
collection contains different category of images like cars, 
roses, mountains, patterns, animal, landscape, seaside, flowers, 
human activities, etc. To provide numerical results, 8 sample 
images are taken randomly selected from four categories 
prior to the manual determination of the correctness of retried 
images. Each category contains at least 100 relevant images. A 
retrieved image is considered a match if it belongs to the same 
category of the query image. 

The query results obtained by our entropy-based matching 
are compared with those obtained from colour histogram 
matching using different dissimilarity measures – 2χ statistics, 
Jeffrey divergence and L1 norm. Our content based image 
retrieval system is developed in Visual C++ 6.0 as an offline 
system on Intel Celeron machine with 1.40GHz processor and 
256 MB RAM. The average retrieval time is 1 second per 1000 
images. The process of image retrieval involves the following 
steps: 
(a) Create the interim result set using the proposed indexing 

scheme.
(b) Extract feature values (colour entropy, texture entropy 

and dominant colour) for the query image.
(c) Calculate the image distance of the query image with all 

images in the interim result set.
(d) Rank the images according to the distance measured from 

the query image. 
(e) Set the highest rank of the retrieved image which has the 

minimum distance with respect to the query image.
The results of retrieval by our entropy-based system are 

compared with those from colour histogram matching15. Testing 
is carried out on a set of query images from the benchmark 
image26 database of size 9907.

It may be observed from Fig. 4 that the performance of the 
proposed system on the car query (car Id: 1639) outperforms 

Sample Images

1603 1623 828 842

Q
ue

ry
 Im

ag
e

840

4.95312 4.89965 0.225879 0.181743

1599

0.340588 0.399056 5.14536 5.09391

Car – 1599 Rose - 805 Mountain – 125

Seaside – 1713

Sunset - 128 Pattern – 444

Table 9. Sample query set for query by example

Table 8. Comparison of distances between the different 
categorical images
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Figure 4. performance of the car query on the data set of  
size 9907.

Figure 5. performance of the car query on the data set of  
size 9907.

Figure 6. performance of the rose query on the data set of  
size 9907.

Figure 7. performance of the rose query on the data set of size 
9907.

Figure 8. performance of the seaside query on the data set of 
size 9907.

Figure 9. performance of the seaside query on the data set of 
size 9907.
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Jeffrey divergence, 2χ statistics and L1 norm, but the results 
from Fig. 5 show that entropy based matching is comparable 
with others. The entropy-based method retrieves the correct 
images using only 3 features – colour entropy, texture entropy 
and dominant colour thus enhancing the processing speed of 
the system with a reduced number of feature values. 

The performance of other query images of the categories: 
Rose, seaside and pattern are now discussed.

Figures 10 and 11 both show the performance of the image 
retrieval for query images from the pattern category. The value 
of α is set to 0 to rule out the dominant colour information. 
The entropy based method retrieves the images purely based 
on entropy values and it is found to perform reasonably better 
than other histogram matching methods for the pattern category 
thus demonstrating its ability to retrieve semantically similar 
images. 

It may be noted from the results of experiments that the 
proposed system performs better than the histogram matching 
for the query images, which possess distinct features in terms 
of texture or colour. In the rose, seaside category images, 
dominant colour and colour distribution are the prominent 
features and in these cases the proposed system performs 
reasonably well, but our proposed CBIR system has stooped 
to the subdued performance in the face of histogram matching 
for some cases. If the pattern images have the distinct texture 
features, then our system comes out with significantly better 
performance as shown in Figs 10 and 11.

6. CONCLUSIONS
A new entropy function that is aimed at representing 

the information in a fuzzy set is presented along with some 
important properties. The proposed entropy function has 
four tunable parameters that can be estimated by optimising 
the entropy function itself. For obtaining the global solution 
reinforcement learning along with population based approaches 
is used. 

Two types of entropy based image features – colour 
entropy and texture entropy are utilized in this work. The colour 
entropy is described in terms of randomness in the distribution 

of colours in an image. For this, the newly devised entropy 
function comes handy and resorting to the optimisation of this 
entropy function yields the optimised colour entropy value. 
The resulting entropy values uniquely classify the non textured 
image. But for the textured image first the fuzzy texture features 
of the image are extracted and then the new entropy function 
is applied to the features for optimising the entropy values of 
texture.

Both the entropy based image features are derived in 
such a manner that they rely only on the colour and texture 
distributions of an image. In the course of research, the need 
for visual colour information is realized, consequently the 
dominant colour value is considered as the third image feature. 
Despite the efficiency of the RGB colour space, the pixels are 
transformed from the RGB colour space to the CIELAB colour 
space because the latter one has the property of perceptual 
uniformity. Falling in line, the CIELAB value of the dominant 
colour is also used as the visual feature.

Indices permit the computer in finding the images relevant 
to a query without looking at every image in the database. The 
indexing of the colour feature vectors is investigated to speed 
up the atomic queries. Dimensionality is one of the major 
concerns in the indexing scheme. The index speed degrades 
as the dimensionality of the data indexed increases. In the 
experiments carried out, images are indexed by the entropy 
values of colour and texture. The uniqueness of the entropy 
values of an image and their lower dimensionality rule out 
the possibility of using any sophisticated and computationally 
taxing multidimensional indexing data structures. The 
normalised entropy values of colour and texture are found to 
be more suitable as a pair to index an image. This indexing 
scheme is found to be effective in creating an interim result 
set for a query image. The algorithm for the interim result set 
and the results obtained ensure that the size of the database is 
reduced considerably without affecting the correctness of the 
results. The objective of an image retrieval system is to identify 
images from the database, which are similar to the query 
image. Similarity or distance measurement between the two 

Figure 10. performance of the pattern query on the data set of 
size 9907.

Figure 11. performance of the pattern query on the data set of 
size 9907.
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images is derived from the empirical estimates of the image 
features. The three image features – colour entropy, texture 
entropy and dominant colour in Lab colour space are selected 
to formulate the similarity measure. Two distances: L2 distance 
between the dominant colours of two images and L2 distance 
of between the two colour entropy values and also between the 
texture entropy values are explored. These two L2 distances are 
combined in linear form to give the measure of entropy. Table 
8 demonstrates that the distance between semantically similar 
images are significantly low in comparison to the distance 
between the two dissimilar images. This measure is used to 
rank the retrieved images by their distances from the query 
image.

In the proposed retrieval system, the query paradigm is 
employed for setting up the query as ‘Query by Example’ (QBE). 
In that WBIIS test image dataset of 9907 colour miscellaneous 
images is organized into several categories with at least 100 
images per category. The features of the images are extracted 
off-line and the similarity measures along with their ranking 
are computed at the time of executing the query. The query 
results so obtained are compared with those from the colour 
histogram matching using 2χ Statistics, Jeffrey Divergence 
and L1 norm. The results of our system are very promising in 
the retrieval of the similar images from the database. Exploring 
the entropy function for fuzzy modeling of the image retrieval 
system is the next phase of this work. 
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Appendix ‘A’

proofs of some important properties of the new entropy function

We will now provide the proofs of some important properties presented in Section II-A.
 

Proof of Property 2 
( ) d

iI p e-→  as 0→ip  and 
)()( dcba

i epI +++-→  as 1→ip . 
We consider k1=

de-
 and k2 = 

( )a b c de- + + +
. Since a, b, c and d are real so k1 and k2 are finite. Hence )( ipI is bounded.

Proof of Property 3
We have k1=

de-
 and k2 =

)( dcbae +++-
 as defined in the Property 2. The ratio,

)()(
21 // cbadcbad eeekk +++++-- == > 1 for (a+b+c) > 0  (37)

To prove that I(p) is a decreasing function, we need to show that the derivative of I(p) with respect to p is always negative or 
zero.

The derivative, 

3 2( )( ) ap bp cp dd dI p e
dp dp

- + + +=
= 

3 2( ) 2(3 2 )ap bp cp de ap bp c- + + +- + +   (38)

Definitely for any p, 0≤p≤1, 
3 2( )ap bp cp de- + + +

>0. Hence, 
3 2( )( ) ap bp cp dd dI p e

dp dp
- + + +=

= 
3 2( ) 2(3 2 )ap bp cp de ap bp c- + + +- + +   (39)

So we can conclude that for a ≥ 0, b ≥ 0 and c ≥ 0, I(p) always decreases for 0≤p≤1.

Proof of Property 5 
Consider the case where p1 = p2 = …=pn = 1/n and n≥1. Then

3 2( )

1
( ) i i i

n
ap bp cp d

i
i

H P p e- + + +

=

= ∑
= 

( )3 2

1
(1/ )

a b cn d
nn n

i
n e

- + + +

=
∑

 = (1/ ) ( )n h n∑   (40)

where,  
3 2( )

( )
a b c d

nn nh n e
- + + +

=

To prove that H(P) is an increasing function, it is sufficient to prove that h(n) is an increasing function.
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( )d h n
dn

=
 

3 2( )

4 3 2
3 2

a b c d
nn nd a b ce

dn n n n

- + + +  + +   =
+++- )( 23 d

n
c

n
b

n
a

e  )/1( 4n (3a+2bn+cn2)
)( 23 d

n
c

n
b

n
a

e
+++-

  (41)

For n≥1 and a≥0, b≥0, c≥0 
( )d h n

dn ≥0. 
Therefore H(P) is an increasing function for a,b,c≥0.

Proof of Property 7 
For the sake of simplicity, consider p1<p2. Let us now construct a new partition B = [B1, B2, A3,.. An] with Pr [B1] = p1 + δ, Pr[B2] 
= p2 – δ and δ>0 and d<=(p2-p1)/2.
Now, H(B) – H(A) = H(p1+ δ, p2- δ, p3, … pn) - H(p1, p2, p3, … pn)

                               

3 2 3 2
1 1 1 1 1 1

3 2 3 2
2 2 2 2 2 2

[ ( ) ( ) ( ) ] [ ]
1 1

[ ( ) ( ) ( ) ] [ ]
2 2

( )

( )

a p b p c p d ap bp cp d

a p b p c p d ap bp cp d

p e p e

p e p e

- +d + +d + +d + - + + +

- -d + -d + -d + - + + +

= + d -

+ - d -   (42) 

Since 
3 2[ ]( ) ap bp cp dp pe- + + +φ = is convex, the condition 1 2 1 2( ) ( ) ( ) ( )p p p pφ + φ < φ + d - φ - d is easily satisfied if p1<p1+ δ<p2- 

δ<p2. Hence, H(B) – H(A) > 0, i.e. H(B) > H(A) ,thus completing the proof.

Proof of Property 8
The proposed entropy function for the probability distribution P=[p1, p2,…pn] is defined as follows: 

H(P) = 

3 2( )

1

i i i
n

ap bp cp d
i

i
p e- + + +

=
∑

.
 Now, 

    i

H
p

∂
∂ = 

3 2( )i i iap bp cp de- + + +
3 2( ) 2(3 2 )i i iap bp cp d

i i ip e ap bp c- + + +- + +

            = 
3 2( ) 3 2[1 3 2 )i i iap bp cp d

i i ie ap bp cp- + + + - - -    (43)
2

2
i

H
p

∂
∂ = 

3 2( ) 2( 9 4 )i i iap bp cp d
i ie ap bp c- + + + - - -  

3 2( ) 3 2 2(1 3 2 )(3 2 )i i iap bp cp d
i i i i ie ap bp cp ap bp c- + + +- - - - + +

    =   
3 2( )i i iap bp cp de- + + +

 
2 5 4 2 3{ 9 12 (4 6 )i i ia p abp b ac p- - - +  

2 2(12 4 ) (6 ) 2 }i ia bc p b c p c+ - + - +   (44)
2

2
1/ii p n

H
p

=

∂
∂

= 
3 2( )

5(1/ )
a b c d

nn nn e
- + + +

-  
5 2 4{2 (6 )cn b c n+ - 3 2 2 2(12 4 ) (4 6 ) 12 9 }a bc n b ac n abn a+ - - + - -   

       = -β                 
   (45)
where, 

 β = 
3 2( )

5(1/ )
a b c d

nn nn e
- + + +

{2cn5+(6b-c2)n4
 

3 2 2 2(12 4 ) (4 6 ) 12 9 }a bc n b ac n abn a+ - - + - -  
 and

 

2

0
i j

H
p p
∂

=
∂ ∂  for i ≠ j and i, j = 1,2,..n

The Hessian matrix is of the form
0 0 ... 0

0 0 ... 0
... ... ... ... ...
0 0 0 ...

H

-β 
 -β =
 
 

-β    (46)

For the point P0 = (1/n, 1/n, … 1/n) to attain the maximum, H oP should be negative definite. Moreover, H is negative definite 
if the determinant value of kth principal minor of H has the sign of (-1)k, k = 1, 2,… n. 

Therefore, determinant of kth principal minor of H is
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0 0 ... 0
( 1)

0 0 ... 0
if  is even

... ... ... ... ...
if  is even

0 0 0 ...

k k
k k
k k

-β 
- β -β   = β  -β  -β     (47)

Here, a need arises to show that β>0 , which implies that
3 2( )

5(1/ )
a b c d

nn nn e
- + + +

 
2 2 4 3 2 2 2{2 (6 ) (12 4 ) (4 6 ) 12 9 }cn b c n a bc n b ac n abn a+ - + - - + - -

 >0
This yields 

2 2 2
3

2 2
(4 6 ) 12 9

2 (6 ) (12 4 )
b ac n abn an

cn b c n a bc
+ + +

>
+ - + -

The above is always true if a ≥ 0, b ≥ 0, c ≥ 0 and a, b, c must satisfy (14).

So, ( ) (1/ ,1/ ,....1 / )H P H n n n≤ . 

Proof of Property 9 
Suppose that pi=0 for all i except pk where pk =1. Next, we prove that the entropy H is the minimum by contradiction. Consider 
that there are at least two non-zero probabilities say pi and pj for the minimum value of H. Now using the Property 7, we can 
write that
           H(p1, p2, …pi+ δ, … ,pj- δ, … pn) > H(p1, p2, p3, … pn)

where, δ >0 and | | /2i jp pd ≤ -

In our case, H(0, 0, …,δ, … ,1-δ, … 0) > H(0, 0,…,1, ,0). This contradicts the fact that H is the minimum. Hence H is minimum 
only when all pi’s except one are zeros.

Proof of Property 10 
The partition A = [A1, A2, ….. An] is changed to B = [Ba Bb A2, ….. An] where A1 is subdivided into Ba and Bb and pa = Pr(Ba), pb 
= Pr(Bb) and p1 = pa + pb

Now H(A) = 

3 2( )

1

i i i
n

ap bp cp d
i

i
p e- + + +

=
∑

and let us consider φ(p)= 
3 2( )ap bp cp dpe- + + +

.
We can write 
H(A) - φ(pa+pb) = H(B) - φ(pa) - φ(pb) 
⇒  H(A) - H(B) = φ(pa+pb) - φ(pa) - φ(pb)

H(A) - H(B) = 
3 2[ ( ) ( ) ( ) ]( ) a b a b a ba p p b p p c p p d

a b ap p e p- + + + + + ++ -
3 2[ ]a a aap bp cp d

be p- + + + - 3 2[ ]b b bap bp cp de- + + +

⇒  H(A) - H(B) = 
3 2[ ]a a aap bp cp d

ap e- + + +
 

2 2 3 2[3 3 2 ][ 1]a b a b b a b b bap p ap p ap bp p bp cpe- + + + + + - +
3 2[ ]b b bap bp cp d

bp e- + + +
.

    
2 2 3 2[3 3 2 ][ 1]a b a b a a b a aap p ap p ap bp p bp cpe- + + + + + -

⇒  H(A) - H(B) ≤ 0
This completes the proof.


