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1. INTRODUCTION
Flexural vibration characteristics of composite plates

have attracted the attention of many investigators in the
last few decades1-2. It has been observed from the existing
literature that studies on the vibration characteristics of
such plates under concentrated or partial in-plane load are
limited, even though such plates find wide application in
the thin-walled structural components of different industries.

Leissa and Ayoub3 used Ritz method, Kaldas and Dickinson4

applied Raleigh-Ritz method, Kukla and Skalmierski5 employed
power series method, and Gutierrez and Laura6 used differential
quadrature method to understand the vibration characteristics
of isotropic rectangular plates subjected to non-uniform
loading. Srivastava7, et al. and Chakrabarty and sheikh8

employed finite element method to study the linear vibration
frequencies of stiffened isotropic, composite, and sandwich
plates subjected to in-plane partial edge loads. Recently,
Cheung9, et al. used finite strip method. Chen10, et al. and
Chen and Fung11 used Runge-Kutta method. and Chen and
Doong12 used Galerkin�s method, to study nonlinear vibration
characteristics of isotropic and laminated composite plates
subjected to initial in-plane stress.

In the present work, a four-noded shear flexible quadrilateral
high precision plate bending element developed for the
stability analysis13 has been extended to study the vibration
characteristics of isotropic and composite plates under
concentrated or partial in-plane load. A complete cubic
polynomial shape function was used to interpolate in-plane
displacements for better accuracy in capturing the non-
uniform stresses near localised load. The nonlinear matrix-
amplitude equation14 has been solved by direct iteration
technique to obtain linear and nonlinear vibration frequencies
of simply supported square composite plates subjected to
tensile or compressive partial in-plane load.
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ABSTRACT

The influence of localised in-plane load on the flexural vibration characteristics of isotropic and composite
plates have been studied using a four-noded shear flexible high precision plate bending finite element. First,
the critical buckling loads of such plates subjected to partial or concentrated compressive loads were calculated,
then the linear and nonlinear flexural vibration frequencies were obtained. Limited parametric study was carried
out to study the influences of location and distribution of tensile or compressive in-plane load on the vibration
frequencies of such plates.
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2. FINITE  ELEMENT  FORMULATIONS
The displacement components at a generic point (x,

y, z) of a shear deformable quadrilateral plate13 can be
expressed as:
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x
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x
 and (), 

y
 represent

the partial differentiation wrt x and y; f
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(x,y) are the nodal rotations.

Following the von Karman strain-displacement relation,
the in-plane and shear strains can be written as:
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The membrane stress resultants{N}, bending stress

resultants {M} and shear stress resultants {Q}are expressed
as:
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where, [A], [B], [D], and [S] are extensional, extension-

and

(2(a))
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bending, bending, and shear stiffness coefficients, respectively.
For a composite laminate of thickness h, comprising of N
layers with stacking angles q i

 (i = 1, 2, �, N) and layer
thicknesses h

i 
(i = 1, 2, �., N), the necessary expressions

to compute the stiffness coefficients are given by Jones15.
A four-noded rectangular high precision plate bending

element13 with the following complete cubic polynomial
shape functions for the in-plane and lateral displacements
(u

0
, v

0
, w

0
) and linear polynomial shape functions for the

shear strains (g
xz

,g
yz

) is employed here:
u

0
 = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, x3y2, x2y3,

x3y3] {c
i
}, i = 1, 16

v
0
 = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, x3y2, x2y3,

x3y3] {c
i
}, i = 17, 32

w
0
 = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, x3y2, x2y3,

x3y3] {c
i
}, i = 33, 48

g
xz

 = [1, x, y, xy] {c
i
}, i = 49, 52 (4)

g
yz

 = [1, x, y, xy] {c
i
}, i=53, 56

(a) Concentrated load (b) Partial load

Figure 1.  A rectangular plate of size a × b is under a pair of
in-plane load P: (a) acting at a distance c from the
left edge and (b) uniformly distributed over a partial
edge-length �c� with a pressure P/c per unit length.

where, c
i 
are constants and are expressed in terms of nodal

displacements (u
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) in the finite element discretisation. Following

standard procedure (minimisation of potential energy), the
equation of equilibrium of the plate subjected to in-plane
load can be written as:
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where, K
L
 and M are linear stiffness and mass matrices,

N
1
 and N

2
 are nonlinear stiffness matrices, K

G
 is the geometric

stiffness matrix due to unit in-plane load, {d}is the vector
of nodal displacements, {F} is the load vector, and l is
the load parameter.

3. SOLUTION  PROCEDURE
The vibration characteristics of composite plates under

partial or concentrated inplane load have been studied.
The procedures for calculating the critical buckling load
and linear/nonlinear frequencies are described.

Step 1�Buckling Analysis: Initially pre-buckling displacements
are calculated by linear analysis [K

L
 ]{ d } = {F} under unit

in-plane load P (Fig. 1). Thereafter, the pre-buckling stress
resultants (N

xy,
 N

yy,
 N

xy
 ) and the corresponding geometric

stiffness matrix K
G
 are calculated. The critical buckling

load (P
cr

), at which Euler type of bifurcation occurs, is
obtained from the following eigenvalue equation problem:

}0{}]{[ =+ dl GL KK (6)

Step 2�Vibration analysis: Assuming a harmonic solution
of the form { d }={d max

 }sin w t  to the differential eqn 5(b)
and following the solution procedure as outlined by Singha
and Daripa14, the following matrix amplitude equation is
obtained:

(a) c/a=0.25

Figure 2. Frequency parameter )//( 22 Dha rpwv = versus in-plane concentrated edge load P, for thin square isotropic plates (a/
h=100). Different modes are shown.

(b) c/a=0.5
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Equation (7) was solved iteratively for different values
of in-plane load parameter (l = P/Pcr ) to obtain the nonlinear
frequency ( w NL

) and corresponding mode shape { d max
 }.

Thereafter, the governing Eqn 5 (a) was solved by Newmark�s
time integration technique starting from the initial conditions
({ d }= { d max

 } = at t = T/4) to investigate the validity
of numerical results obtained from matrix-amplitude
Eqn (7).

(a) c/a =1.0 (b) c/a=0.5

Figure 3. Frequency parameter )//( 22
TEha rpwv = versus compressive in-plane load P distributed over a partial edge-length c at

the middle for thin square cross-ply [0O/90O/0O/90O/0O] plates (a/h=100). Different modes are shown.

Table 1. Convergence study of non-dimensional linear frequencies )//( 22
TEha rpwv =  of 5-layered [0O/90O/0O/90O/0O] square composite

plates (a/b=1, a/h = 100).

Mesh                            Modes
size 1 2 3 4 5 6

4 ´  4 1.91450 3.98667 6.68114 7.68393 8.28908

Simply Present 6 ´  6 1.91413 3.97688 6.66102 7.66131 8.18025

support study 8 ´  8 1.91407 3.97516 6.65750 7.65736 8.16008

Wang16 1.91410 3.97450 6.65670 7.65640 8.15110

4. RESULTS AND DISCUSSION
Vibration characteristics of simply supported square

plates under a pair of compressive in-plane load P are
studied. Total in-plane compressive load P is either assumed
to be concentrated at a distance c from the left edge or
uniformly distributed at the middle of the plate over a
partial edge-length c with intensity of pressure P/c per
unit length (Fig. 1). The material properties, unless specified
otherwise, used in the present analysis were:

E
L
/E

T
 = 40.0,    G

LT
/E

T
=0.6,   G

TT
/E

T
=0.5, v

LT
=0.25, E

T
=1.0

where, E, G, and v are Young�s modulus, shear modulus
and Poisson�s ratio, respectively. Subscripts L and T represent
the longitudinal and transverse directions, respectively

Table 2. Convergence study of non-dimensional linear frequencies )/( 2 Dha rwv =  of a simply supported square isotropic plate

subjected to in-plane concentrated loads (a/b=1, a/h = 100)

Mess division                        P/P
cr

c/a -1 -0.5 0 0.5

4×4 26.45861 23.53274 19.73466 14.34803
0.25 8×8 26.40004 23.50172 19.73219 14.37196

Srivastava7, et al. 26.41000 23.54000 19.73000 14.37000
4×4 27.74434 24.08852 19.73466 14.02267

0.50 8×8 27.72982 24.07947 19.73219 14.75507
Srivastava7, et al. 27.69000 24.06000 19.73000 14.04000
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w/h 0.2 0.4 0.6 0.8 1.0

6×6 1.0330 1.1269 1.2701 1.4502 1.6568
8×8 1.0329 1.1268 1.2701 1.4503 1.6572

Simply supported 10×10 1.0329 1.1268 1.2701 1.4503 1.6572
Bhimaraddi17 1.0290 1.1250 1.2780 1.4650 1.6710

Table 3. Comparison of nonlinear frequency ratio ( w NL
/w L

) of simply supported (SS-1) symmetric cross-ply [0O/90O/0O/90O/0O]
laminated square plate (a=b, a/h = 10)

wrt the fibres. All the layers are of equal thickness. Fibre
orientation is measured from X axis. The simply supported
boundary conditions considered here are
Immovable edge (SS-1): u

0
 = v

0
 = w = 0 at x =0, a and

y = 0, b
Movable edge (SS-2): w = 0 at x = 0, a and y = 0, b

    u
0
= 0 at x = a/2: v

0
 = 0 at y = b/2

Before proceeding for the detailed study, the efficacy
of the present finite element formulation was tested by
carrying out the convergence study for non-dimensional
linear free vibration frequencies )//( 22

TEha rpwv =
of simply supported (SS-1) square cross-ply composite
plates (a/h=1000) in Table 1 and results are compared with

the results of Wang16. The efficiency of the present finite
element in the buckling analysis of rectangular plates under
partial in-plane load is established by Daripa and Singha13

and the same is not repeated here for the sake of brevity.
Next, the non-dimensional linear vibration frequencies

,/( 2 Dha rwv = )1(12/ 23 u-= EhD , Poisson�s ratio
(u  = 0.3) of simply supported isotropic square plate under
concentrated edge load P applied at a distance c (= 0.5a,
0.25a) from the left edge are presented in Table 2 along
with the available solutions of Srivastava17, et al.  and
these match very well. Further, an 8 × 8 mesh is found to
be adequate to idealise the full plate.

Table 4. Nonlinear vibration frequencies of square plates subjected to in-plane partial edge loads with moving edges (a/b=1,

a/h = 100). )/( 2 Dha rwv =  for isotropic plate and )//( 22
TEha rpwv =  for composite plate

w
c
/h

c/a P/P
cr

0 0.2 0.4 0.6 0.8 1 1.2

Isotropic

0 1.99928 2.00659 2.02830 2.06383 2.11231  2.17265 2.24366
0.25 1.73284 1.74123 1.76608 1.80659 1.86154 1.92947 2.00880
-0.25 2.23375 2.24032 2.25984 2.29192 2.33586 2.39061 2.45569

0.5 0.5 1.41626 1.42644 1.45652 1.50516 1.57039 1.65001 1.74176
-0.5 2.44553 2.45155 2.46948 2.49897 2.53944 2.59024 2.65022
0.25 1.73144 1.73985 1.76484 1.80554 1.86072 1.92884 2.00879
-0.25 2.23527 2.24180 2.26124 2.29319 2.29319 2.39167 2.45641

1.0 0.5 1.41371 1.42402 1.45441 1.50353 1.56932 1.64952 1.74179
-0.5 2.44861 2.45459 2.47237 2.50160 2.54181 2.59223 2.65214

Cross-ply [0o/90o/0o/90o/0o]

0 1.90872 1.91452 1.93185 1.96039 1.99969 2.04913 2.10801
0.25 1.65430 1.66098 1.68087 1.71349 1.75819 1.81406 1.88015
-0.25 2.13231 2.13753 2.15312 2.17886 2.21440 2.25931 2.31304
0.5 1.35177 1.35992 1.38408 1.42345 1.47684 1.54280 1.61983

0.5 -0.5 2.33394 2.33872 2.35305 2.37674 2.40954 2.45103 2.50086
0.25 1.65300 1.65969 1.67965 1.71239 1.75722 1.81327 1.87954
-0.25 2.13401 2.13921 2.15473 2.18036 2.21576 2.26049 2.31404

1.0 0.5 1.34967 1.35786 1.38217 1.42177 1.47545 1.54176 1.61915
-0.5 2.33769 2.34243 2.35663 2.38009 2.41257 2.45373 2.50315

Angle-ply [45o/-45o/45o/-45o/45o]

0 2.42637 2.43034 2.44221 2.46175 2.48863 2.52248 2.56278
0.25 2.11873 2.12322 2.13663 2.15869 2.18897 2.22698 2.27213
-0.25 2.69552 2.69915 2.70997 2.72781 2.75240 2.78339 2.82040

0.5 0.5 1.74985 1.75525 1.77130 1.79764 1.83365 1.87860 1.93169
-0.5 2.93754 2.94091 2.95099 2.96759 2.99050 3.01941 3.05398
0.25 2.10221 2.10685 2.12067 2.14337 2.17446 2.21340 2.25954
-0.25 2.71174 2.71526 2.72579 2.74317 2.76714 2.79740 2.83361

1.0 0.5 1.71731 1.72306 1.74015 1.76806 1.80601 1.85311 1.90841
-0.5 2.96956 2.97276 2.98229 2.99807 2.99807 3.04748 3.08059
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Next, the variation of non-dimensional linear frequencies
)//( 22 Dha rpwv =  of simply supported (SS-2) isotropic square

plates under applied concentrated edge load P at a distance
c (= 0.5a, 0.25a) from the left edge are presented in
Fig. 2. It can be observed that frequency parameters decrease
with increasing compressive edge load and finally become
zero at the corresponding critical buckling load. Frequency
parameters of higher modes are also decreasing with increasing
compressive edge load (Fig. 2). Thereafter, the variation
of frequency parameters )//( 22

TEha rpwv = of a cross-
ply [0o/90o/0o/90o/0o] thin square (a/h = 100) laminates under
partial in-plane edge load is presented in Fig. 3. Similar
to the isotropic case, frequency parameters decrease with
increasing compressive partial in-plane edge load and become
zero at corresponding critical buckling load. Shifting of
higher modes can be observed from Fig. 3.

Now, before calculating the nonlinear frequencies of
laminated composite plates under partial in-plane load,
nonlinear frequency ratios ( w NL

/w L
; w L

 is the linear frequency)
of simply supported composite plates (a/h = 10)  with
immovable edge are calculated with the present element
and compared with Bhimaraddi17 in Table 3. Material properties
for this calculation are taken from the same reference. Good
agreement is observed. Thereafter, nonlinear vibration
frequencies of square isotropic, cross-ply [0o/90o/0o/90o/0o]
and angle-ply [45o/-45o/45o/-45o/45o] laminated composite
plates (a/h=100) under partial in-plane load  (c/a= 0.5,1.0)
at the centre are investigated in Table 4. Simply supported
plate with movable in-plane boundary condition (SS-2) is
considered here. Nonlinear vibration frequencies of the
same plate without in-plane load are also shown in the
table for comparison. It is observed that the linear vibration
frequency decreases with the increase of compressive in-
plane load, whereas it increases with the increase of tensile
(negative P) in-plane load. The nonlinear frequencies always
increase with the increase of vibration amplitude (w/h).

However, the degree of hardening nonlinearity decreases
with the increase of intensity of compressive in-plane edge
load as well as its partial edge length. However, tensile
load has reverse effect, as evident from (Table 4).

Thereafter, the governing equation [Eqn 5(b)] is solved
by Newmark�s time integration technique starting from the
initial conditions ({ d }= { d max

 }=at t=T/4) and the dynamic
response of transverse displacement (w

c
/h) at the centre

for a simply supported isotropic plate is presented in Fig.4
for different in-plane load parameters (P = 0, 0.25P

cr
, 0.5P

cr

and  0.75P
cr
). From the response, it is observed that the

response is steady-state and further, the nonlinear time
period (T

NL
) obtained from the matrix-amplitude [Eqn (7)]

and the dynamic response analysis are the same when the
in-plane load is less than the critical buckling load P

cr
.

4. CONCLUSIONS
Large amplitude flexural vibration characteristics of

isotropic and composite plates subjected to localised in-
plane load are investigated using a high precision shear
flexible plate bending element. The influence of magnitude
and distribution of tensile or compressive in-plane load
on the linear and nonlinear free vibration frequencies of
isotropic and composite square plates are investigated in
detail. It is observed that, the nonlinear frequencies always
increase with the increase of vibration amplitude (w/h).
However, the degree of hardening nonlinearity decreases
with the increase of intensity of compressive in-plane edge
load as well as its partial edge length. The results may
be helpful for the designers working in the area of composite
structures.
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