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1.  INTRODUCTION
The role of weapon of Main Battle Tank (MBT) is to fire 

at the target accurately irrespective of the motion of the tank or 
the target. The objective is that the weapon must point the target 
at all times in order to do so. Tanks are meant for cross-country 
terrains. These rough terrains act as the peaks and valleys of 
random nature. The weapon disturbances occur mainly due to 
these terrains. This causes the deviation of gun from the line of 
eyesight and the target flees away without being hit.

Wani1, et al., describes the weapon dynamics for azimuth 
and elevation drives for which the mathematical modelling 
were presented for the same. The responses for azimuth, eleva-
tion and coupled azimuth and elevation dynamics were carried 
out to study the gun behaviour for torque and Aberdeen Prov-
ing Ground disturbances. Using this as base for present work, 
a control algorithm has been developed for weapon dynamics. 
Ahmed2, et al., depicted the study to obtain a mathematical 
model for the passive and active suspensions systems for quar-
ter car model and construct an active suspension control for a 
quarter car model subjected to excitation from a road profile 
using PID controller. Comparison between passive and active 
suspensions system were performed using road profile. The 
performance of the controller was compared with PID control-
ler, and the passive suspension system. This paper gives the 
proper understanding for selection of the PID gains for half 

car as well as weapon system. Nagarkar3, et al., paper showed 
the analyses between passive suspension system and active 
suspension system using a linear quadratic regulator (LQR) 
controller using linear quarter-car model. The performance of 
the LQR controller was compared with the passive suspension 
system. The simulation results showed that the LQR control-
ler improves vehicle ride comfort. LQR control technique has 
been derived and implemented for the present work. Meng4, 
et al., describes a method to optimise the weight matrix of the 
LQR controller by using the simulated annealing algorithm 
which utilises the random searching characteristics of the algo-
rithm to optimise the weight matrices with the target function 
of suspension performance indexes. This method improves 
the design efficiency and control performance of the LQR 
control, and solves the problem of the LQR controller when 
defining the weight matrices. A simulation provided for vehi-
cle active chassis control, suggested that the active suspension 
using LQR optimised by the genetic algorithm compared to 
the chassis controlled by the normal LQR and the passive one, 
showed better performance. Lin & Huang5, developed a novel 
nonlinear backstepping design for the control of half-car active 
suspension systems to improve the inherent trade-off between 
ride quality and suspension travel and showed the comparative 
simulation between passive and non-linear backstepping con-
trol. It also suggested that to avoid damaging vehicle compo-
nents and generating more passenger discomfort, the controller 
must be capable of preventing the suspension from hitting it 
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travel limits. Controller designed with nonlinear filter showed 
the potential to achieve these conflicting control objectives by 
setting suspension to be soft when suspension travel is small, 
and it is adjusted to become stiff as it approaches the travel 
limits. Purdy6, showed that stabilising an out of balance gun on 
a moving platform (tank or ship) was achieved using models of 
a balanced and out of balance gun on a main battle tank which 
was very difficult or impossible to achieve. The models of the 
guns used, included the effect of non-linear friction and out 
of balance. To improve the stabilisation of the out of balance 
gun, trunnion vertical acceleration feedforward was used. This 
is used to develop the elevation dynamics for WCS and later 
incorporating the control technique. Mathworks7 has described 
the theoretical background behind Matlab programming in an 
elaborate manner. 

The following points must be obeyed with respect to 
weapon control system (WCS):
(i) It must respond quickly
(ii) It must hit the target accurately irrespective of whether the 

target or tank in motion
(iii) It must be capable of withstanding any terrain 

disturbances.
In order to achieve the above mentioned points, the 

controllers namely, PID; Linear Quadratic Regulator (LQR) 
and Backstepping control techniques have been studied 
and implemented for WCS. The control can be achieved by 
adopting two strategies as follows:
• Indirect Control
• Direct control

1.1 Indirect Control
The suspension system of tank at present consists 

of the nitrogen gas and oil, which behave non-linearly. 
Implementation of control at suspension system minimises 
the terrain disturbances, which finally leads to minimisation 
of gun disturbance. The ride dynamics of the vehicle would be 
controlled which in turn takes care of the weapon stabilisation. 
In the present paper, a half car model has been considered to 
demonstrate the control over suspension system.

1.2  Direct Control
The control technique is implemented in the weapon itself 

to minimise the gun oscillations. In the present paper, elevation 
dynamics of the WCS has been considered. The location of 
controller is assumed to be between breech and the elevation 
drive.

The simulation is performed in MATLAB by prior 
formulation of the governing differential equations of motion 
for the half car, which in turn is sequentially coupled with the 
elevation dynamics, and solved using state space approach.  

2.  bACKGROUND
2.1  Suspension System

The half car is considered to have linear stiffness and 
damping characteristics, comprising totally 4 degree of 
freedom as shown in Fig. 1.
where y01 and y02 are the base excitations from the terrain.

2.2  Weapon System
In the present math model, the barrel is divided into 2 

primary sections- muzzle (barrel front portion) and the breech 
(barrel rear portion), as shown in Fig. 2. The breech section 
in the weapon model is connected to the turret through the 
trunnion (which is considered to be a hinge joint with a certain 
amount of torsional damping between the breech and trunnion, 
which results from joint frictional effects), as shown in Fig. 2. 
The mass of the breech block and recoil systems is lumped to 
the breech section mass. The mathematical model for the gun 
barrel is formulated based on the lumped parameter flexible 
beam technique, in which the barrel length is divided into 
finite beam sections (for simplicity here 2 sections of the barrel 
are taken- muzzle and breech). Since the muzzle and breech 
are structurally coupled to each other, therefore a structural 
torsional spring and damper with appropriate torsional stiffness 
and damping is implemented between the muzzle and breech 
(as shown in Fig. 4). So, the barrel is not considered to be rigid. 
Considering the above, the muzzle and breech sections of the 
barrel have independent degrees of freedom. 

The half car bounce and pitch responses serve as the 
input to the weapon dynamics model, in which the vibrations 
are transmitted to the muzzle through the breech by means of 

Figure 1.  Half car schematic model.

Figure 2.  Gun barrel mounted on half car suspension model.
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structural coupling. The reference to the model has been taken 
from Purdy6, based on which further control techniques have 
been implemented. 

The elevation dynamics comprise 3 degree of freedom, 
arising from the angular displacements of breech, muzzle 
and drive.  The drive in this case is an electric motor, which 
is having a rotational degree of freedom. This provides the 
required torque to elevate and depress the gun barrel to the 
desired angle through a rack and pinion arrangement, as shown 
in Fig. 2. The gun breech and muzzle, by virtue of being 
discrete beam sections have both angular and vertical degrees 
of freedom. The vertical degrees of freedom are eliminated by 
equations of constraint as described later in the paper. 

Since for future, an All-Electric drive is being considered 
for gun control, therefore, the present model is accordingly 
developed. Figure 3 shows the elevation dynamics 
dimensions.

The rest of the paper has been arranged as; Mathematical 
model, control technique algorithms, Simulation results and 
comparison.
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The Eqns (1) to (4) are converted to state-space form. The 

state vectors are derived for these 4 DOF system.
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Thus, the state equations are given in Eqns from (5) to (8):
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The control algorithms are implemented into the Eqns (5) 

to (8), as discussed later in the paper.

3.2 Elevation Dynamics
The gun elevation dynamics comprise of 3 DOF, namely 

angular displacements of the drive, breech and muzzle, which 
are in turn sequentially coupled to the 4 DOF, pertaining to the 
ride model of the half car. 

Equations of constraint for elevation dynamics-
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Rotational dynamics for the elevation drive-
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     (10)
Vertical and rotational motion of the Breech section for 

elevation dynamics-

Figure 3.  Elevation dynamics dimensions.

3. MATHEMATICAL MODELS
3.1 Suspension System

The suspension system for half car has been shown in  
Fig. 1.

The control forces u1 and u2 are applied at the front and 
rear sides, respectively see Appendix A. 

The governing equation of motion for bounce is given by 
Eqn (1):
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The pitch dynamics is described by Eqn (2):
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(2)
The governing equations of motion for unsprung mass are 

given in Eqns (3) and (4).
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Figure 4 shows the free body diagram for elevation 
dynamics.

Vertical and rotational motion of the muzzle section for 
elevation dynamics -

5 2 12 0m y f− =                                                              (12)
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The state-space equation are derived for elevation dynam-
ics in a similar way as that of suspension model.

Assuming,
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The control law is obtained as:
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Similar steps are followed to obtain the control parameter 

for rear side.
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      (16)
4.2 Elevation Dynamics

The control parameter is the breech velocity, which is to 
be regulated.

1( ) tpe t X= θ            (17)
The control equation is given by Eqn (18):

4 1 4P tp I tp D tpu K x X K x X K x X= + +          (18)

5.  LQR CONTROL DESIGN
Considering the state-space form as:
x Ax Bu= +

The control vector ‘u’ in case of LQR control is decided 
based upon the quadratic performance index. The performance 
index is given by:

( ),LQRJ L x u dt= ∫
where L(x,u) is the quadratic or Hermitian function such that,

LQRu L x= −
KLQRis the LQR gain matrix. LLQR leads to linear control.
The linear quadratic performance index is expressed as:

( )2T T T
LQRJ x Qx u Ru x Nu dt= + +∫         (19)

where, the first term on the right hand side signifies the 
difference in the error between initial and final state and second 
term signifies the energy expenditure on control signal3.

The control ‘u’ is said to be optimal for:
LQRu K x= −            (20)

where, 1 T
LQRK R B P−=

The K matrix can be obtained from the Algebraic Riccati 
matrix formula:

( ) ( )1 0T T TPA A P PB N R B P N Q−+ − + + + =        (21)

The K matrix can be obtained by using following code 
through MATLAB7:

[ ] ( ), , , , ,K P LQR A B Q R N=

6.  bACKSTEPPING CONTROL DESIGN
The backstepping control design consists of two steps.
Elevation dynamics
We choose z1 =θ1Xtp to regulate the breech displacement 

to minimise the muzzle displacement.
Step 1: The derivative of z1 is computed as:

1 11 12tp tpz x X x X= =           (22)
x12is used as the first virtual variable for which we choose 

the stabilising function as:
1 1 1c zα = −            (23)

where, c1 is a positive design constant. The corresponding error 

Figure 4.  Elevation drive for WCS.

4. PID CONTROL DESIGN
PID is the most widely applied controller. The objective 

function can be controlled by varying the gains values KP, KI 
and KD. If ‘u’ is the control variable, y(t) and f(t) are the actual 
and desirable output, then the tracking error is e(t)=y(t)-f(t). 
The PID control law is given by:

( ) ( ) ( ) ( )P I D
du t K e t K e t dt K e t
dt

= + +∫
The proportional term of PID controller usually gives the 

controlled output without other terms. Integral term rejects the 
disturbance and derivative term provides the damping2.

4.1 Suspension Model
The difference between the sprung and unsprung mass 

velocities is considered as the control parameter for front side 
of half car.
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state variable is defined as:
2 12 1tpz x X= − α , and the resulting error equation is

1 1 1 2z c z z= − +

Step 2: The derivative of z2 is given by:

2 12 1z x= −α Xtp2 12 1z x= −α
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                   (24)
The actual control inputs occur in the Eqn (24) and there-

fore the control law is given as in Eqn (25).
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where, c2 is the positive design constant.

To analyse the system stability, the Lyapunov criteria5 is 
considered as-

2 2
1 2

1 1
2 2

V z z= +

The derivative of the Lyapunov function derived is given 
by Eqn (26):
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2 2
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The Eqn (26) shows that the error system is Globally 
Exponentially Stable according to Lyapunov theorem.

Alternatively, the closed loop error system is given by-

1 1 1

2 2 2

1
1

z c z
z c z

−     
=     − −     





The above  2x2 matrix is Hurwitz, and so the error system 
has a globally exponentially stable equilibrium at (z1, z2) = (0, 
0). Therefore, the defined objective of breech displacement 
minimisation is achieved.

7.  SIMULATION RESULTS AND COMPARISON
7.1 Suspension System

The passive and controlled half car model equations 
of motion have been formulated and solved in Matlab using 
Runge kutta explicit solver. The road wheels are applied with 
base excitation with suitable time delay (as shown in Fig. 5), as 
it negotiates the Aberdeen Proving Ground (APG) terrain at a 
vehicle speed of 30 kmph. The bounce and pitch dynamics for 
the passive and controlled half car models are shown in Figs. 6 
and 7, respectively. Table 1 in Appendix A provides parameters 
and values for half car suspension system.

7.2 Elevation Dynamics
Table 2. in Appendix A provides parameters and values 

for elevation dynamics system. Here, as discussed earlier, the 
passive half car model is integrated with the elevation dynamics 
model, in which the control techniques are implemented.

Prior to application of the base excitation (as shown in 
Fig. 5), the elevation dynamics model is applied with a suitable 
drive torque input (as shown in Fig. 8) in order to position the 
gun at the desired angle.

The natural frequencies (Hz) of the half car system are 
found to be 1.17, 1.44, 9.35 and 9.34. The bounce and pitch 
acceleration responses are shown in the frequency domain in 
Figs 9. and 10, respectively.

The bounce and pitch behaviour of the sprung mass serve 
as inputs to the elevation dynamics model of the weapon 
system. 

The details of inputs to the elevation model are:
• Torque – 2 s to 4.15 s
• APG – 5.54 s to 15.34 s

Figure 5.  base excitation of APG at speed 30 kmph.
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Figure 7.  Pitch of sprung mass about CG.

Figure 6.  bounce of sprung mass CG.

Figure 8. Plot of torque input to elevation drive section.
Figure 9. Plot for FFT of bounce acceleration of half car sprung 

mass at CG.
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The comparative magnitude variation between the sprung 
mass pitch and breech angular displacements is shown in Fig. 11.

With respect to the weapon passive math model, the breech 
is connected to the turret through the trunnion, which is a hinge 
joint with a certain amount of torsional damping coefficient 
in between them (value taken from the Purdy6). Due to this, 
there is a very small amount of relative angular motion of the 
weapon platform with respect to the vehicle pitch, as observed 
from Fig. 11. With the same math model, as the value of the 
torsional damping is increased in between breech and trunnion, 
it would decrease the relative rotation of the weapon platform 
with respect to the vehicle motion, as shown in Fig. 12. 

Incorporating higher value of torsional damping coefficient 
between breech and trunnion (300 kNms/rad), providing APG 
input to the half car model with vehicle moving at 30 kmph 
speed, it is observed from Fig. 12 that the relative magnitudes 
of pitch angular displacement response obtained from the half 
car ride model and breech angular displacement response are 

closer compared to that obtained with relatively lesser value of 
torsional damping, as in Fig. 11.  

In practice, the actual amount of torsional damping 
between the breech and trunnion may be determined from 
the experimental evaluation of energy loss per cycle during 
elevation and depression of the gun, which can be taken up in 
future to further fine-tune the inputs to the math model. Since 
the main focus of the paper is on implementing a suitable 
control technique for achieving the desired muzzle response 
over the standard terrain conditions, therefore, as of now, the 
values of torsional damping coefficient between the breech 
and trunnion is taken with reference from Purdy6 (mentioned 
in Appendix A).

The integrated model for the weapon elevation and half 
car dynamics are solved in Matlab. The comparative muzzle 
and breech angular displacements after implementation of 
the control techniques are represented in Figs. 13 and 15, 
respectively.

Figure 12. Comparison between half car pitch and breech angular 
displacement responses (with C1p=300 kNms/rad).

Figure 13.  Muzzle angular displacement.

Figure 10. Plot for FFT of pitch angular acceleration of half car 
sprung mass about CG.

Figure 11. Half car pitch and breech angular displacement (with 
C1p=1500 Nms/rad).
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Figure 14. Enlarged time axis for muzzle angular displacement.

Figure 15. breech angular displacement.

The enlarged plot of the Fig. 13 is shown in Fig. 14. 
The comparative muzzle angular acceleration responses 
from the passive and controlled system is shown in both 
time and frequency domains, as shown in Figs. 16 and 17, 
respectively.

8. CONCLUSIONS
The present work describes the comparative response 

analyses for the half car as well as the gun elevation dynamics 
with and without the implementation of the stated controller 

algorithms. The controller working range is set by the amount 
of weight (gain) values provided. By adopting certain tuning 
techniques such as Zinger-Nichols method in case of PID 
controller, tuned gain values may be used. 

8.1 Suspension System
It is observed from the half car suspension system responses 

that, LQR control provides more damping characteristics 
spending lesser control effort than that of PID. This helps in 
estimating the amount of reduction of muzzle responses, when 
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the half car controlled model responses are fed as the input to 
weapon dynamics.

8.2 Weapon Dynamics
With respect to the weapon control system, it is observed 

that backstepping controller method provides lesser breech 
and muzzle angular displacement responses, compared to that 
of PID and LQR techniques. As a further study, it is observed 

that backstepping controller technique also requires lesser 
control effort for similar order of reduction, as compared 
to LQR and PID techniques. This study would form a very 
useful platform for implementation of alternate control 
techniques for the gun system. Furthermore, on the same lines 
the above control techniques can also be extended to non-
linear suspension system, which would prove the purpose of 
weapon control.

Figure 16. Plot of muzzle angular acceleration.

Figure 17. FFT plot with respect to muzzle angular acceleration.
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Appendix A

(A) Suspension System
 (i) PID gain values

KP1 = 1000
KI1 = 5000
KD1 = 100
KP2 = 1000
KI2 = 0
KD2 = 0

 (ii) The LQR control gain matrices

[ ]

[ ]

1

1

2

2

( 1 10 0 0 0 0 0 0 0 )

0.1 0
0 0.1

( 0 0 1 12 0 0 0 0 0

1 0
0 1

Q diag e

R

Q diag e

R

=

 
=  

 
=

 
=  

 

 

(b) Elevation Dynamics System
 (i) PID gain values

KP = 5000000
KI= 0
KD = 0

 (ii) LQR control gains are

[ ]( 0 0 0 1 12 0 0 )
0.1

Q diag e
R

=

=
 
 (iii) Backstepping control design constants

ϵ = 0
c1 = 25000
c2 = 0

Half Car Suspension system Parameters

m1 Sprung mass of half car 575 kg

m2 and m3
Unsprung mass of wheel 1 and 2, 
respectively 60 kg

K1
Spring stiffness between sprung mass 
and front wheel 16812 N/m

K2
Spring stiffness between sprung mass 
and rear wheel 16812 N/m

C1
Viscous damping between sprung 
mass and front wheel 1000 Ns/m

C2
Viscous damping between sprung 
mass and rear wheel 1000 Ns/m

Kt1 Front tire wheel stiffness 190000 N/m
Kt2 Rear tire wheel stiffness 190000 N/m
l1 Front side to sprung mass CG distance 2.2 m
l2 Rear to sprung mass CG distance 2.6 m
I Moment of Inertia of mass m1 769 kgm2

Table 1. Parameters and corresponding values for half car 
suspension system

Table 2.  Parameters and values for elevation dynamics

Elevation dynamics system parameters
Xt Distance between Hull CG and Trunnion 1 m

Xtp
Horizontal distance between trunnion and 
center of pinion 0.75 m

Kde Elevation driveline stiffness 6000kN/m 
Cde Elevation drive viscous damping coefficient 1.5 kNms/rad
Rpe Pinion radius 0.04 m
Ide Elevation drive inertia 0.5 kgm2

C1p
Trunnion torsional viscous damping 
coefficient 1.5 kNms/rad

m4 Mass of cradle 2165 kg
I1 Inertia of cradle 1090 kgm2

le1
Length of gun barrel of breech section 
measured from trunnion 1.75 m

n1 Distance between breech CG and trunnion 0.465 m

K12
Torsional stiffness between the muzzle and 
breech sections (for elevation drive) 4000 kNm/rad

C12

Viscous damping coefficient between the 
breech and muzzle section (for elevation 
drive)

2 kNms/rad

m5 Mass of muzzle section 335 kg
I2 Inertia of muzzle section 281 kgm2

le2 Muzzle section length 3.25 m

n2

Distance between muzzle CG and 
intersection point of muzzle and breech 
sections

1.319 m


