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1. INTRODUCTION
Recent years have witnessed the emergence of several

approaches to sensing applications. Many applications
require the maintenance of a high fidelity estimate of the
state of a dynamic system based on a sequence of noisy
observations. Such applications demand the use of filtering
mechanisms such as the KF1,2, to fit the observation
sequence to a given model of the system dynamics. The
primary motivation for this study came from problems that
arise in multiple target tracking with distributed sensor
networks. One central problem in multiple target tracking
is out-of-scope measurements (OOSM)3-14, which is
sometimes referred to as the problem of tracking with
random sampling delays15-17 and the problem of incorporating
time delayed measurements18.

Most of the work on tracking and filtering has been
based on the assumption that measurements are available
immediately to an agent. However, it is not difficult to
conceive situations in which measurements are subject
to non-negligible delays, such that the lag between
measurement and receipt is of sufficient magnitude to
have an impact on estimation or prediction19. This can
be caused by a number of specific reasons:
� Communication delays from the sensor to the tracker;
� Different sensors observing the current state of the

target at different times;
� Delays in sending tracks to the data fusion node (often

because the sensor is a rotating radar measurement
with specific time stamps) and

� Unsteady pre-processing times of the observed data,
depending on the system load, can vary from one
measurement to another. Delayed measurements can
create difficulties, especially for discrete time filtering.
Delayed measurements can be classified into two

categories, constant delays, and random delays. Constant
delays involve measurements being delayed by the same
constant lag. In this way, measurements are never observed
out-of-sequence, these are simple and consistent. Such
behaviour could be induced, for example, by a constant
bandwidth restriction on a sensor network. In contrast,
random delays provide a number of possibilities, including
that measurements are delayed with a constant probability
but with a fixed lag, or constant probability with a random
lag. Such problems could arise as a result of intermittent
bandwidth restrictions on a sensor network. All models
of random delay have the potential to cause OOSM. This
study was inclined in solving the problem of random delays,
hence, OOSM.

Another problem related to OOSM is that of incomplete
data or missing values. In fact, skipping the correction
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step and proceeding straight to the prediction step when
using a KF for estimations purposes is the equivalent of
considering the delayed measurement as missing20-22. The
presence of missing values is commonplace in large
real-world databases. This has become one of the most
important problems in academic research since most learning
systems and statistical analyses in the early stages were
not designed to handle missing data (incomplete vectors).
There are several reasons why there are missing values
in data. An item could be missing because it was unavailable
or arises by default in data recording activities. Missing
values could also occur because of confusing questions
in the data gathering or because of sensor malfunction.
In some situations, the missingness could be caused by
the relationships between the attribute variables themselves.
That is, the information that is missing on a given attribute
variable could be as a result of its relation to values of
other attribute variables in the data set. An extreme case
is that the missing value could be as result of its relation
to an unobserved (missing value) in the data set.

In this paper, the resilience of OOSM, on the one
hand, and imputation, on the other hand, to the various
forms of imperfections in sensor data has been explored
to increase the awareness of the impact delayed measurements
could have, when building robotic prediction models.
The main focus is on the application of OOSM and MI
to multi-target tracking prediction.

This study is significant because of the following
reasons:
· OOSM is an emerging technology that can aid in the

handling of delayed measurements in single- or multi-
target tracking predictions

· The delayed measurements problem is related to the
incomplete data problem, hence, the use of imputation
procedures (single or multiple imputation) could be
utilised;

· MI has an advantage over single imputation strategies
due to the fact that it overcomes the under-representation
of uncertainty about which value to impute (i.e., single
imputation methods underestimate the true variance
of the values these are attempting to fill-in or impute);

· Due to the lack of adequate tools to deal with delayed
measurements, machine learning techniques have been
used to tackle such problems, including either single-
or multiple-target tracking or navigation prediction.
Most of the work on tracking and filtering has been

based on the assumption that measurements are immediately
available to an agent. However it is not difficult to conceive
situations in which measurements are subject to non-negligible
delays, such as the lag between measurement and receipt
is of sufficient magnitude to impact on estimation. In such
situations, the classical assumption, that observations
are available immediately, is easily violated19.

A direct solution to the OOSM problem is simply to
ignore and discard the OOSM in the tracking process
more like the listwise deletion is a standard default approach

for dealing with missing data in most statistical packages.
This solution leads obviously to a loss of the information
contained in the discarded OOSM. To avoid this drawback,
several alternative methods proposed are available in the
literature to deal with the OOSM problem, especially for
random delays. It is also striking that almost all of the
methods proposed to handle delayed measurements have
in common that delayed measurements are always ultimately
incorporated into the filtering process.

In the time delays context, one common approach is
related to solving a partial differential equation and boundary
condition equations which do not have an explicit solution
in general23-27.

For the case of discrete time systems (and especially
for random delays), the problem has been investigated
via a standard Kalman filtering28 and by augmenting the
system accordingly28-30. Matvev and Savkin31 consider
an iterative form of state augmentation for random delays
with a random lag. Larsen32, et al. address the OOSM
problem by recalculating the filter through the delayed
period. In the same context, Larsen32, et al. propose a
measurement extrapolation approximation using past and
present estimates of the KF and calculating an optimal
gain for this extrapolated measurement. Thomopoulos
and Zhang17 examine the case of random delay under
the name of the fixed sampling and random delay filter,
that is shown to be equivalent to constraining the lag
to a value of 1. Alexander1 and later Larsen32, et al.
suggest using the delayed measurements to calculate a
correction term and adding this to the filter estimate.
Zhang34, et al. proposed algorithms that try to minimise
the information storage in an OOSM situation. Challa9,
et al. formulated the OOSM problem in a Bayesian
framework. The above methods are described in more
detail in Section 3.

2. PROBLEM  STATEMENT
The presentation is based on the KF equations for

a discrete linearised time-varying system with state vector
x

k
, input vector u

k
, and output vector y

k
. KF is the optimal

recursive data processing algorithm for a discrete linear
system corrupted with noise in the states and measurements.
What a KF requires is knowledge of the system and
measurement dynamics, a statistical description of the
system and measurement noises, uncertainty in the dynamic
models and any available information about the initial
conditions of the variable of interest. Based on this knowledge,
it gives the optimal estimate of the state variables under
observations1,35. Since its inception KF has become a
subject of extensive research and application, particularly
in areas of autonomous, assisted navigation or target
tracking. For more detailed study of KFs probabilistic
origin see Maybeck36.

The following lists the equations for notation purposes37

and improved by Bar-Shalom38, et al. and later by Julier
and Uhlman39.
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2.1 System Description
The KF addresses the general problem of trying to

estimate the state xÎÂn of a discrete-time controlled process
that is assumed to evolve over time t

k�1
 to t

k
 and governed

by the linear stochastic difference equation

( ) ( , 1) ( 1) ( , 1)x k F k k x k v k k= - - + -                     (1)

where, x(k) is the state vector at time k, F(k,k�1)
is the state transition matrix to time t

k
 from t

k
�1 and v(k,k�

1) represents the (cumulative effect of the) process noise
for this interval. The order of the arguments in both F
and v is according to the convention for the transition
matrices. Typically, the process noise has a single argument,
but here the two arguments will be needed for clarity. The
time t, at which the OOSM was made, is assumed to be
such that

1k l k lt t- - +< t <                                          (2)

This will require the evaluation effect of the process
noise over an arbitrary non-integer number of sampling
intervals. Note that l=1 corresponds to the case where
the lag is a fraction of a sampling interval; for simplicity
this is called the �1-step-lag� problem, even though the
lag is really a fraction of a time step.

The measurement zÎÂm and thus measurement or
observational model is

( ) ( ) ( ) ( )z k H k x k w k= +                               (3)

where z(k) is the observation vector, w(k) is the observation
noise vector and  is the observation matrix. The noise
vector v(k,K�1) and w(k) are assumed to be independent
(of each other), white, and with normal probability distributions

( ) (0, )p w N Q:                                           (4)

( ) (0, )p v N R:                                         (5)

The process noise covariance Q(k) and measurement
noise covariance R(k) are mutually uncorrelated and they
are given as

[ ( , ) ( , ) ] ( , ) [ ( ) ( )] ( )E v k j v k j Q k j E w k w k R k¢ = =            (6)

Similarly to Eqn (1), one has

( ) ( , )[ ( ) ( , )]x k F k x v k= k k - k                            (7)

where, k is the discrete time notation for t. The above
can be written backward as

( ) ( , )[ ( ) ( , )]x F k x k v kk = k - k                             (8)

where, 1( , ) ( , )F k F k -k = k  is the backward transition matrix.

2.2 Fusion of Time Delayed Measurements

Denoting a cumulative set of measurements 1{ ( )}k k
iZ z i =@ ,

the OOSM problem [up to time instance t=t
k
 , and excluding

a measurement z(t) with a time stamp tt < t
k
 as shown in

Fig. 1 to reduces to the problem of computing the conditional
mean estimate of the target state

�( | ) [ ( ) | ]kx k k E x k Z@                                  (9)

and its associated error covariance

 ( | ) cov[ ( ) | ]kP k k x k Z@                               (10)

Under the assumption that the initial state x
0
 is Gaussian,

the conditional mean estimate �( | )x k k  of the target state,
which is optimal in the minimum variance sense, can be
computed recursively using the KF. Also, it is assumed
that a measurement z is collected and used to update the
track at the time interval h. The basic KF algorithm can
then be extended to multi-sensor systems where the data
is assumed to arrive at known times and in correct time
sequence.

Suppose that a given measurement corresponding
from time t (denoted with discrete time notation as k),

( ) ( ) ( ) ( ) ( )z z H x w kk t = k k +@                        (11)

arrives with a certain delay after Eqns (9) and (10) have
been computed, as shown in Fig. 1.

One faces the problem of updating the state estimate
and its covariance with the delayed measurements, i.e.,
to compute

�( | ) [ ( ) | ]kx k E x k Zk @                                  (12)
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Figure 1. Out-of-sequence measurement.
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and

( | ) cov[ ( ) | ]kP k x k Zk @                               (13)

where { , ( )}}kZ Z zk k@                                 (14)

Equation (13) provides a simple, intuitive interpretation
of the weight in the time delayed KF. The weight assigned
to a measurement is a function of the degree to which
the measurement is correlated with the current state of
the system*. Therefore, the difficulty in implementing the
time delayed KF is in calculating P(k|k). Solutions to the

delay measurement problem are presented in Section 3.

3. SOLUTIONS TO DELAY MEASUREMENT
PROBLEM

3.1 Out-of-Sequence Measurement
There have been a number of solutions proposed in

the literature to solve this OOSM problem. Most existing
solutions to the problem are based on retrodiction, where
backward prediction of the current estimated state is used
to incorporate the OOSMs at appropriate time instants.
However, in recent years, some researchers have tackled
the OOSMs problem without the need of backward prediction
(See for example, Rhéaume40, et al.). For the purpose of
this study, the authors are more interested in the backward
prediction solutions, which are described below.

Thomopoulos and Zhang17 examined the case of random
delays of the complete measurement vector which arrive
out-of-sequence, where the lag was restricted to a value
of 1. The measurements arrive at the fusion with random
delays which can be due to queuing at the sensor buffer
and to delays in the transmission time as well as in the
propagation time. Optimal filters for the estimation of target
tracks based on measurements of uncertain origin received
by the fusion at random times and out-of-sequence were
derived for the cases of random sampling, random delay,
and both random sampling and random delay.

Alexander33 and Larsen32, et al. suggested using the
delayed measurement to calculate a correction term and
adding this to the filter estimate, again considering the
complete observation vector being delayed. In the same
context, Larsen32, et al. further proposed a measurement
extrapolation approach to ensure the optimality of the
filter and at the same time address issues like changing
measurement and state noise covariance matrices.

One other approach by Matveev and Savkin31 that
addresses the random delayed measurements problem is
called state augmentation. This approach was designed
to handle a linear discrete-time partially observed system
perturbed by white noises. The reduced-order linear unbiased
estimator was designed via iterative state augmentation.
By so doing, Matveev and Savkin31 managed to solve the
minimum variance state estimation problem and further
showed how their proposed approach was exponentially

stable under natural assumptions. Lu41, et al. followed up
this approach by proposing a variable dimension filter
which handles only essential past states not just past
states that are up to some maximum delay like Matveev
and Sankin23 approach.

Julier and Uhlman39 considered the problem of applying
a KF to estimate the state of a dynamic system using a
sequence of observations that are not precisely time stamped.
They argued that the problem has analogies with the identity
ambiguity problem that arises in MTT applications. They
further described a way in which multiple hypotheses and
covariance union (CU) methods could be utilised for this
kind of problem and compared them with the probabilistic
data association filter (PDAF) method. Their results showed
the PDFA yielding the most accurate results, however, at a
higher computational cost. The strong dependence of PDAF
on the accuracy of the likelihood model is another of its
weakness. Although CU requires the evaluation of two KF
updates, its advantage lies in its ability not to rely on specific
assumptions as to the veracity of the likelihood model.

More recently, Zhang34, et al. proposed two algorithms
with three cases of different information storage for the
state estimation update with OOSM. Both algorithms are
optimal in the linear minimum mean square error sense for
the information available at the time of update. Their proposed
algorithms (based on the linear minimum mean-square error)
try to minimise the information storage in an OOSM situation
using different minimum storage of information concerning
the occurrence time of single OOSMs. Further, they extend
the single OOSM update algorithms to the case of arbitrarily
multiple OOSMs.

Challa9, et al. formulated and solved the OOSM problem
in the Bayesian framework. They established that the
solution involved the joint probability density of current
and past states or the state corresponding to the delayed
measurement. For the case of multiple delays, the authors
show what the solution involves a Bayesian recursion
for the joint probability density of an augmented state
vector. Based on this, the augmented state Kalman filter
(AS-KF) and its variable dimensions extension (VDAS-
FK) have been proposed as the fundamental solution to
this problem in the linear Gaussian case. AS-FK handles
noise-target state cross-correlation implicitly and can be
readily extended to handle clutter. The idea of VDAS-
FK is that the augmented state only carries the current
state and the past state for which there was a missing
measurement. The filter will reduce to a normal KF if
there is no OOSM. Further, a new augmented state probabilistic
data association filter (AS-PDA) is proposed by Challa9,
et al. This filter is meant to deal with data association
issues arising from the presence of clutter in the OOSM
problem. Simulation results were used to demonstrate
the effectiveness of these algorithms. The results show

* The result is algebraically the same as derived by Larsen32, et al., However, the interpretation is different. Larsen considered
taking an observation and extrapolating its value forward to the current time step in the filter. Julier and Uhlmann39 considered
calculating the correlation backwards from the current time to the time when the observation was made.
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the proposed solutions as computationally expensive
when compared with existing methods but straightforward
to implement and these also yield significant improvements
in terms of performance.

A more principled way to handle this problem is to
extend Challa�s Bayesian formalism9,36 to include uncertainties
in the time delays. This is analogous to a problem that
arises in multiple target tracking (MTT)42. MTT occurs
when a tracking system receives an observation of one
of several different targets, but the exact identity of the
observed target is not known.

3.2 Multiple Imputation
Imputation is the substitution or replacement of some

value of a missing data point or missing component of
a data point43-45. Multiple imputation (MI) is one of the
most attractive methods for general purpose handling of
missing data in multivariate analysis described MI as a
three-step process. First, sets of M plausible values (M=5
in Fig.1) for missing instances were created using an appropriate
model that reflects the uncertainty due to the missing
data. Each of these sets of plausible values was used to
fill-in the missing values and create M complete datasets
(imputation). Second, each of these M datasets can be
analysed using complete-data methods (analysis). Finally,
the results from the M complete datasets are combined,
which also allowed the uncertainty regarding the imputation
to be taken into account (pooling or combining).

For example, replacing each missing value with a set
of five plausible values or imputations (as it was the case
in our illustration in Fig. 2) would result to building five
decision trees (DTs)46, and the predictions of the five
trees would be averaged into a single tree, i.e., the average
tree is obtained by MI. MI retains most of the advantages
of single imputation and rectifies its major disadvantages
as already discussed.

There are various ways to generate imputations. Schafer45

has written a set of general purpose programs for MI of
continuous multivariate data (NORM), multivariate categorical
data (CAT), mixed categorical and continuous (MIX), and
multivariate panel or clustered data (PNA). These programs
were initially created as functions operating within the
statistical languages S and S-PLUS47. NORM includes an
expectation maximisation (EM) algorithm for maximum
likelihood estimation of means, variance, and covariances.
NORM also adds regression-prediction variability using
a Bayesian procedure known as data augmentation48 to
iterate between random imputations under a specified
set of parameter values and random draws from the posterior
distribution of the parameters (given the observed and
imputed data). These two steps are iterated long enough
for the results to be reliable for multiple imputed datasets45.
The goal is to have the iterates converge to their stationary
distribution and then to simulate an approximately independent
draw of the missing values. The algorithm is based on
the assumptions that the data come from a multivariate
normal distribution and are missing at random (MAR).
MAR essentially says that the cause of missing data may
be dependent on the observed data but must be independent
of the missing value that would have been observed.

Although not absolutely necessary, it is almost always
a good idea to run the EM algorithm50 before attempting
to generate MIs. The parameter estimates from EM provide
convenient starting values for data augmentation (DA).
Moreover, the convergence behaviour of EM provides
useful information on the likely convergence behaviour
of DA. Therefore, EM estimates of the parameters are
computed and then recorded the number of iterations required,
say t. Then, a single run of DA algorithm of length tM
using the EM estimates as starting values is performed,
where M is the number of imputations required. The
convergence of the EM algorithm is linear and is determined

 

?
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Figure 2. The three steps of multiple imputation.
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by the fraction of missing information. Thus, when the
fraction of missing information is large, convergence will
be very slow due to the number of iterations required.
However, for small missing value proportions convergence
is obtained much more rapidly with less strenuous convergence
criteria. The EM and DA processes are described below.

The core idea of the EM algorithm is to introduce
some unobserved variables Z, appropriate for the model
under consideration, such that if Z were known the optimal
value of q could be computed easily. Then the complete
conditional probability density (including the missing variables)
can be written as:

åå
= =

=
N

1i

M

1j
iiiij è);è)f(z;z|logf(xzZ)X,|L(è                (15)

The usual approach is to regard Z as missing data
and estimate it iteratively.

The intuition behind the EM algorithm is that one
would like to maximise the complete data likelihood but
it cannot be utilised directly, so we maximise its expectation,
denoted by )è|Q(è t , instead. As shown by Dempster47,
et al., X)|L(è , the complete data likelihood can be maximised
by iterating the following steps:
Step 1. Initialise parameters randomly. Set t = 0.
Step 2. E-step: Determine

)]èX,|Z)X,|E[L(è)è|Q(è (t)(t) =

Step 3. M-step: Set )}è|{Q(è max arg è (t)

è

1)(t =+  where (t)è
are the current parameter estimates in time step t.

Step 4 . Iterate steps 2 and 3 until convergence
Assume that the data set }x,...,{xX N1=  is divided

into an observed obsX  and missing missX components,
respectively. To handle missing values one can re-write
the EM algorithm as follows:
Step 1. Initialise parameters randomly. Set t = 0
Step 2. E-step: Determine

)]è,X|Z),X,X|E[L(è)è|Q(è (t)
obsmissobs

(t) =

Step 3. M-step: Set )}è|{Q(è max arg è (t)

è

1)(t =+

where  q(t) are the current parameter estimates in time
step t.

Step 4. Iterate steps 2 and 3 until convergence.
The expectation (E) step computes the expected values

for the sufficient statistics given a model and values for
model parameters q , i.e., the expected value of the complete
data likelihood wrt the missing data given the observed
data and the current parameter estimates. The maximisation
(M) step estimates the model parameters by maximising
the likelihood using standard procedures, given complete
data. The procedure iterates through these two steps until
convergence is obtained. Convergence occurs when the
change in parameter estimates from iteration becomes
negligible. An important part of the EM algorithm is restoring
error variability to the imputed values during the E-step.
Replacing a missing value by an imputed value using the

EM algorithm results in EM single imputation (EMSI).
DA (which resembles EM) follows the following process:

Step 1. Initialise parameters randomly. Set t = 0

Step 2. I-step: Given a current estimate (t)è , select a value

of the missing data from the conditional predictive

distribution of )è,X|P(X~X,X (t)
obsmiss

1)(t

missmiss

+

Step 3. P-step: Conditioning on 1)(t

missX + , draw a new value

of q  from its complete data posterior,

)X,X|P(è~è 1)(t

missobs
1)(t ++ . Through an iterative

process two distributions are obtained, )X|P(è obs

and )X|P(X obsmiss . For a suitable large t, one can

implement a DA algorithm by Tanner and Wong48,

which iterates between sampling 1tè +  from

)X|P(è obs  and sampling (t)

missX  from )X|P(X obsmiss .
Step 4. Iterate steps 2 and 3 until convergence

The Imputation (I) step simulates a random imputation
of missing data under assumed values of the parameters.
The Posterior (P) step draws new parameters from a Bayesian
posterior distribution based on the observed and imputed
data. The procedure of alternately simulating data and
parameters creates a Markov Chain (MC)49

 ,...è,X,è,X (2)(2)
miss

(1)(1)
miss ,  which eventually stabilises or

converges in distribution to  )X|è,P(X obsmiss . The procedure
iterates through these two steps until convergence is
obtained. The rate of convergence is related to the fraction
of missing information. DA can be thought of a small�
sample refinement of the EM algorithm using simulation,
with the imputation step corresponding to the E-step and
the posterior step corresponding to the M-step. This approach
has been followed in this paper, which is called Bayesian
multiple imputation (BAMI).

MI has several desirable features:
· Introducing appropriate random error term into the

imputation process which makes it possible for the
method to get approximately unbiased estimates of
all parameters,

· Repeated imputation allows one to get good estimates
of standard errors;

· MI can be used with any kind of data and any kind
of analysis without specialised software,

· MI saves money, since for the same statistical power,
MI requires a smaller sample size than, say, listwise
or case deletion, and

· Once imputations have been generated by a knowledgeable
user, researchers can use them for their own statistical
analysis.
However, certain requirements must be met for MI to

have these desirable features.
· The data must be MAR.
· The model used to generate the imputed values must

be �correct� in some sense.
· The model used for the analysis must match up, in

some sense, with the model used in the imputation.
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The reader is referred to Schafer45 and Allison51 for
a rigorous description of all these conditions.

4. EXPERIMENTAL SETUP
In this section the behaviour of the five proposed

OOSM procedures against model-based imputation procedures
have been explored. The four methods selected are based
on the following KFs:
· Fixed sampling and random delay Kalman filter (FSRD-

KF);
· Measurement extrapolation Kalman filter (ME-KF);
· State augmentation for random delays Kalman filter

(SARD-KF), minimum storage Kalman filter (MR-KF)
and Bayesian framework Kalman filter (BF-KF).

· The tracking performance is characterised by the root
mean square error (RMSE) over 1000 Monte Carlo run
for each specific scenario.
The root mean square deviation (RMSD) or RMSE is

a measure of the differences between values predicted by
a model or an estimator and the values actually observed
from the thing being modelled or estimated.

The RMSD of an estimator �q  wrt the estimated parameter
q is defined as the square root of the mean squared error
(MSE):

RMSD = RMSE  2� � �( ) ( ) ( )MSE Eq = q = q - q             (16)

Following Bar-Shalom4, two cases (process noise q
= 0.1, and 4) corresponding to ë=0.3, and 2 were examined,
i.e., the underlying target performs in a straight line motion,
or was highly manoeuvring. Data was generated randomly
for each run starting with a initial state

 (0) [200 km, 0.5 km/s,100 km/s 0.08 km/s]x = -   (17)

A two data point method41 was used to initialise the
filters with

 0

0

0
(0 | 0)

0

P
P

P

æ ö
= ç ÷

è ø
where

 
0 2

/

/ 2 /

R R T
P

R T R T

æ ö
= ç ÷

è ø
         (18)

for a priori error covariance or to form the initial error
covariance for augmented state. Like in Challa50, et al.,
it is assumed that the OOSM can only have a maximum
of one lag delay, and the data delay was uniformly distributed
within the whole simulation period with probability P

r
 that

the current measurement was delayed.
All statistical tests were conducted using the MINITAB

statistical software program53. Analyses of variance, using
the general linear model (GLM) procedure54 were used
to examine the main effects and their respective interactions.
This was done using a 3-way repeated measures design
(where each effect was tested against its interaction with
the simulated dataset). The fixed effect factors were:
OOSM and imputation methods; the probability of
measurement delay; and the manoeuvring index.

4.1 Experiment I
To empirically evaluate the performance of the five

OOSM methods and EMSI in terms of RMS error, an experiment

on simulated data (as explained in sub-section 4.1) was
used. This experiment was carried out to rank individual
OOSM methods and also assess the impact of delayed
measurements (at various time and distance intervals) on
a single delay against single imputation in terms of position
error.
Results of Experiment I

Experimental results on the effects of delayed
measurements on one lag delay in terms of the RMS position
error have been described. The behaviour of these methods
has been explored for distance and time intervals. From
these experiments the following results have been observed:

Main Effects: All the main effects were found to be
significant at the 5 per cent level of significance (F =
37.17, df = 5 for OOSM methods and EMSI; F = 6.195,
df=1 for probability of measurement delay; F=9.39, df=1
for manoeuvring index; p < 0.05 for each effect).

From Fig. 3, BF-KF has been found to be the overall
best technique for handling delayed measurements on a
one lag with an excess error rate of 5.6 per cent, closely
followed by EMSI, FSRD-KF and MR-KF, with excess error
rates of 6.1 per cent, 8.2 per cent and 8.5 per cent, respectively.
The worst technique was SARD-KF, which exhibits an
error rate of 9.9 per cent. Tukey�s multiple comparison
tests showed no significant differences between ME-KF
and SARD-KF (on one hand) and FSRD-KF and MR-KF
(on other hand). The significance level for all the comparison
tests was 0.05. All interaction effects were found to be
insignificant at the 5 per cent level of significance. Hence,
not discussed. No interaction effects were found to be
significant at the 5 per cent level. Hence, not discussed.

Figures 4 and 5 show simulation results where the
performance of OOSM and imputation methods for single
delay over 1000 runs have been compared. The following
observations have been made:
· SARD-KF and ME-KF have similar RMS error performance

(on one hand) with FSRD-KF, MR-KF and EMSI achieving
similar performances (on other hand). However, the
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Figure 3. Overall means for OOSM and single imputation
methods.
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latter methods always achieve lower RMS error rates.
BF-KF achieves higher accuracy rates at all time levels.
This was the case for non-manoeuvring target tracking
(Fig. 4).

· For manoeuvring target tracking, BF-KF (once again)
outperforms all the methods with serious competition
from EMSI. The differences in performance are
mostly prominent at higher probabilities of measurement
(Fig. 5).

· For both types of manoeuvres, increases in probability
of measurement delay (P

r
) was associated with increases

in performance differences between methods. In fact,
the performance by all the methods degrades with
increases in probability of measurement.

· The accuracy of BF-KF and EMSI was achieved at
a higher computational cost in terms of minutes (Table
1). Both methods take about twice (in some situations
thrice) to compute compared to the others.

4.2 Experiment II
The main objective of this experiment was to compare

the performance of OOSM and imputation methods for
multiple delays, especially the top two OOSM methods
that exhibited higher accuracy rates in the previous experiment.

These are FSRD-KF and BF-KF. Also, the authors presumed
that it would be interesting to test the effectiveness of
multiple imputation (a procedure for handling incomplete
data) against methods what have been proposed to deal
with the delay measurement problem.

Results of Experiment II
Main Effects: All the main effects were found to be

significant at the 5 per cent level of significance (F =
54.8, df = 2 for OOSM and multiple imputations methods;
F = 11.62, df = 1 for the probability of measurement
delay; F = 12.93 df = 1 for manoeuvring index; p < 0.05
for each).

Figure 6 shows the average results of 12000 experiments
(3 OOSM and multiple imputation methods x 2 probability
of measurement delay x 2 manoeuvring index) which summarise
the accuracy of each method. It further shows that BAMI
has the best accuracy throughout the entire spectrum in
terms of the probability of measurement and manoeuvring
index. Tukey�s multiple comparison tests showed significant
differences between BAMI and the other individual OOSM
methods at the 5 per cent level. Once again, no interaction
effects were found to be statistically significant at the 5
per cent level.
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Figure 4. RMS performance of a straight line motion target with single delay OOSM (P
r
=0.5 and 0.25; maneuvring index=0.3).
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From these experimental results, the following observations
were made:
· For non-manoeuvring tracking, all the three methods

significantly reduce accuracy at all time and distance
levels. Otherwise, all the methods show a very good
fit when no measurements are delayed). In fact, at
lower distance levels (between 20 s and 90 s) BAMI
and BF-KF compare favourably. Overall, BAMI achieves
the highest accuracy rates as a method for handling
delayed observations, followed by BF-KF and FSRD-
KF, respectively (Fig. 7).

· For manoeuvring tracking, there appears to be no difference
in performance between BAMI and BF-KF, especially
when the probability of delay increases. For lower
probabilities, the difference in performance was quite

prominent as shown in Fig. 8. Nonetheless, BAMI still
outperforms FSRD-KF in terms of RMS error.

· Overall, the computational cost of BAMI was about
three times that of FSRD-KF and almost one-and-a-
half time that of BF-KF. (Table 2). P

r

5. DISCUSSION AND CONCLUSIONS
The major contribution of the paper is the use of

simulation experiments to demonstrate the effectiveness
of OOSM algorithms to handle delayed measurements.
The referred techniques are well known, but the extensive
empirical evaluation of these methods is an original
contribution. Furthermore, imputation procedures are not
of widespread use in sensor data fusion, so showing the
possibility of using the techniques on handling OOSM

Table 1. Computational comparison of OOSM and single imputation methods
(single delay) in minutes

 Methods 

Pr FSRD-KF ME-KF SARD-KF MR-KF BF-KF EMSI 

0 2.67 2.78 3.71 2.01 6.54 6.78 

0.25 3.15 3.40 4.43 2.57 6.54 6.78 

0.5 3.74 3.97 4.78 2.64 6.55 6.78 
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Figure 5. RMS performance of a highly manoeuvring target with single delays OOSM (P
r
=0.5 and 0.25; manoeuvring index=1.0).
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data is it another contribution for robotics learning.
The empirical study is based on simulated data, and

the results suggest that imputation strategies can be
successfully applied to deal with delayed measurements.
Based on preliminary evidence, it has been found that
EMSI performs comparable with BF-KF for single delay
measurements data while BAMI achieves higher accuracy
rates for multiple delayed measurements. The good performance
of BAMI could be attributed to it variance averaging benefit
even if it came at a high computational cost.
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Figure 6. Overall means for OOSM and multiple imputation
methods (multiple delays).

The results further show the impact on the performance
of methods is caused by the probability of measurement
delays. Bigger positional error rates were achieved by methods
for high probability delays with bigger performance differences
among methods. Also, given that the performance of each
method varies by probability of measurement delay, it appears
that the treatment of delayed measurements not only heavily
depends on the probability of measurement delay but on
the range of manoeuvring target tracking. The worst performance
achieved by methods is for non-manoeuvring target tracking.
This was a rather surprising result, which is in not in accordance
with statistical theory which considers missing completely
at random (MCAR) as easier to deal with and IM data as
very difficult to handle45.

From both experiments, there exists threats to the
validity of the results. Potential threats include the use
of simulated data, which could have involuntarily introduced
biases, especially if those measurements considered as

Figure 7. RMS performance of a straight line motion target with multiple delays OOSM (P
r
=0.5 and 0.25).
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 Methods 

Pr FSRD-KF BF-KF BAMI 
0 3.19 8.14 10.67 

0.25 4.43 8.14 10.67 
0.5 5.99 8.14 10.67 

Table 2. Computational comparison of OOSM and multiple
imputation methods (multiple delay) in minutes
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Figure 8. RMS performance of a highly manoeuvring target with multiple delays OOSM (P
r
=0.5 and 0.25).

being delayed contained important information and they
were not delayed, as we assumed. However, the experimental
results were carefully validated. For example, the experiments
were conducted under the supervision of a domain expert
who had a deep understanding for sensor data. This
was a time-consuming exercise on ourselves and the
expert.

The issue of determining whether or not to apply an
imputation strategy to a given sensor dataset given that
there are delayed measurements, must be considered. For
the work described here, the data were simulated. Unfortunately,
this type of information is rarely known for most real-
world applications. In some situations, it may be possible
to use domain knowledge to determine the mechanism
generating the delayed measurements. For situations where
this knowledge is not available, the conservative nature
of the consensus dictates that the measurements will be
delayed randomly.

To sum up, this paper provides the beginnings of a
better understanding of the relative strengths and weaknesses
of model-based imputation strategies to handle delayed
measurements. It is hoped that it will motivate future theoretical
and empirical investigations into incomplete data and related
(soft-) prediction, and perhaps reassure those who are
uneasy regarding the use of imputed data in software
prediction.

6. FUTURE  STUDIES
The OOSM and imputation methods were applied on

only one dataset. This work could be extended by considering
a more detailed simulation study using much more balanced
additional types of datasets or even smaller datasets required
to understand the merits of imputation. In addition, using
as many datasets as possible in comparative simulation
study would enable a more sound generalisation of the
results. This work could also be extended to a comparative
evaluation of datasets with artificially simulated missingness
against original datasets. The authors leave the above
issues to be investigated in the future.
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