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AbsTrACT

Local features are key regions of an image suitable for applications such as image matching, and fusion. 
Detection of targets under varying atmospheric conditions, via aerial images is a typical defence application where 
multi spectral correlation is essential. Focuses on local features for the comparison of thermal and visual aerial 
images in this study. The state of the art differential and intensity comparison based features are evaluated over the 
dataset. An improved affine invariant feature is proposed with a new saliency measure. The performances of the 
existing and the proposed features are measured with a ground truth transformation estimated for each of the image 
pairs.  Among the state of the art local features, speeded up robust feature exhibited the highest average repeatability 
of 57 per cent. The proposed detector produces features with average repeatability of 64 per cent. Future works 
include design of techniques for retrieval of corresponding regions.
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1. InTroDuCTIon 
Local features are the salient regions of an image 

characterised by their location and neighbouring region1. They 
are used for applications such as content based image retrieval, 
motion tracking, image mosaicing, image registration etc, where 
images captured at different time instances have to be compared 
robust to the variations caused by the imaging conditions, scene 
and sensor2-8. The major steps for the extraction of local features 
in the image are - detecting key point locations, formation of 
neighbourhood region surrounding each of the locations.

Key point locations characterised by spatial co-ordinates, 
identified in an image have to be repeatable for translation, 
rotation, view point variations. Various differential methods 
can be found in the initial works on the key point detection9-18. 
They compute derivatives using neighbourhood region 
of a pixel to measure its saliency. Scale invariant feature 
transform (SIFT)19,20 and speeded up robust features (SURF)21 
are popularly used differential methods that use difference 
of Gaussian and Determinant of Hessian respectively for 
key point detection. Smallest univalue segment assimilating 
nucleus (SUSAN) detector uses a morphological approach 
for key point detection22. The approach is found to be 
less sensitive to noise and computationally less expensive 
compared to the differential approaches. Machine learning and 
heuristic approaches have been used for improving accuracy 
and computational complexity in features from accelerated 
segment test (FAST). The algorithm labels a pixel as corner 

if it is darker or brighter beyond a threshold compared to N 
contiguous pixels on a circle surrounding it. It uses machine 
learning to learn optimal values for N and the threshold23. 
Binary robust invariant scalable keypoints (BRISK) applies 
the FAST detector over a scale space for key point detection24. 
Oriented FAST rotated binary robust independent elementary 
features (ORB) algorithm assigns an orientation value to the 
key points detected by FAST25.

The neighbouring region of a key point detected has to 
be invariant to uniform or non-uniform scale variations. The 
selection of the size of the neighbourhood is determined by 
choosing a scale for the key points detected. The concept of 
scale space introduced by Lindeberg is used for analysing the 
images at different scales26. The scale space is generated by 
successive blurring of the image with the Gaussian function. 
The characteristic scale of the key points can be selected by 
looking for the local extreme points in the Laplace of Gaussian 
response across the different scales at the location of the key 
point27. While the Gaussian scale space analysis forms circular 
neighbourhood invariant to scale variations, approaches to adapt 
the circular regions to affine invariant elliptical regions are also 
found in the literature28-30. The neighbourhood regions can also 
be made rotation invariant by computing an orientation for the 
location based on the pixels in the neighbouring region20,21,25. 

A comparison of affine region detectors is done by 
Mikolajczyk31, et. al. over a dataset with predominantly planar 
scenes taken by a single sensor captured from short distances. 

The work is extended for non planar scenes by Fraundorfer 
and Bischopf32. Johansson33, et. al. evaluate the performance of 
feature detectors and descriptors for infrared images. Istenic34, 

Received : 15 March 2017, Revised : 09 May 2018 
Accepted : 19 July 2018, Online published : 12 September 2018



DEF. SCI. J., VOL. 68, NO. 5, SEpTEMBER 2018

474

et. al. perform pre-processing by transforming the intensity 
values to CIELab colour space and generates edge images 
using Canny Edge operator for comparison of thermal and 
visual images with rotation and translation variations. A similar 
pre-processing is done by Enrique et al where line segments 
are detected from the edge images using Ramer’s algorithm. 
The feature chosen for registration is triangles formed from 
the line segments of the images. Affine transformation, which 
includes translation, rotation, non- uniform scaling is estimated 
by matching the triangles from both the images35. In contrast to 
edges, texture feature is proposed by Andreja36 , et. al., for the 
affine registration of thermal and near infrared band images. 
While the geometric variations as discussed in previous power 
are minimal, Yahyanejad7, et. al.  have attempted registration 
of thermal and visual images with wide range geometric 
distortions. Robust Feature Across Edges (RFAE) is proposed 
in their work for the registration purpose. RFAE converts the 
images to a binary edge image using Sobel Operator and a 
variable threshold. 

This paper focuses on the performance of various 
affine and scale invariant feature detectors over a data set of 
thermal and visual aerial image pairs suffering huge geometric 
variations. Affine features which are found to handle view point 
variations effectively31, were considered for the comparison of 
the image pairs. The drawback of affine invariant features is 
that it performs lower than the scale invariant when the scale 
variations are more dominant than the viewpoint variations31,41. 
A new affine invariant feature detector which exhibits higher 
repeatability over the predominantly scale variant dataset 
compared to the state of the art local features, is also discussed 
in this paper. 

2. METhoDs AnD MATErIALs
The state of the art local features are evaluated using the 

open source coding available31,37 and OpenCV, a standard open 
source package for computer vision.

2.1 Dataset
The dataset comprises pairs of thermal and visual aerial 

images captured using low altitude unmanned aerial vehicles7. 
The ground truth transformation between each image pair 
is estimated as homograph matrix from manually selected 
corresponding points using the Gold standard algorithm.41  
The estimated homograph is validated with the manual 
corresponding locations and by visually examining the images 
registered using the homograph. Figure 1 shows a sample of 
thermal and visual images taken from two different scenes and 
the thermal image registered to the coordinates of the visual 
image using the estimated homograph. It can be observed 
that Scene 1 images contain more textured regions with less 
number of edges with low curvature and Scene 2 images has 
more number of high curvature edges. 

2.2 Performance measures
Repeatability quantifies the quality of local features 

extracted from the images. It is the ratio between the number 
of corresponding features between the images and the smaller 
of the number of features in the image pair. Corresponding 
features are identified in two ways – by thresholding overlap 
error or location error. Overlap error is calculated using Eqn (1).
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here A and B are two circular or elliptical features extracted 
from the visual and thermal images respectively. H is the 
homograph characterising the geometric transformation from 
thermal to visual image. 

A
Rµ is the region associated with A. 

T
BH H

R
µ  is the region of B transformed by H. Its threshold 

is fixed at 50 per cent as matching algorithms are designed 
to tolerate this error. Location error is the distance between 
the location of A and location of B transformed using H. Its 
threshold31 is fixed at 1.5.

Figure 1. (a) scene 1 thermal, (b) scene 1 visual, (c) scene 1 thermal registered to visual, (d) scene 2 thermal, (e) scene 2 visual, 
(f) scene 2 thermal registered to visual.

(a) (b) (c)

(d) (e) (f)
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2.3 hessian Affine Features from Lowe Gaussian 
Pyramid (hEsIFT)
A hybrid multi scale representation is obtained by 

successively blurring of the base image with Gaussian function 
and down sampling of the blurred images21. The process of 
blurring and down sampling is repeated till a minimum image 
size is reached which is the top of the pyramid. For each of 
the image pixels in the hybrid multi scale representation scale 
normalised Hessian response is computed as given in Eqn (2).

2 2( , , ) ( )xx yy xyH x y L L Lσ = σ −                                        (2)                                     

( , ) ( 1, ) 2 ( , ) ( 1, )xxL x y L x y L x y L x y= − − + +                 (3)                                 

( , ) ( , 1) 2 ( , ) ( , 1)yyL x y L x y L x y L x y= − − + +                (4)                                      

( , ) 0.25*( ( 1, 1) ( 1, 1)
( 1, 1) ( 1, 1))

xyL x y L x y L x y
L x y L x y

= + + − + −

− − + + − −            (5)         

here Lxx, Lyy, Lxy are the second order derivatives of the images L 
in the hybrid multi scale representation, which are obtained by 
numerical differencing given by Eqns (3-5) 39. Local extreme 
points are identified from the Hessian scale space. Edge 
points are eliminated by removing points with ratio between 
principle curvatures less than 1021. The spatial coordinates  
(x, y) and the scale values ( σ ) of the key points filtered are fine 
tuned to higher accuracy by solving the first order derivative of 
the Taylor series expansion of the Hessian function obtained 
from its neighbourhood. Elliptical region is formed from the 
circular neighbouring region whose radius is proportional to 
the scale of the key point. It is formed by transforming the 
circular region using its second moment matrix till the ratio of 
the Eigen values reaches unity12.

2.4 Proposed saliency measure
A new saliency measure which replaces the Hessian 

measure of Eqn (5) in the above methodology is as given  
in Eqn (6). 

2 2( , , ) ( )x y dC x y L L Lσ = σ −                                           (6)                                              
here C is the proposed saliency measure for a pixel whose 
location is x, y in the pyramid image of scale σ. It is based on the 
first derivative filtering of the image in the x, y directions and 
also in the diagonal direction d. The filters used for obtaining 
the derivative images are as given in Eqns (7-9).
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here Fx, Fy, and Fd are the filters that have to be convolved with 

the image to obtain Lx, Ly, and Ld respectively. While Fx and Fy 
are prewitt’s operators40 to obtain horizontal and vertical edges 
in the image respectively, the filter Fd introduced in this paper 
calculates the numerical differences of the neighbouring pixels 
in the diagonal directions. The derivatives of the proposed 
measure also involve more number (4 to 6) of neighbours for 
the computation of the saliency of a pixel than the Hessian 
derivatives which involves two to four neighbours in addition 
to the pixel value.

3. rEsuLTs AnD DIsCussIons
3.1 Impact of the Proposed saliency Measure

Figure 2 shows the results of the Hessian response and the 
proposed saliency measure for the pixels of the first level of 
the scale space pyramid. It can be observed that the proposed 
measure has enhanced the fine details and edges of the images. 
Thus more repeatable features are returned by the proposed 
saliency measure when implemented in the framework of 
HESIFT replacing the Hessian response. The impact of 
replacing the response was also evaluated over twenty pairs of 
thermal and visual images7 which includes non planar scenes 
in addition to the scene images considered and the proposed 
measure has improved the performance by 18 per cent on an 
average.

Figure 2. Edge maps scene 1 Image (a) hessian response (b) 
Proposed measure scene 2 image (c) hessian response 
(d) Proposed measure.

3.2 repeatability obtained from overlap Error 
based Correspondences
Table 1 shows the average values of the performance 

measures obtained over the dataset of six pairs of thermal 
and visual images. Standard parameters are set to obtain 
features from various detectors. It has been experimentally 
demonstrated that beyond a level count of features does not 
impact the repeatability which is more algorithm dependent 31 
and thus is not studied in this research. 

(a)

(c)

(b)

(d)
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It can be observed that features extracted with the 
proposed saliency measure have obtained the highest number 
of correspondences and repeatability value which is 7 per cent 
higher than the existing state of the art feature SURF for a 
similar count of features extracted from the images.  It is found 
in the literature38 that the affine features perform poorly when 
affine variations are dominated by scale and rotation variations. 
This can be observed in the results where the performance of 
Harris affine and Hessian affine is lower compared to the scale 
invariant features – Harris Laplace, Hessian Laplace, SURF, 
ORB, BRISK. It can also be observed from the images in the 
dataset shown in Fig. 1 that scale and rotation variations are 
more prominent compared to the view point variations.  The 
HESIFT feature, though it extracts affine regions, exhibits 
higher repeatability than the standard affine features Harris and 
Hessian affine. This performance can be contributed to the multi 
scale hybrid pyramid construction compared to the scale space 
representation in the Harris and Hessian affine detectors.

Table 1. Average performance measures obtained over the 
dataset

Feature Count 
thermal 
feature

Count 
visual 
feature

Corresponding 
feature

repeatability

SURF 2541.00 4613.83 1469.50 57.01

SIFT 4333.67 3631.33 199.17 6.53

ORB 4916.50 4375.33 1528.00 35.11

FAST 2844.83 4956.17 375.50 16.82

BRISK 1838.83 3916.83 792.83 44.17

HALAp 404.67 576.83 97.67 23.43

HELAp 2393.83 4156.50 1061.00 43.63

HAAFF 394.83 569.83 80.33 19.90

HEAFF 1681.17 2735.67 448.50 26.16

HESIFT 2047.67 3164.17 820.33 42.16

proposed 2991.50 6169.17 1851.83 64.20
 
Tables 2 shows the repeatability value of the features 

detected for various values of the overlap surface error between 
the features extracted from the four pairs of images of scene 1.

It can be observed that the proposed feature exhibits 
highest repeatability among the features studied for overlap 
error of 50 per cent. The repeatability was the highest for the 
ORB features when the overlap error is less than 40 per cent. 
In a few cases SURF and BRISK were found to exhibit highest 
repeatability which is closer to the repeatability of ORB or 
the proposed feature. Though improvement in repeatability is 
marginal, it will result in higher precision in matching and in 
turn would improve the success rate of applications such as 
object detection.

Table 3 shows the repeatability values of features extracted 
from image pairs of scene 2.

Again, it can be observed from Table 3 that ORB gives 
the best repeatability results for lower overlap errors and the 
proposed feature gives the best repeatability results for higher 
overlap errors for image pairs of scene 2. For all the values 

of overlap error, the repeatability of the proposed feature is 
higher than the HESIFT implementation. From this we can 
infer the positive impact of diagonal differencing introduced in 
the saliency measure used for detecting salient regions. 

3.3 repeatability obtained from Location Error 
based Correspondences
Table 4 shows the average repeatability values obtained 

for features extracted from the six pair of images of the dataset. 
It can be observed that the ORB feature produces the highest 
number of correspondences where location error is less than 1.5 
pixels. This can be attributed to the higher repeatability of the 
ORB features for overlap error less than 30 per cent, which is 
observed in the Tables 2 and 3. The number of correspondences 
produced by the proposed feature is the second highest among 
the features detected over the dataset. The proposed measure 
also returns more corresponding features and repeatability 
(3% higher) compared to the FAST method which requires an 
additional learning step and relies on intensity comparisons. 23

Table 2. Average repeatability for image pairs of scene 1

Feature repeatability (%) for overlap errors (%)

<10 <20 <30 <40 <50 <60
BRISK 0.51 4.32 21.01 39.01 50.31 58.55

SURF 1.51 9.76 25.92 42.88 53.22 59.42

SIFT 0 0.23 1.28 3.02 6.92 13.33

ORB 14.06 28.54 35.46 38.82 41.49 43.70

FAST 0 0.70 14.72 21.60 26.85 31.35

HESIFT 0 3.26 14.74 31.60 44.79 53.26
HESLAp 1.01 9.01 20.39 31.17 41.49 50.60

HESAFF 0.08 2.02 7.39 17.10 27.71 39.21

HARLAp 0.49 4.17 12.26 20.59 29.66 36.52

HARAFF 0 0.25 5.74 15.71 25.69 35.66

proposed 0.26 5.54 21.65 42.68 55.36 63.25

Table 3. Average repeatability for image pairs of scene 2

Feature
Average repeatability (%) for overlap errors (%)

<10 <20 <30 <40 <50 <60

BRISK 0.81 6.63 19.66 34.62 47.52 56.68

SURF 1.37 9.30 23.08 37.47 46.98 53.17

SIFT 0.02 0.47 1.61 3.32 6.61 11.59

ORB 7.75 20.02 26.14 29.80 33.33 36.86

FAST 0.21 1.88 7.18 14.04 21.63 26.31

HESIFT 0.14 2.22 9.20 19.41 28.43 35.17

HESLAp 1.85 10.77 21.10 30.87 40.17 47.43

HESAFF 0.27 2.69 6.47 12.44 19.68 27.40

HARLAp 2.06 8.43 14.00 18.67 23.64 27.78

HARAFF 0.16 3.61 9.55 15.44 20.35 25.85

proposed 0.23 4.80 21.30 42.04 55.39 62.87
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Table 4. Average repeatability based on location error

Feature Average count 
thermal feature

Average count 
visual feature

Average 
corresponding 
features

SURF 2541.00 4613.83 160.00

SIFT 4333.67 3631.33 203.67

BRISK 1838.83 3916.83 100.83

FAST 2844.83 4956.17 148.67

ORB 4916.50 4375.33 599.00

HALAp 404.67 576.83 30.50

HELAp 2393.83 4156.50 236.50

HAAFF 394.83 569.83 30.50

HEAFF 1748.33 3226.83 102.33

HESIFT 2047.67 3164.17 95.67

proposed 2991.50 6169.17 244.17

4. ConCLusIons
This paper concludes that the proposed saliency measure 

which involves differencing in the diagonal direction has 
improved the performance of the pedroch implementation by 
around 18 per cent over a set of twenty thermal visual image 
pairs7. It is also found to possess higher repeatability for 
overlap error greater than 40 per cent when compared to the 
recent detectors such as ORB, FAST and BRISK. However, 
when the location error is taken into consideration ORB 
feature performs the best compared to the other features. 
The proposed feature can be used for applications that use 
robust descriptors for matching whereas ORB can be used for 
the applications such as 3D reconstruction that require high 
precision in the location of the corresponding points. The 
local features detected in the images have to be described by 
suitable vectors. The vectors should be robust to geometric and 
photometric variations and distinctive for it to be successfully 
matched with the corresponding feature. Development of a 
description and matching algorithm for the successful retrieval 
of the repeatable features are the future directions of research 
for the work is presented in this study.
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