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1. INTRODUCTION
Carbon	nanotubes	were	first	 observed	 and	 identified	 as	

such by Iijima using transmission electron microscopy in 
19911. Nanotubes are cylindrical molecules which consist 
several concentric sheets of graphene (multi-walled carbon 
nanotubes - MWCNT). Since the discovery by Iijima, research 
on carbon nanotubes has become a paramount activity. First 
their geometry was studied and it was observed that their 
diameters can range from a few to hundreds of nanometers, 
and their length, from a few to tens of micrometers2. The 
nanotubes are promising materials in a number of new areas. 
These include molecular electronics where the nanotubes 
can be used both for wiring and as electronic devices after 
modification	of	the	nanotube	itself.	These	can	also	be	used	as	
parts of mechanical devices at the nanoscale such as the shaft 
of nanomotors3.	Moreover,	 their	high	strength	and	flexibility	
are exploited to reinforce materials such as cement. Many 
production methods have been developed such as the laser 
vapourisation method combined with transition metal catalyst4 

or the carbon arc method5. Nowadays, dozens of companies 
have become specialised in the production of single- and multi-
walled carbon nanotubes. They can produce up to hundreds 
of grams of SWNTs per day and hundreds of kilograms of 
MWNTs. Forecasts predict that global demand for nanotubes 
will expand rapidly6. Flat-panel displays for both computers 
and	 televisions,	 will	 be	 the	 first	 widely	 commercialised	
application of these carbon nanotubes.

It was observed that there is a wide variety of carbon 
nanotubes2. Their diameters vary between 0.7 nm and 10 nm, 
though most of the observed tubes have diameters < 2 nm. The 
length of single-walled nanotubes goes7 from a few nm up to 
20 cm. Moreover nanotubes can be chiral or achiral. These 
varieties of SWNTs come from the fact that the nanotubes are 
constructed by the folding of a graphite plane on itself, and 
have many ways of folding.

Experiments were conducted to study the rotational 
motion of concentric nanotubes. In particular, Fennimore3, et 
al. (Fig. 1(a)) and Bourlon8, et al. (Figs 1(b) & 1(c)) built the 
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Figure 1. Nanoscale rotational actuators based on nanotubes built by: (a) Fennimore3, et al. (b) & (c) Bourlon8, et al.
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first	actuators	based	on	multi-walled	nanotubes.	Both	systems	
were	based	on	a	multi-walled	nanotube	with	 edges	fixed	on	
two	 anchor	 pads.	A	 plate	 was	 fixed	 on	 the	 outer	 shell	 and	
which	could	be	rotated	with	electric	fields.	The	multi-walled	
nanotube serves as the shaft for this rotary motion. As for 
the translational oscillatory motion, no wear or fatigue was 
observed during the rotation. Unfortunately the rotational 
frequency and dissipation rates could not be measured in these 
experiments. Recently, Kral and Sadeghpour9 showed the 
possibility to spin nanotubes with circularly polarised light, 
further motivating the usage of nanotubes as possible axis of 
rotation at the nanoscale. However, no systematic analytical and 
numerical studies of rotation have yet been carried out, except 
the work of Zhang11, et al. where non-equilibrium molecular 
dynamics simulations were carried out to calculate the energy 
dissipation rate during the rotational motion. In their work, the 
usage of the thermostat would however add dissipation which 
is not intrinsic to the system. In the present work, CNT rotating 
about an axis perpendicular to its longitudinal axis has been 
considered for the analysis. These types of nanosystems have 
many	applications	in	the	field	of	nano	instrumentation.

The length scales associated with nanostructures like 
CNTs are such that to apply any classical continuum techniques, 
the author needs to consider the small length scales such as 
lattice spacing between individual atoms, surface properties, 
grain size etc. This makes a physically consistent classical 
continuum model formulation very challenging. The Eringen’s 
non-local elasticity theory12-14 is a useful tool in treating 
phenomena whose origins lie in the regimes smaller than the 
classical continuum models. In this theory, the internal size 
or scale could be represented in the constitutive equations 
simply as material parameters. Such a non-local continuum 
mechanics has been widely accepted and has been applied to 
many problems including wave propagation, dislocation, crack 
problems, etc17. Recently, there has been great interest in the 
application of non-local continuum mechanics for modelling 
and analysis of CNTs. 

Ultrasonic wave propagation analyses of CNTs are 
relevant due to their various applications18 which include 
sensing superconductivity, transport and optical phenomena. 
CNTs can have interesting waveguide properties at very high 
frequencies in the order of up to Tera-Hertz (THz). At such 
high	 frequencies,	 continuum	 model-based	 finite	 element	
type methods cannot be adopted due to their limitation of 
the element size wrt the wavelength, which is very small at 
such frequencies. Lattice dynamics for direct observation of 
phonons19,20	and	spectral	finite	element	type	method	are	more	
efficient	and	consistent	to	analyse	such	situation16. With these 
theories and methods of analyses, brings out several interesting 
features of high frequency ultrasonic wave propagation 
in rotating CNTs, which are not observed in macro-scale 
structures. In the author’s previous works22-29, only non-
rotating CNTs and graphene sheets were considered for the 
analysis of wave dispersion.

In the present study the wave dispersion characteristics 
of a rotating SWCNT have been studied using the spectral 
analysis. The rotating SWCNT is modelled as a Euler-Bernoulli 

beam. The governing partial differential equation for a uniform 
rotating beam has been derived incorporating the non-local 
scale	 effects	 and	 the	 variable	 coefficient	 for	 the	 centrifugal	
term is replaced by the maximum centrifugal force. The 
rotating beam problem is now transformed to a case of beam 
subjected to an axial force. Even though this averaging seems 
to be a crude approximation, one can use this as a powerful 
model in analysing the wave dispersion characteristics of the 
rotating CNTs.

2. MATHEMATICAL FORMULATION
2.1 Theory of Non-local Elasticity

This theory assumes that the stress state at a reference 
point x in the body is regarded to be dependent not only on the 
strain state at x but also on the strain states at all other points  
x′  of the body. The most general form of the constitutive 
relation in the non-local elasticity type representation involves 
an integral over the entire region of interest. The integral 
contains a non-local kernel function, which describes the 
relative	 influences	 of	 the	 strains	 at	 various	 locations	 on	 the	
stress at a given location. The constitutive equations of linear, 
homogeneous, isotropic, non-local elastic solid with zero body 
forces are given by12,13 

, ( ) 0ij i j jf uσ + ρ − =                                                      (1)

( ) ( , ) ( ) ( )c
ij ijV

x x x x dV x′ ′ ′σ = α − ξ σ∫                            (2)
c
ij ijkl klCσ = ε                                                                   (3)
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2
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′ ∂′∂′ε = +  ∂ ∂                                       (4)

Equation (1) is the equilibrium equation, where ,ij iσ , 
ρ, fj, uj are the stress tensor, mass density, body force density 
and displacement vector at a reference point x in the body, 
respectively, at time t. Equation (3) is the classical constitutive 
relation where ( )c

ij x′σ  is the classical stress tensor at any 
point x′  in the body, which is related to the linear strain tensor 

( )ij x′ε  at the same point. Equation (4) is the classical strain-
displacement relationship. The only difference between Eqns. 
(1)-(4) and the corresponding equations of classical elasticity 
is the introduction of Eqn. (2), which relates the global (or 
non-local) stress tensor ,ij iσ  to the classical stress tensor 

( )c
ij x′σ  using the modulus of non-localness. The modulus 

of non-localness or the non-local modulus ( , )x x′α − ξ  is the 
kernel of the integral Eqn. (2) and contains parameters which 
correspond to the non-localness13. A dimensional analysis 
of Eqn. (2) clearly shows that the non-local modulus has 
dimensions of (length)-3 and so it depends on a characteristic 
length ratio /a   where a is an internal characteristic length 
(lattice parameter, size of grain, granular distance, etc.) and   
is an external characteristic length of the system (wavelength, 
crack length, size or dimensions of sample, etc.). Therefore the 
non-local modulus can be written in the following form: 
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0( , ),
e a

x x′α = α − ξ ξ =
                                               (5)

where e0 is a constant appropriate to the material and has to be 
determined for each material independently13.

Making certain assumptions13, the integro-partial 
differential	equations	of	non-local	elasticity	can	be	simplified	
to partial differential equations. For example, Eqn. (2) takes 
the following simple form: 

( )2 2 21 ( ) ( ) ( )c
ij ij ijkl klx x C x− ξ ∇ σ = σ = ε                      (6)

where Cijkl is the elastic modulus tensor of classical isotropic 
elasticity and ijε  is the strain tensor. where 2∇  denotes the 
second-order spatial gradient applied on the stress tensor ijσ  
and 0 /e aξ =  .

A method of identifying the small scaling parameter e0 in 
the	non-local	theory	is	not	known	yet.	As	defined	by	Eringen13, 
e0 is a constant appropriate to each material. Eringen proposed 
e0=0.39 by the matching of the dispersion curves via non-
local theory for plane wave and Born-Karman model of lattice 
dynamics at the end of the Brillouin zone  (ka=π), where a 
is the distance between atoms and k is the wavenumber in 
the phonon analysis13. On the other hand, Eringen proposed 
e0=0.31  in his study14 for Rayleigh surface wave via non-local 
continuum mechanics and lattice dynamics.

2.2 Governing Differential Equations of Rotating 
SWCNTs
Nanotubes are central to new rotating devices such 

as miniature motor. A rotating CNT can be represented as a 
cantilever beam having displacements perpendicular to the 
plane of rotation. Considering the elementary Euler-Bernoulli 
theory	of	beams,	the	axial	and	transverse	displacement	fields	
of a rotating beam can be represented 

0
,( , , , ) xu x y z t u zw= −                                                   (7)

( , , , ) ( , )w x y z t w x t=                                                      (8)
where w is transverse displacements of the point (x, 0) on the 
middle plane (i.e., z = 0) of the beam. The only non-zero strain 
of the Euler–Bernoulli beam theory, accounting for the von 
Kármán nonlinear strain is 

( ) 0
, , ,

xx
x x xxu u zwε = = −                                                   (9)

This is also called as bending strain. The equations of 
motion of the Euler-Bernoulli beam theory are given by 

0
,xQ Au= ρ                                                                    (10)

( ), , ,
( )xx x x

M T x w Aw+ = ρ   (11)
 where 

( ) ( ),xx xx

A A

Q dA M z dA= σ = σ∫ ∫
                                     (12)

and ( )xxσ  is the axial stress on the yz − section in the direction 
of x, Q is the axial force, M is the bending moment and T(x) is 
the axial force due to centrifugal stiffening and is given as 

2( )
L

x

T x A xdx= ρ Ω∫

                                                      

(13)
where ρ  is the mass density, A is the beam cross section area 
and Ω  is the rotation speed.

Using Eqn. (6), stress resultants of Euler Bernoulli beam 
theory have been expressed in terms of the strains in that 
theory. As opposed to the linear algebraic equations between 
the stress resultants and strains in a local theory, the non-local 
constitutive relations lead to differential relations involving 
the stress resultants and the strains. In the following, these 
relations for homogeneous isotropic beams are presented. The 
non-local constitutive relations in Eqn. (6) take the following 
special form for beams: 

( ) 2 ( ) ( )
0 ,( )xx xx xx

xxe a Eσ − σ = ε                                           (14)
where E is the Young’s modulus of the beam. Using Eqns (12) 
and (14), one has  

2
0 , ,( ) xx xQ e a Q EAu− =                                                (15)

2
0 ,( ) xx eM e a M EI− = κ

                                              
(16)

where 2

A

I z dA= ∫  is the moment of inertia of the beam cross 

section and e xxk w= −  is the bending strain of the beam.
Using non-local constitutive relations and the equations 

of motion presented, the moment can be expressed in terms of 
the generalised displacements, by substituting Eqn. (16) into 
Eqn. (11), as 

2
, 0 , ,( ) ( (( ) )xx x xM Elw e a Aw T x w = − + ρ − 

               (17)
Substituting M from Eqn. (17) into Eqn. (11), the equation 

of motion of rotating non-local Euler beams is obtained as 

Figure 2. Forces acting on an incremental length dx of the 
rotating beam.
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(18)
A uniform rotating beam is assumed and T(x) is replaced 

by the maximum force at the root, i.e., at x = 0 
2 2

2
max

0 2

L A LT A xdx ρ Ω
= ρ Ω =∫                                      (19)

This allows to represent governing equation as a constant 
coefficient	 non-local	 partial	 differential	 equation.	 Finally,	
the non-local governing differential equation for transverse 
displacement (w(x,t)) of a rotating cantilever beam is derived 
as 

2 2
, max , max 0 , 0 ,( ) ( ) 0xxxx xx xxxx xxElw T w T e a w Aw A e a w− − + + ρ − ρ = 

                                                                                     (20)
This equation reduces to classical one, once the non-local 

scale parameter is neglected.

3. ULTRASONIC WAVE DISPERSION 
ANALYSIS IN ROTATING SWCNTS
For analysing the dispersion characteristics of waves 

in SWCNTs, a harmonic type of wave solution for the 
displacement	field	w(x,t) is assumed and it can be expressed 
in complex form12,13 as 

( )

1
ˆ( , ) ( , ) n

N
j kx t

n
n

w x t w x e− −ω

=

= ω∑                                    (21)
where ˆ ( , )nw x ω  is the frequency domain amplitude of the 
flexural	deformation	of	CNTs,	k is the wavenumber and nω  
is the angular frequency of the wave motion at nth sampling 
point, N is the Nyquist frequency and 1j = − . Eliminating 
the time variable from Eqn. (20) using the above spectral 
approximation of the displacement gives, 

2 2 2 2
max max 0 0ˆ ˆ ˆ ˆ( ) ( ) 0iv ii iv iiEIw T w T e a C A w A e a w− + − ρ ω + ρ ω =  

                                                                                              (22)
For the sake of simplicity in the analysis, this equation 

is expressed in a non-dimensional form. New variables are 
defined	as	

2 2

2 2

3 3 4 4
2 3 0

3 3 4 4

ˆ ˆˆ; ; ; ;

ˆ ˆ
; ;

x w dw dw d w d wx w L
L L dx dx dx dx

e ad w d w d w d wL L
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= = = =

= = t =

  


 
 
                  (23)

 The non-dimensional form of the Eqn.(22) is 
4 2 4

2
max max 03 4 2 3 4

2
2 2 2

0 2
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d w d w d wEI T T e a
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− ρ ω + ρ ω =

  
  




           (24)
	Rearranging	and	defining	a	new	variable	

2
1

str
EI
AL

ω =
ρ                                                             (25)

Equation (24) changes to the differential equation of 
constant	 coefficients	 type,	 it	 has	 the	 solution	 of	 the	 form	

jkxw We−=  , on substituting, this solution (since, for nontrivial 
solution 0W ≠ ) is obtained as follows: 

 
2 2 2 2

2 4 2 21 11 0
2 2str str str str

k k
          Ω Ω ω ω   + t + − t − =       ω ω ω ω             

                                                                                     (26)
where k is the wavenumber. This is the dispersion/characteristic 
equation of the rotating uniform beams. One can solve for the 
wavenumbers. The wavenumbers are mainly a function of the 
non-local scaling parameter ( ae0 ), rotational speed of the 

beam ( Ω ), and the wave circular frequency. The corresponding 

wave speeds, namely, phase-speed RepC
k
ω =  

 
 and group-

speed RegC
k

∂ω =  ∂ 
, are obtained from Eqn. (26).

4. NUMERICAL RESULTS AND DISCUSSION
For numerical experiments, a (5,5) SWCNT is considered 

and the diameter of the SWCNT is d = 0.675 nm, length L = 
10 d, Young’s modulus E = 5.5 TPa and the density ρ  = 2300 
kg/m3.

The spectrum curves (i.e., wavenumber vs wave frequency) 
for the rotating SWCNT are shown in Fig. 3 for different 
values of the rotational speed Ω  for 0 / 0e a Lt = =  (i.e., local 
elasticity calculation). It can be seen that for non-rotating CNT 
(i.e., 0strΩ ω = ),	the	flexural	wavenumber shows a nonlinear 
variation with wave frequency, i.e., the waves will change 
their shape as these propagate. As the rotational speed of the 
CNT increases, the wavenumbers are non-dispersive in nature 
as shown in Fig. 3. It means that the waves will not change 
their shapes as these propagate in the medium. Also, the 
wavenumber shows an inverse dependence on rotation speed. 
For a non-rotating CNT, the spectrum relation is dispersive in 
nature. But for a rotating beam, at higher speeds, the above 
nonlinear relation shifts to a linear nature due to the relatively 

Figure 3. Wavenumber dispersion in a rotating CNT for 
0 / 0e a Lt = =  for different values of strΩ ω .
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negligible contribution from the ω  term, especially for lower 
values of ω . That is, the variation of k is dominated by the 
centrifugal force term at high strΩ ω .

Figures 4(a) to 4(b), show the spectrum curves for rotating 
and non-rotating CNTs for various values of the non-local 
scaling parameter. Figure 4(a) shows that as one moves from 
local elasticity to non-local elasticity solution, the spectrum 
curve becomes linear at higher values of the wave frequency. 
The wavenumbers also increases as the non-local scaling 
parameter increases. The matching of local and non-local 
solutions is limited only up to < 0.2 THz frequency. After this 
frequency, the difference between the wavenumbers predicted 
is very large. If the rotational speed of the CNT increases from 

0strΩ ω =  to 10strΩ ω =  (Fig. 4(b)), the spectrum curve 
is slightly nonlinear as compared to nonrotating case. The 
wavenumbers obtained from local and non-local cases is same 
upto 0.45 THz frequency. The wavenumbers are showing an 

increase in tendency as the non-local parameter increases. If 
the rotational speed of the CNT increases to very high values 
like 50strΩ ω =  and 100, the local and non-local calculations 
are almost similar upto 1.6 THz and 2.5 THz frequencies, 
respectively (see Figs 4(c) & 4(d)). As the rotational speed of 
the CNT increases to very high values, the non-local scaling 
parameter effect on the spectrum curves is negligible. It 
means that if the CNT rotates at very high speeds, the local 
elasticity and non-local elasticity calculations give almost 
similar spectrum relations. It can also be observed that as 
the rotational speed of the CNT increases, the wavenumbers 
become very small and the dispersive nature changes to non-
dispersive nature (Fig. 4).

The phase-speed and group-speed dispersions of the 
rotating CNT are shown in Fig. 5, obtained from the local 
elasticity calculations (i.e., 0t = ). Thick lines represent the 
phase-speed variations and the thin lines show the group-
speed variations. It can be seen that the phase-speed of the 

Figure 4. Wave dispersion for various values of t = 0, 0.1, 0.2, 0.3, 0.5. For (a) 0strΩ ω = ; (b) 10strΩ ω = ; (c) 50strΩ ω = , and 
(d) 100strΩ ω = .

(a)

(d)(c)

(b)
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rotating CNTs is higher than the group speed. Because of the 
nonlinear relation of the wavenumber with wave frequency, 
for non-rotating CNTs, the phase and group speeds also show 
a nonlinear variation with frequency. As the rotational speeds 
of the CNT increase to higher values, both the phase-speed and 
group-speed will saturate to a constant velocity, because of the 
linear variation of the wavenumber with wave frequency. The 
difference between the phase and group speeds of the rotating 
CNTs is negligible at higher rotational speeds, as shown in 
Fig. 5, which is a characteristic of any non-dispersive system. 
As the limiting case, these become equal and become constant 
for all wave frequencies. For a non-rotating beam, both phase-
speed and group-speeds are dispersive and show that the speeds 
approach	infinity	for	very	high	frequencies.	This	unreasonable	
limit is due to the limitation of Euler-Bernoulli beam theory.

Figure 6 shows the phase-speed and group-speed 
variations with both the wave frequency and the non-local 
scaling parameter for rotating and non-rotating CNTs. Figure 
6(a) shows that for a non-rotating CNT, the phase and group 
speeds will decrease as the non-local scaling parameter 

Figure 5. Phase-speed (thick lines) and group-speed (thin 
lines) dispersions in rotating nanobeam for t = 0 for 
different values of 0strΩ ω = .

Figure 6. Phase-speed (thick lines) and group-speed (thin lines) dispersions in rotating nanobeam for different values of  strΩ ω . 
Here (a) 0strΩ ω = , (b) 10strΩ ω = , (c) 50strΩ ω = , and (d) 100strΩ ω = .

(a)

(d)(c)

(b)
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increases, because the wavenumbers are increasing with 
increase in t  (Fig. 4). Also, the difference between the phase-
speed and group-speeds dips at higher values of t . As the 
rotational speed of the CNT increases, both phase and group 
speeds will also increase, as shown in Figs 6(b)-6(d). For small 
rotational speeds and large values of t , both group speeds show 
a decrease in nature at smaller frequencies and these become 
constant at higher wave frequencies. Such a difference will 
also vanish at higher rotational speeds, as shown in Fig. 6(d). 
On the other hand, one more interesting feature of the non-
locality is that, the difference between both the wave speeds 
is considerable at smaller rotational speeds and t  and also at 
the higher rotational speeds and t  and it can be clearly seen 
from Fig. 6.

5.  CONCLUSIONS
The wave dispersion characteristics of a rotating 

SWCNT have been studied using the spectral analysis. The 
rotating SWCNT is modelled as a Euler-Bernoulli beam. The 
governing partial differential equation for a uniform rotating 
beam is derived incorporating the non-local scale effects and 
a powerful model has been derived in analysing the wave 
dispersion characteristics of the rotating CNT. Some of the 
features of the wave behaviour in rotating CNTs are observed. 
Such observations are helpful in designing the nanomotors, 
actuator, and the other CNT-based rotational nanodevices.
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