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1.  INTRODUCTION
In recent years, many countries are forcefully developing 

hypersonic weapons in near space, such as United States 
(AHW, HTV-2, X-51 and X-43), India (HSTDV and RLV-
TD), China (WU-14) and Russia (GLL-31). Because of its 
ultra-high speed and non-fixed trajectory, the hypersonic 
weapon has become a great strategic threat to the homeland air 
defence1-5. The hypersonic vehicle flies over 5 Mach in the near 
space of 20 km to 100 km. Compared with the ballistic missile, 
the hypersonic weapon is usually designed in a lifting body to 
obtain stronger manoeuverability. Traditional defense systems 
against cruise missiles in the atmospheric cannot reach the near 
space. Thereby, the near space hypersonic weapon is a threat to 
the current defence system.

There are mainly two kinds of hypersonic vehicles. One 
is the air-breathing cruise vehicle6. Its manoeuverability is 
relatively weaker, thus its interception is relatively easier as its 
trajectory is predictable. The other is the gliding entry vehicle7. 
At the entry stage, its velocity is up to 25 Mach at maximum. 
In the entry phase, it is able to glide thousands of kilometers in 
the near space without any power. In the terminal phase, a dive 
attack is performed to the target on the ground8. Therefore, its 
trajectory is not predictable and its interception is a challenge. A 

lot of research on entry guidance techniques with no-fly zones 
constraints have been conducted for hypersonic weapons9,10. 
However, there are few research works on intercepting these 
vehicles11. Consequently, new technical challenges are raised to 
intercept these weapons and advanced guidance law is needed 
to provide a high interception accuracy against a hypersonic 
manoeuverable target12.

Being applied to intercept the hypersonic weapon, the 
popular proportional navigation guidance law (PNG) has 
a major defect that the guidance command lags behind the 
target manoeuver13. Hence, the PNG is less accurate and its 
performance is unsatisfied with intercepting a manoeuverable 
target. PID controller is widely used in practice because of its 
simple formulation and guaranteed performance. Actually, 
PNG is a proportional controller which belongs to the family 
of PID controllers. Since the guidance command produced by 
the PNG lags behind the target manoeuver, and the q  reflects 
the target manoeuver, it is reasonable to add a differential term 

DK q⋅   to the PNG. Thus, the proportional and differential (PD) 
control technique is employed to design the guidance law in a 
hypersonic pursuit-evasion game.

By introducing the fractional calculus to the PID control, 
the fractional order PID control has become an emerging field 
since 1990s14. The fractional calculus is a generalisation of 
the classical an integer-order calculus. There are mainly three 
Fractional calculus definitions, including Riemann Liouville 
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(RL) definition, Grümwald Letnikov (GL) definition, and 
caputo definition. As the proposition of the gamma function 
and precise methods for solving fractional order equations 
appear, the fractional calculus has been applied in controller 
design field15,16. Similar to an integer order PID controller, 
the formulation of fractional order PID controller can be 
divided into PIλ, PDμ and PIλDμ (λ and μ represent fractional 
orders). Compared to an integer order PD controller concerned 
in this paper, the a fractional order PDμ controller has the 
following advantages. First, a fractional order controller has 
greater control flexibility. PDμ has three parameters, including 
proportional and differential gains, and a differential order. The 
choice of a differential fractional order makes it more flexible 
than an integer order PD controller. Second, a fractional order 
controller makes the system more robust. The fractional order 
controller is not sensitive to the parameter perturbation of the 
controller itself and controlled plant. In other words, as long as 
the system parameters vary within a certain range, a fractional 
order controller can perform well.

To sum up, the fractional order PID controller not only 
inherits all the advantages of the classic integer order PID 
controller, but also makes a great breakthrough. The memory 
function and stability characteristic make the fractional order 
PID controller widely apply in the field of aircraft guidance 
and control15,16, such as pitch loop control of a vertical takeoff 
and landing Unmanned aerial vehicle (UAV)17, roll control 
of a small fixed-wing uAv18, perturbed UAV roll control19, 
hypersonic vehicle attitude control20, aircraft pitch control21, 
deployment control of a space tether system22, position control 
of a one-DoF flight motion table23, and vibration attenuation 
to airplane wings24. The viscosity of the atmosphere interacting 
with air vehicles has endued aircrafts the aerodynamics similar 
to the fractional order systems, thus the fractional order PID 
control theory is appropriate to design the aircraft guidance 
and control system.

Han17, et al. designed a fractional order strategy to 
control the pitch loop of a vertical takeoff and landing UAV. 
simulations verified that the proposed controller was superior 
to an integer order PI controller based on the modified 
Ziegler-Nichols tuning rule and a general integer order PID 
controller in robustness and disturbance rejection. Luo18, et 
al. developed a fractional order PI λ controller to control the 
roll channel of a small fixed-wing uAv. From both simulation 
and real flight experiments, the fractional order controller 
outperformed the modified Ziegler-Nichols PI and the integer-
order PID controllers. Seyedtabaii applied a fractional order 
PID controller to the roll control of a small UAV in dealing 
with system uncertainties, where the aerodynamic parameters 
are often approximated roughly19. Song20, et al. proposed 
a nonlinear fractional order proportion integral derivative 
(NFOPIλDμ) active disturbance rejection control strategy for 
the hypersonic vehicle flight control. The proposed method was 
composed of a tracking-differentiator, a NFOPIλDμ controller 
and an extended state observer. simulations showed that 
the proposed method made the hypersonic vehicle nonlinear 
model track desired commands fast and accurately, and have 
robustness against disturbances. Kumar21, et al. developed the 
fractional order PID (FOPID) and integer order PID controllers 

using multi-objective optimisation based on the Bat algorithm 
and differential evolution technique. The proposed controllers 
were applied to the aircraft pitch control. Simulations 
demonstrated that the FOPID using multi-objective bat-
algorithm optimisation had better performances than others. 
Sun & Zhu22 proposed a fractional order tension control law for 
deployment control of a space tether system and the stability 
was proved. Zarei23, et al. realised a fractional order controller 
for position control of a one-DoF flight motion table. The 
flight motion table was used for simulating the rotational 
movement of flying vehicles. experiments showed using the 
fractional order controller to tracking of a position profile was 
feasible and real-time. Birs24, et al. presented a tuning method 
of a fractional order proportional derivative controller based 
on three points of the magnitude Bode diagram for vibration 
attenuation. An aluminum beam replicating an airplane wing 
verified the proposed controller.

However, there is not much effort dealing with the 
pursuit-evasion problem against target manoeuver and 
guidance noise with the fractional order PID controller. Ye25, et 
al. presented a 3D extended PN guidance law for intercepting 
a manoeuvering target based on fractional order PID control 
theory and demonstrated that the air-to-air missile had a 
smaller miss distance to a manoeuvering target. However, in 
their research, the velocity of the missile was twice as much as 
that of the target, and the noise impacting on the guidance state 
(such as the line-of-sight rate) was not under consideration, 
which limited the proposed algorithm’s practical engineering 
applications. For this reason, based on a nonlinear proportional 
and differential guidance law (NPDG) and the fractional 
calculus technique, a fractional calculus guidance law (FCG) 
is proposed to intercept a hypersonic manoeuverable target in 
this paper. It is assumed that the velocity of the interceptor is 
same as that of the hypersonic target, which means the target 
can evade as fast as the interceptor, and the guidance noise of 
the line-of-sight rate is considered.

2.  GUIDANCE LAW DESIGN
2.1 Introduction of the NPDG

The PNG is given by
( ) ( ) ( )M P Ra t K V t q t=                                                        (1)

where aM(t) is the normal acceleration command of the 
interceptor; VR(t) is the approaching velocity of the interceptor 
towards the target; q  is the line-of-sight (LOS) angular rate; 
KP is the proportional coefficient, in the range of 3 to 6 under 
the consideration of system stability.

In order to restrain the unfavourable effect from the target 
manoeuver, the LOS angular acceleration q  is taken into 
account, and a nonlinear proportional and differential guidance 
law (NPDG) is proposed as

( ) ( ) ( ) ( ) ( )M P R D Ra t K V t q t K V t q t= +                                (2)
where KD is the differential coefficient.

A nonlinear tracking differentiator is used to estimate q . 
The state equation is given by
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where ( )mq t  is the LOS rate measured by the seeker; ( )mq t  
and ( )mq t  are estimated by x1 and x2, namely 1

ˆ ( )mx q t=   and 

2
ˆ ( )mx q t=  ; K is the coefficient of the estimator.

The contradiction on selecting the value of K is inevitable: 
the larger K is, the more precise the estimation is and the less 
the phase lag is, but the noisier the estimation is. Therefore, a 
fractional calculus guidance law is proposed.

2.2  Design of the FCG
According to the classic definition of an integer derivative 

of a continuous function, the definition of Grümwald Letnikov 
(GL) fractional differential to construct the FCG is given by

( )
0 0

1 ( 1)( ) lim 1 ( )
! ( 1)

t a
h kG

a t h k
D f t f t kh

k kh

−

µ
µ→

=

Γ µ +
= − −

Γ µ − +∑       (4)

which makes it extend from an integer-order derivative to a 
fractional derivative. 

If dividing the continuous interval [a, t] of the signal f(t) 
with the unit h=1, and setting n∈{1, 2, …, t-a}, the difference 
equation of the fractional differential of f(t) is obtained as

( ) ( ) ( ) ( 1)

( )( 1) ( 2)
2

( 1) ( ).
! ( 1)

d f t f t f t
dt

f t

f t n
n n

µ
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− + +

Γ −µ +
−

Γ −µ + +



                             (5)

According to definitions of the NPDG and GL, the FcG 
is proposed as

( )( ) ( ) ( ) ( )M P R D R
d x ta t K V t x t K V t

dt

µ

µ= +                          (6)

where ( ) ( )x t q t=  ; ( )d x t
dt

µ

µ
is the fractional calculus term of 

x(t); μ is the fractional order.
According to the GL definition, in the FcG, the fractional 

differential signal of q  in the next step relates to the current 
and previous states. However, in the NPDG, the signal q  in the 
next step only relates to the current state. It indicates that the 
fractional calculus term is a filter with a characteristic similar 
to the ‘memory’. The FcG works as an effective filter, and is 
less sensitive to the noises and more resistant to disturbances.

2.3  System Stability Condition
As shown in Fig. 1, assuming that the interceptor and 

target fly in the same attack plane Xoy, M and T denote the 
interceptor and target; θM and θT represent flight path angles 
of the interceptor and target; ηM and ηT represent their heading 
angles; VM and VT represent their velocities; R represents the 
relative distance between them; q is the line-of-sight angle of 
the interceptor.

The relative motion equations are given by

( )1 sin sinM M T Tq V V
R

= η − η
                                       (7)

cos cosR M M T TV R V V= = − η + η                                   (8)

M M T Tq = θ + η = θ + η                                                   (9)

Differentiating Eqn. (7), and substituting Eqn. (8) and 
Eqn. (9) into it, we have

( ) ( )
( ) ( )

2 sin sin

cos cos .

M M T T

T T T M M M

Rq Rq V q V q

V q V q

+ = − θ − − θ

+θ − θ − θ − θ

   

   

   

 

              (10)

(1) Linearisation
For a nonlinear problem Eqn. (10), classic stability analysis 

theories such as the Routh hurwitz stability criterion for linear 
systems cannot be applied to it directly. The linearisation must 
be done at first.

Considering the practical situation, the values of MV , TV
and Tθ  will approach zero in the endgame26. Then the nonlinear 
system eqn. (10) can be simplified into a linear system:

( )2 cosM M MRq Rq V q+ ≈ −θ − θ

                                   (11)
From Eqn (11), the transfer function of the guidance 

system is obtained as
cos( )( )

12( )
GM M

GM

KV qq s
TRs Rs
−− − θ

= =
−+θ



 

                             (12)  

where
cos( )

,
2 2
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G G

V q RK T
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− θ
= =

 

Thus, we get

( ) ( )
1

G
M

G

K
q s s

T s
−

= θ
−



                                                    (13)

From Eqn (6), since M M Ma V= θ , we have

( )R
M P D

M

V K q K qs
V

µθ = +

 
                                             (14)

Substituting Eqn. (14) into Eqn. (13), the characteristic 
equation of the fractional calculus guidance system comes to

1 0R R
G D G G P

M M

V VK K s T s K K
V V

µ  
+ + − = 

 
                    (15)

(2) Stability analysis
In stability analysis of eqn. (15), the hurwitz stability 

criterion is appropriate to be employed.
Lemma 1 Hurwitz stability criterion27

For an nth-degree polynomial characteristic equation:
( ) ( )1

0 1 1 00 0 ,n n
n nD s a s a s a s a a−

−= + + + + = >      (16)
The necessary and sufficient stability condition of the 

Figure 1. Planar endgame engagement geometry.
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system Eqn. (16) comes to

1 3 5
1 3

1 1 2 3 0 2 4
0 2

1 3

0, 0, 0, , 0.
0

n

a a a
a a

a a a a
a a

a a
∆ = > ∆ = > ∆ = > ∆ >

   

(17)
That is, the order principal minor determinants and the 

main determinant of the system Eqn. (16) are positive.
Thus, based on the hurwitz stability criterion, the 

necessary and sufficient stability condition of the system eqn. 
(15) comes to

0 0,R
G D

M

Va K K
V

= >                                                       (18)

1 1 0,Ga T∆ = = >                                                            (19)

1 3
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0
1 0.
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 
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(20)
That is 

0,

0,

1 0.

R
G D

M

G

R
G P

M

V K K
V

T
V K K
V

 >
 >

 − >


                                                      (21)

Since KP>0 and KD>0, KP can be preset as 4. As a 
consequence, we have cos(q-θM)>0.5, i.e. cosηM>0.5. It 
concludes that:

Theorem 1 when the interceptor’s heading angle ηM is 
in the range of -60° to +60°, the fractional calculus guidance 
system remains stable.

3.  NUMERICAL SIMULATIONS
3.1  Simulations Design

For intercepting a hypersonic weapon, a space-based 
surveillance satellite and a ground-based X band radar or 
a marine X band radar should detect the target as early as 
possible to provide the interceptor enough time to launch 
from the ground or the aerial carrier. In the terminal phase of 
a hypersonic weapon, its velocity is too high to be intercepted. 
For example, a gliding entry vehicle is up to 25 Mach at 
maximum during a dive attack to the ground target. Thus, the 
interception is usually designed in the gliding or cruising phase 
in the near space of a hypersonic weapon before its terminal 
phase (i.e. before a dive attack happens), then the interceptor-
target initial position and heading condition is planned in a 
head-to-head engagement. In the gliding or cruising phase in 
the near space of a hypersonic weapon, its velocity is relatively 
low (about 5 Mach), and its manoeuver amplitude cannot 
exceed 5 g due to the reduced aerodynamic efficiency since 
the atmosphere is thin in the near space, but the time instant 
that the hypersonic weapon starts manoeuvering is flexible 
and adjustable for evading the interceptor’s pursuit. Our 
preliminary studies and experiments show that it is not good 
for the hypersonic weapon to start manoeuvering as early as 
possible during a pursuit-evasion game, and it is better for the 

hypersonic weapon to start manoeuvering when the interceptor 
closes to it in the endgame. For the manoeuvering mode of the 
hypersonic weapon to evade the interceptor’s pursuit, the step 
manoeuver and square manoeuver are preferred to the ramp 
manoeuver and sine manoeuver since the formers can provide 
the hypersonic weapon the maximum evading acceleration 
instantly.

Based on the analysis above, the simulation parameters for 
a hypersonic pursuit-evasion game are set as: the interceptor-
target initial position and heading condition is planned in a 
head-to-head engagement, and the initial relative distance R 
= 30000 m; VT = 5 Mach, which is along the negative X-axis; 
VM = 5 Mach, and its initial direction is aiming at the target, 
i.e. θM = q; the initial LOS angle q is 10°; the interceptor’s 
maximum normal acceleration is 15 g; μ is set as an optimal 
value of 0.5 by experiences. obviously, ηM=q-θM=0°∈ [-60°, 
60°]. The fractional calculus guidance system is stable based 
on Theorem 1.

According to authentic manoeuvering characteristics of a 
hypersonic weapon in the gliding or cruising phase in the near 
space when the interceptor closes to it, its manoeuver equations 
are given by

Case 1: Step manoeuver
5g, 8sec ,Ta t= ≥                                                       (22)

Case 2: Square manoeuver

5g, [2 6,2 7)sec,
5g, [2 7,2 8)sec,T

t k k
a

t k k
∈ + +

= − ∈ + +
                            (23)

where aT is the norm acceleration of the target, t is the time 
index and k∈N. 

The target manoeuvers are shown in Figs. 2 and 3.

Figure 2. Step manoeuver of the target (case 1).

3.2 Interception Accuracy
The trajectories, line-of-sight rates and guidance 

commands of the interceptor and target are shown in Figs. 4 
to 9. From Figs. 4 and 5, since the velocities of the interceptor 
and target are hypersonic (5 Mach), the amplitude of the 
target manoeuvers is 5g which cannot change the velocities 
and trajectories of the target a lot in a limited endgame time. 
Thus, there is no big difference between the trajectories of the 
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target in Figs. 4 and 5. From Figs. 6 and 7, the line-of-sight 
rates constrained by the FCG are much smaller than those 
constrained by the NPDG. And the line-of-sight rates of the 
NPDG are always non-convergent. From Figs. 8 and 9, the 
guidance commands of the FCG are much smoother than those 
of the NPDG, which are more appropriate for the interceptor’s 
autopilot to track. The reason is that the NPDG uses a nonlinear 
tracking differentiator Eqn. (3) to estimate the q . In Eqn. (3), 
K is the coefficient of the estimator. The larger K is, the more 
precise the estimation is and the less the phase lag is, but the 
noisier the estimation is. Comparing Fig. 9 with Fig. 8, the 
guidance commandsof the NPDG in the case 2 are noisier 
than those of the NPDG in the case 1, which means the target 
manoeuver of the case 2 is more challenging to the NPDG than 
that of the case 1. It is also validated by the results in Table 1 
that the miss distance of the NPDG in the case 2 is larger than 
that of the NPDG in the case 1. however, the target manoeuver 
of the case 2 has little influence on the interception accuracy 
of the FCG, since the miss distance of the FCG in the case 2 is 
even smaller than that of the FCG in the case 1.

Figure 3. Square manoeuver of the target (case 2).

Figure 4. Trajectories of the interceptor and target (case 1).

Figure 5. Trajectories of the interceptor and target (case 2).

Figure 6. Line-of-sight rates (case 1).

Figure 7. Line-of-sight rates (case 2).

q
q
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Numerical results are demonstrated in Table 1. The FCG 
has the minimum miss distance under different scenarios. In 
the case 1, the miss distance of the FCG is 0.0322 m, which is 
91 per cent less than that of the NPDG (0.3406 m). In the case 
2, the miss distance of the FCG is 0.0294 m, which is 93 per 
cent less than that of the NPDG (0.4151 m).

As shown in Figs. 10 to 12, when the heading angle ηM 
belongs to the closed interval [-60°, 60°], the interceptor can 
hit and kill the target; when the heading angle ηM is beyond the 
closed interval [-60°, 60°], the interception mission is failed.

Simulation results are compared and summarised in 
Table 2. The miss distances increase as the heading angle goes 
beyond the closed interval [-60°, 60°]; when the heading angle 
ηM is -60°, it is a critical condition. The experimental results in 
Table 2 validate the conclusion of Theorem 1. 

Table 2. Stability analysis

Heading angle ηM(°) Stability Miss distance (m)

-30 Stable 0.1060

-60 Stable 8.9125

-65 Unstable 820.7977

Figure 8. Guidance commands (case 1).

Figure 9. Guidance commands (case 2).

Figure 10. Trajectories of the interceptor and target (No. 1  
ηM=-30°).

Figure 11. Trajectories of the interceptor and target (No. 2  
ηM=-60°).

Table 1. Performance evaluation of guidance laws

Guidance 
law

Case 1: Miss distance 
(m)

Case 2: Miss distance 
(m)

NPDG 0.3406 0.4151
FCG 0.0322 0.0294

3.3  Stability
In the case 1, when presetting the simulation parameters, 

if the initial flight path angle θM is set as 40°, 70°, and 75°, 
respectively, and other parameters remain unchanged, 
obviously, the heading angle ηM=q-θM, will be -30°, -60°, and 
-65°, respectively. The stabilities of the fractional calculus 
guidance system with the FCG can be analysed based on 
Theorem 1.
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3.4  Robustness
In the case 1, three white noises are added into q  to 

run 50 groups of the Monte carlo simulations, including the 
amplitudes of 0.5°/s, 1.5°/s and 2.5°/s. The total number of the 
test times is 50. The miss distances distribution of the NPDG 
and the FCG with the noise of 0.5°/s, 1.5°/s and 2.5°/s are 
shown in Figs. 13 to 18.

From Figs. 13, 15, and 17, it can be seen that the 
miss distances of the NPDG obviously increase as the 
noise increases. Similarly, from Figs. 14, 16, and 18, the 
miss distances of the FCG slightly increase as the noise 
increases. These phenomenon indicate the effect of the noise 
impacting on the miss distances of both the NPDG and the 
FcG. Moreover, comparing Fig. 14 with Fig. 13, comparing 
Fig. 16 with Fig. 15, and comparing Fig. 18 with Fig. 17, 
the miss distances of the FCG are always smaller than those 
of the NPDG, which indicates the stronger robustness of  
the FCG.

Figure 12. Trajectories of the interceptor and target (No. 3  
ηM=-65°).

Figure 13. Miss distances distribution of the NPDG with the 
noise of 0.5°/s.

Figure 14. Miss distances distribution of the FCG with the noise 
of 0.5°/s.

Figure 15. Miss distances distribution of the NPDG with the 
noise of 1.5°/s.

Figure 16. Miss distances distribution of the FCG with the noise 
of 1.5°/s.
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Statistical results are shown in Table 3. The FCG has a 
less expectation than that of the NPDG: 88 per cent (0.0396 
of 0.3322) decrease in the case of 0.5°/s; 87 per cent (0.0786 
of 0.5842) decrease in the case of 1.5°/s; and 85 per cent 
(0.1457 of 1.0092) decrease in the case of 2.5°/s. Obviously, 
compared with the NPDG, the FCG has a better robustness to 
the guidance noises.

To summarise the interception accuracy and robustness 
experiments, the experimental conclusions can be obtained. The 
unique filtering properties of the fractional calculus guidance 
law makes its interception accuracy and robustness perform 
better. For intercepting a hypersonic weapon, introducing the 
differential signal of the line-of-sight rate as the guidance 
information can effectively suppress the target manoeuvers, 
and has a good robustness, which can become a feasible 
guidance strategy. The specifications are as follows:
(1) The FCG can improve the guidance accuracy. Compared 

with the NPDG, it has a better feasibility, since the 
NPDG requires the measurement of q , while this angular 
acceleration usually cannot be directly measured by the 
interceptor’s seeker. As shown in the guidance commands 
of the NPDG (Figs. 4 and 5), its tracking differentiator 
could get into trouble by high-frequency noises. The FCG 
takes advantage of the numerical method to obtain the 
fractional differential signal of q , so as to confront the 
influence of the target manoeuver.

(2) The FCG has a better robustness than the NPDG. In the 
FCG, the method obtaining the fractional differential 
signal of q has improved the estimation’s precision. The 
filter properties of the fractional calculus term in the 
FCG provide the system a good stability in a hypersonic 
pursuit-evasion game under noisy conditions.

4.  CONCLUSIONS
This paper first discusses how to solve the problem of 

intercepting the hypersonic manoeuvering target without greatly 
increasing the complexity degree of the guidance system. Based 
on the axiom that the response to the target manoeuver of the 
differential signal of the line-of-sight rate is faster than that of 
the line-of-sight rate, a nonlinear proportional and differential 
guidance law is designed by using the differential derivative 
of the line-of-sight rate. Based on the differential definition 
of the fractional calculus, a fractional calculus guidance 
law is designed on the basis of the NPDG. In the simulation 
experiments of the interception accuracy and robustness, both 
the NPDG and the FCG demonstrate guaranteed guidance 
performances. The influence of noises impacting on the 
guidance system is studied. Both of the guidance laws can 
effectively intercept hypersonic manoeuvering targets while 
reducing the impact of noise signals. Furthermore, the method 
obtaining the fractional differential signal of q  in the FCG is 
better than the method estimating the q  in the NPDG.

In conclusion, under the premise of without greatly 
increasing the complexity degree of the guidance system, 
introducing the differential signal of the line-of-sight rate to 
formulate the novel guidance laws, can meet the precision 
need to intercept a hypersonic weapon. The FCG is superior 
to the NPDG in the interception accuracy and the robustness 
to guidance noises.
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