
Received 23 March 2011, published online 25 July 2011

Defence Science Journal, Vol. 61, No. 4, July 2011, pp. 306-316, DOI: 10.14429/dsj.61.1088
 2011, DESIDOC

306

1.	 INTRODUCTION
The growing demand for higher operational efficiency

and safety in industrial processes has resulted in a huge interest
in fault-detection techniques. Engineering researchers and
practitioners remain concerned with accurate prediction when
building systems. However, software fault or defect prediction
remains the most popular research area. Software fault
prediction has both safety and economic benefits in technical
systems by preventing future failures and further improves
process maintenance schedules. Lack of adequate tools to
estimate and evaluate the cost for a software system failure
is one of the main challenges in systems engineering. They
used datasets of past projects to build and validate estimation
or prediction systems of software development efforts, for
example, which allows them to make management decisions,
such as resource allocation. Or they may use datasets of
measurements describing software systems to validate metrics
predicting quality attributes. The techniques they used to build
models to measure or predict, on the other hand, often requires
good quality of data.

When using machine learning (ML) techniques to build
such prediction systems, poor data quality in either training
or test (unknown) set or in both sets, can affect prediction
accuracy. Various ML techniques (e.g., supervised learning)
have been used in systems engineering to predict faults or
defects1, software (project) development effort2,3, software
quality4, and software defects5,6. Reviews of the use of ML in
software engineering7,8 report that ML in software engineering
is a mature technique based on widely-available tools using
well understood algorithms. The decision tree (DT) classifier
is an example of a ML algorithm that can be used for predicting

continuous attributes (regression) or categorical attributes
(classification). Thus, software prediction can be cast as a
supervised learning problem, i.e., the process of learning to
separate samples from different classes by finding common
features between samples of known classes. An important
advantage of ML over statistically-based approaches as a
modelling technique lies in the fact that the interpretation of,
say, decision rules, is more straightforward and intelligible
to human beings than, say, principal component analysis (a
statistical tool for finding patterns in data of high dimension).
In recent years, there has been an explosion of papers in the
ML and statistics communities discussing how to combine
models or model predictions.

One of the major problems for applying ML algorithms in
fault or failure prediction is the (sometimes) unavailability and
scarcity of software data, i.e., data for training the model. Most
of the companies that own (or control) do not share their failure
data from space systems due to corporate propriety interests
and national security concerns so that a useful database with a
great amount of data cannot be developed.

Most techniques for predicting attributes of a large space
system require past data from which models will be constructed
and validated. Often data is collected either with no specific
purpose in mind (i.e., it is collected because it might be useful in
future) or the analysis being carried out has a different goal than
that for which the data was originally collected. The relevance
of this issue is strictly proportional to the dimensionality of
the collected data. Thus, accurate prediction of software faults
remains a priority among empirical engineering researchers.

Many works in both the ML and statistical pattern
recognition communities have shown that combining

Predicting Software Faults in Large Space Systems using
Machine Learning Techniques

Bhekisipho Twala
University of Johannesburg, Johannesburg, South Africa

E-mail: btwala@uj.ac.za

ABSTRACT

Recently, the use of machine learning (ML) algorithms has proven to be of great practical value in solving a
variety of engineering problems including the prediction of failure, fault, and defect-proneness as the space system
software becomes complex. One of the most active areas of recent research in ML has been the use of ensemble
classifiers. How ML techniques (or classifiers) could be used to predict software faults in space systems, including
many aerospace systems is shown, and further use ensemble individual classifiers by having them vote for the most
popular class to improve system software fault-proneness prediction. Benchmarking results on four NASA public
datasets show the Naive Bayes classifier as more robust software fault prediction while most ensembles with a
decision tree classifier as one of its components achieve higher accuracy rates.

Keywords: Software metrics, machine learning, classifiers, ensemble, fault-proneness prediction

Twala.: Predicting Software Faults in Large Space Systems using Machine Learning Techniques

307

(ensemble) individual classifiers is an effective technique for
improving classification accuracy. An ensemble is generated
by training multiple learners for the same task and then
combining their predictions. There are different ways in which
ensembles can be generated, and the resulting output combined
to classify new instances. The popular approaches to creating
ensembles include changing the instances used for training
through techniques such as bagging9, boosting10, changing the
features used in training11, and introducing randomness in the
classifier itself12. The interpretability of classifiers can produce
useful information for experts responsible for making reliable
classification, making decision trees an attractive scheme.

Few studies have been carried out on the effect of the top
classifiers in data mining. Wu13, et al. studies that the effect of
ensemble classifiers on software faults predicting accuracy in
space systems are rare in engineering.

2.	 MACHINE LEARNING ALGORITHMS
In supervised learning, especially for multivariate data,

a classification function y = f(x) from training instances of
the form {(x1, y1),..,(xm, ym)}, predicts one (or more) output
attribute(s) or dependent variable(s) given the values of the
input attributes of the form {x, f(x)}. The xi values are vectors
of the form {xi1,..xim} whose components can be numerically
ordered, nominal or categorical, or ordinal. The y values are
drawn from a discrete set of classes {1,…K}in the case of
classification. Depending on the usage, the prediction can be
definite or probabilistic over possible values.

Given a set of training examples and any given prior
probabilities and misclassification costs, a learning algorithm
outputs a classifier. The classifier is a hypothesis about the true
classification function that is learned from or fitted to training
data. The classifier is then tested on test data. A wide range of
algorithms, in both classical statistics and from various ML
paradigms, have been developed for this task of supervised
learning classification.

2.1	 Apriori
The Apriori is a classical data mining algorithm used for

learning association rules14. It calculates rules that express
probabilistic relationships between items in frequent item-
sets. For example, a rule derived from frequent item-sets
containing A, B, and C might state that if A and B are included
in a transaction, then C is likely to be included.

An association rule states that an item or group of items
implies the presence of another item with some probability. For
an example, a rule like: If a customer buys wine and bread, he/
she often buys cheese, too. It expresses an association between
(sets of) items, which may be products of a supermarket or
a mail-order company; special equipment options of a car;
optional services offered by telecommunication companies, etc.
An association rule states that if we pick a customer at random
and find out that he/she selected certain items (bought certain
products, chose certain options, etc.), we can be confident,
quantified by a percentage, that he/she also selected certain
other items (bought certain other products, chose certain other
options, etc.). Of course, they do not want just any association

rules; they want good rules, rules that are expressive and
reliable. The standard measures to assess association rules
are the support and the confidence of a rule, both of which
are computed from the support of certain item-sets. Unlike
decision tree rules (described in Section 4.2), which predict a
target, association rules simply express a correlation.

2.2	 Decision Trees
Decision tree (DT) induction is one of the simplest and

yet one of the most successful forms of supervised learning
algorithm. It has been extensively pursued and studied in
many areas such as statistics15, and ML16 for the purposes of
classification and prediction.

Decision tree classifiers have four major objectives, these
are:

To classify correctly as much of the training sample as (i)	
possible.
Generalise beyond the training sample so that unseen (ii)	
samples could be classified with as high accuracy as
possible.
Be easy to update as more training samples become (iii)	
available (i.e., be incremental), and
Have as simple a structure as possible. (iv)	
Objective (i) is actually highly debatable and not all

tree classifiers are concerned with objective (iii).
Decision trees are non parametric (i.e., no assumptions

about the data are made) and a useful means of representing
the logic embodied in software routines. A decision tree takes
as input a case or example described by a set of attribute
values, and outputs a Boolean or multi-valued decision. For
the purpose of this paper, we shall stick to the Boolean case.

A classification tree (which is what will be covered in
this paper) as opposed to a regression tree means that the
response variable is qualitative rather than quantitative. In the
classification case, when the response variable takes value in
a set of previously-defined classes, the node is assigned to the
class which represents the highest proportion of observations.
Whereas, in the regression case, the value assigned to cases
in a given terminal node is the mean of the response variable
values associated with the observations belonging to a given
node. Note that in both cases, this assignment is probabilistic,
in the sense that a measure of error is associated with it.

2.3	 k-Nearest Neighbour
One of the most venerable algorithms in ML is the nearest

neighbour (NN). Nearest-neighbour methods are sometimes
referred to as memory-based reasoning or instance-based
learning (IBL) or case-based learning (CBL) techniques and
have been used for classification tasks. They essentially work
by assigning to an unclassified sample point the classification
of the nearest of a set of previously-classified points.

The entire training set is stored in the memory. To classify
a new instance, the Euclidean distance (possibly weighted)
is computed between the instance and each stored training
instance and the new instance is assigned the class of the
nearest neighbouring instance. More generally, the k-nearest
neighbours are computed, and the new instance is assigned

Def SCI J, Vol. 61, No. 4, JULY 2011

308

the class that is most frequent among the k neighbours (which
from now onwards shall be denoted as k-NN). IBL’s have
three defining general characteristics; a similarity function
(how close together the two instances are), a typical instance
selection function (which instances to keep as examples), and
a classification function (deciding how a new case relates to
the learned cases).

A further non-parametric procedure of this form is the
k-NN approach. To classify an unknown pattern, the k-NN
approach looks at a collection of the k nearest points and uses
a voting mechanism to select between them, instead of looking
at the single nearest point and classifying according to that
with ties broken at random. If there are ties for the kth nearest
observations, all candidates are included in the vote.

2.4	 Naïve Bayes Classifier
There are two roles for Bayesian methods: (i) to provide

practical learning algorithms such as Naïve Bayes learning
and Bayesian belief network learning by combining prior
knowledge with observed data and (ii) to provide a useful
conceptual framework that could provide a gold standard for
evaluating other learning algorithms.

Bayesian learning algorithms use probability theory as
an approach to concept classification. Bayesian classifiers
produce probabilities for (possibly multiple) class assignments,
rather than a single definite classification. Bayesian learning
should not be confused with the Bayes optimal classifier. Also,
Bayesian learning should not be confused with the Naïve
Bayes or idiot’s Bayes classifier, which assumes that the inputs
are conditionally independent given the target class.

The naïve Bayes classifier is usually applied with
categorical inputs, and the distribution of each input is estimated
by the proportions in the training set; hence the naïve Bayes
classifier (NBC) is a frequentist method.

The NBC is perhaps the simplest and most widely studied
probabilistic learning method. It learns from the training data,
the conditional probability of each attribute Ai, given the class
label C. The strong major assumption is that all attributes Ai
are independent given the value of the class C. Classification is
therefore done applying Bayes rule to compute the probability
of C given A1,...,An and then predicting the class with the
highest posterior probability. The assumption of conditional
independence of a collection of random attributes is critical.
Otherwise, it would be impossible to estimate all the parameters
without such an assumption.

2.5	 Support Vector Machines
Support vector machines (SVMs) are pattern classifiers

that can be expressed in the form of hyperplanes to discriminate
positive instances from negative instances pioneered by
Vapnik39. Motivated by statistical learning theory, SVMs
have successfully been applied to numerical tasks, including
classification. These can perform both binary classification
(pattern recognition) and real-valued function approximation
(regression estimation) tasks. These perform structural risk
minimisation (also used in other systems such as neuro-
fuzzy) and identify key support vectors (the points closest

to the boundary). Risk minimisation measures the expected
error on an arbitrarily large test set with the given training
set and supports vector machines non-linearly map their
n-dimensional input space into a high dimensional feature
space. In this high dimensional feature space, a nonlinear
classifier is constructed.

Support vector machines have been recently proposed
as a new technique for pattern recognition. Intuitively, given
a set of points which belong to either of the two classes, a
linear SVM finds the hyperplane leaving the largest possible
fraction of points of the same class on the same side, while
maximising the distance of either class from the hyperplane.
The hyperplane is determined by a subset of the points of
the two classes, named support vectors, and has a number of
interesting theoretical properties.

2.6	 Ensemble Procedure
A motivation for ensemble is that a combination of outputs

of many weak classifiers produces powerful ensembles with
higher accuracy than a single classifier obtained from the same
sample. The ensemble then makes use of all data available
and utilises a systematic pattern of classification results. The
generalised ensemble algorithm is summarised in Fig. 1, with
the overall six-stage scheme of the technique shown in Fig. 2
and described in more detail in the following sub-sections.

1.	 Partition original dataset into n training datasets, TR1,
TR2,…,TRn.

2.	 Construct n classifiers (CF1, CF2, …, CFn) with the
different training datasets TR1, TR2, …, TRn to obtain
n individual classifiers (ensemble members) generated by
different machine learning algorithms, thus different.

3.	 Select m de-correlated classifiers using de-correlation
maximisation algorithm.

4.	 Using Eqn. (3), obtain m classifier output values
(misclassification error rates) of unknown instance.

5.	 Transform the output value to reliability degrees of
positive class and negative class, given the imbalance of
some datasets

6.	 Fuse the multiple CFs into aggregate output in terms
of majority voting. When there is a tie in the predicted
probabilities, choose the class with the highest probability,
or else, use a random choice when the probabilities
between the two methods are equal.

Figure 1. The ensemble algorithm.

2.6.1 Partitioning Original Dataset
Due to the shortage in some data analysis problems, such

approaches, such as bagging9,12 have been used for creating
samples varying the data subsets selected. The bagging
algorithm is very efficient in constructing a reasonable size
of training set due to the feature of its random sampling with
replacement. Therefore such a strategy (which we also use in
this study) is a useful data preparation method for ML.

2.6.2 Creating Diverse Classifiers
Diversity in ensemble of learnt models constitute one

Twala.: Predicting Software Faults in Large Space Systems using Machine Learning Techniques

309

of the main current directions in ML and data mining. It has
been shown theoretically and experimentally that in order
for an ensemble to be effective, it should consist of high-
accuracy base classifiers that should have high diversity in
their predictions. One technique, which has been proved to be
effective for constructing an ensemble of accurate and diverse
base classifiers, is to use different training data, or so-called
ensemble training data selection. Many ensemble training data
selection strategies generate multiple classifiers by applying
a single learning algorithm, to different versions of a given
dataset, Two different methods for manipulating the dataset
are normally used: (i) random sampling with replacement (also
called bootstrap sampling) in bagging, and (ii) re-weighting of
the misclassified training instances in boosting. The authors
have used bagging in this study.

2.6.3 Selecting Appropriate Ensemble Members
After training, each individual classifier grown

has generated its own result. However, if there is a
large number of individual members (i.e., classifiers),
one needs to select a subset of representatives in order
to improve ensemble efficiency. Furthermore, it does
have to follow the rule ‘the more the better’ rule as
mentioned by some researchers. In this study, a de-
correlation maximisation method17,18 is used to select
the appropriate number of ensemble members. The idea
is that the correlations between the selected classifiers
should be as small as possible. The de-correlation
matrix can be summarised in the following steps:

Compute the variance-covariance matrix and the 1.	
correlation matrix;
For the 2.	 ith classifier (i = 1,2,…, p), calculate the
plural-correlation coefficient ηi;
For a pre-specified threshold θ, if η3.	 i < θ, then the i

th

classifier should be deleted from the p classifiers.
Conversely, if ηi > θ, then the i

th classifier should
be retained;
For the retained classifiers, perform Eqns (1)-(3) 4.	
procedures iteratively until satisfactory results
are obtained.

2.6.4 Performance Measure Evaluation
In the previous phase, the classifier outputs are

used as performance evaluation measures (in terms
of misclassification error rates). It has often been
argued that selecting and evaluating a classification
model based solely on its error rates is inappropriate.
The argument is based on the issue of using both the
false positive (rejecting a null hypothesis when it is
actually true) and false negative (failing to reject a null
hypothesis when it is in fact false) errors as performance
measures whenever classification models are used
and compared. Furthermore, in the business world,
decisions (of the classification type) involve costs and
expected profits. The classifier is then expected to help
making the decisions that will maximise profits.

For example, predicting faults or failures or defects
of software systems involves two types of errors: (i)

predicting software faults as likely to be high when in fact
these are low, and (ii) predicting software faults as likely to be
low when in fact these are high. Now, mere misclassification
rate is simply not good enough to predict software effort. To
overcome this problem and further make allowances for the
inequality of mislabelled classes, variable misclassification
costs are incorporated in our attribute selection criterion via
prior specification for all our experiments. This also solves the
imbalanced data problem. Details about how misclassification
costs are used for both splitting and pruning rules are presented
by Breiman19, et al.

2.6.5 Integrating Multiple Classifiers into Ensemble
Output

	 Depending upon the work in the previous stages, a set

Figure 2.	 General formation process of missing data ensemble learning
model.

Def SCI J, Vol. 61, No. 4, JULY 2011

310

of appropriate number of ensemble members can be identified.
The subsequent task is to combine these selected members into
an aggregated classifier in an appropriate ensemble strategy.
Common strategies to combine these single DT results and
then produce the final output are simple averaging; weighted
averaging, ranking and majority voting*.

Simple averaging	 is one of the most frequently used
combination methods. After training the members of the
ensemble, the final output can be obtained by averaging
the sum of each output of the ensemble members. Some
experiments have shown that simple averaging is an
effective approach20.
Weighted averaging	 is where the final ensemble result
is calculated based on individual ensemble members’
performances and a weight attached to each individual
member’s output. The gross weight is 1 and each member
of an ensemble is entitled to a portion of this gross weight
according to its performance or diversity.
Ranking	 is where members of the ensemble are called
low-level classifiers and they produce not only a single
result but a list of choices ranked according to their
likelihood. Then the high-level classifier chooses from
these set of classes using additional information that is
not usually available to or well represented in a single
low-level classifier.
Majority voting 	 is the most popular combination
method for classification problems because of its easy
implementation. Members of trees voting decide the value
of each output dimension. It takes over half the ensemble
to agree a result for it to be accepted as the final output
of the ensemble (regardless of the diversity and accuracy
of each tree generalisation). Majority voting ignores the
fact that some trees that lie in a minority sometimes do
produce correct results. However, this is the combination
strategy approach which has been followed in this study.

3.	 RELATED WORK
Significant advances have been made in the past few

decades regarding methodologies which handle the prediction
of software faults, failures, and defects. Unfortunately, these
methodologies are often not available to many researchers
for a variety of reasons (for example, lack of familiarity,
computational challenges). As a result, researchers often
resort to adhoc approaches in dealing with the software faults.
Nonetheless, several researchers have still examined various
statistically-based and machine learning approaches to solve
the problem in engineering. Specific results are discussed.

Marwala and Hunt21 use vibration data to identify faults
in structures. The idea is to use a committee of neural networks
which employ both frequency response functions and modal
data simultaneously in order to identify faults in structures.
Their proposed approach is tested on simulated data and it shows
very promising results. Marwala22 follows up this approach by
proposing a Bayesian formulated neural network approach

using hybrid Monte Carlo to scaled conjugate gradient method
for indentifying faults in structures using modal properties
and the coordinate models assurance criterion and vibration
data. Marwala argues that such an approach gives identities of
damage and their respective standard deviations. The proposed
approach gives more accurate fault identification results than
the results given using the existing approaches although
the proposed approach was found to be computationally
expensive.

An anomaly detection method for spacecraft system based
on association rules is proposed by Yairi23, et al. The method
constructs a system behaviour model in the form of a set of
rules by applying pattern clustering and association rule mining
using past housekeeping data of engineering test satellite and
time series data. The proposed approach has the advantage
of not requiring prior knowledge on the system. Thus, it can
be applied to various kinds of spacecrafts at small costs. The
association-rules-based approach compares favourably with
existing data mining methods but has the slight advantage of
detecting some anomalies which (otherwise) could have been
overlooked by conventional approaches.

Tree-based models were used by Koru and Tian24 to
investigate the relationship between high defect and high
complexity software modules in six large-scale products of
IBM and Nortel Networks. The study was conducted on 15
method-level metrics for IBM products and 45 method-level
products for Nortel Networks. They provided evidence of high
defect-prone modules as generally complex modules and also
locate below the most complex modules.

The pioneering work by Guo25, et al. performed a
comprehensive simulation study to evaluate three techniques
in the context of software faults modelling using NASA’s KC2
project dataset. These techniques are Bayesian networks (BN),
logistic regression (LR) and discriminant analysis (DA). Their
results show BN as not only being more robust to software
faults prediction but also as a more cost-effective strategy.
Their results further show LR as a better method for choosing
the best software metrics that are more prone to faults.

Menzies26, et al. performed a simulation study comparing
two machine learning methods for software detection
prediction with the probability of detection and the probability
of false alarm as their performance evaluation metrics.
Based on the National Aeronautics and Space Administration
(NASA) dataset, their results showed the NBC performing
better than the J48 algorithm. Menzie27 followed up this work
by carrying out a comparative evaluation (in terms of software
fault prediction) between linear regression, trees, ROCKY
and Delphi detectors. NASA datasets were used for this task.
Their results showed ROCKY performing better than the other
methods.

Fujimaki28, et al. propose novel anomaly detection
method for a spacecraft system that is based on kernel feature
(attribute) space and directional distribution which constructs
a system behaviour model using telemetry data obtained from
a simulator of an orbital transfer vehicle designed to make a
rendezvous manoeuvre with the internal space station. The
effectiveness of the method shows promising results

*	 For more information on these strategies, the reader is referred to
Dietterich12, which are otherwise briefly discussed below.

Twala.: Predicting Software Faults in Large Space Systems using Machine Learning Techniques

311

Another comparative study of J48, KStar, artificial neural
networks (ANN), Bayesian networks, and SVM in the context
of software fault estimation was carried out by Koru and Liu29
who suggested using fault predictors on large components.
The simulation study was carried out using public NASA
datasets for both method and class-levels, with the F-ratio as
the performance measure. Their results show J48 exhibiting
higher accuracy rates while methods such as BN, ANN and
SVM struggled. In addition, most of the methods did not
perform well whenever there were small components in the
datasets. In their next study, Koru and Liu29, built prediction
models using J48, KStar and random forests on NASA datasets.
Both method-level and class-level metrics were used. They
showed how class-level metrics improved model performance.
Detection of faults was also shown to be at class-level instead
of model level.

The use of ML for the purposes of predicting or estimating
a software module’s fault-proneness is proposed by Gondra30
who views fault-proneness as both a continuous measure and
a binary classification task. An ANN is used to predict the
continuous measure with SVM used for the classification task.
A comparative study of the effectiveness of both methods was
then performed on a NASA public dataset. The experimental
results confirmed the superior performance of SVMs over
ANNs.

The performance of LR, DA, DT, boosting, kernel
density, NBC, J48, IBk, voted perceptron, VF1, hyper-pipes
and random forest techniques was analysed by Ma31, et al.
using NASA datasets with g-mean1, g-mean2 and F-ratio as
performance evaluation metrics. Their results shows balanced
random forests yielding good results (especially on large
datasets) with boosting, rule-set and DTs being less robust
methods for software fault prediction.

Challagulla32, et al. evaluated memory-based reasoning
(MBR) as a strategy for predicting software faults using
NASA datasets and 21 method-level metrics. The probability
of detection, the probability of false alarm and accuracy
were used as performance evaluation metrics. Their results
show promise, especially when a framework based on MBR
configuration is used.

LR, NBC, random forests, and k-NN with generalisation
techniques were evaluated using NASA’s KC1 datasets in
the software fault context by Zhou and Leung33. Their results
showed better performances by methods for low-severity
faults compared to high-severity faults. They concluded that
other Chidamber-Kemerer metrics could also be useful for
fault prediction.

The use of the NBC and the J48 algorithm for predicting
software faults on a NASA dataset using method-level
metrics was investigated by Menzies34 et al. The performance
evaluation metrics used were the probability of faults and the
probability of defects. Their results showed NBC as more
efficient with the dataset characteristics playing a major role in
terms of performance for both algorithms.

Catal and Diri34 evaluate the impact of random forests
and algorithms based on artificial immune systems with the
area under the receiver operating characteristics (ROC) curve

used as a performance evaluation measure. NASA datasets
were utilised for this task. Their results show random forests
achieving the highest accuracy rates with other notably good
performances by methods such as NBC (especially for small
datasets). Mendes and Koschke35 evaluated several data mining
algorithms based on fault prediction using 13 NASA datasets.
Using the area under the ROC curve as the performance
measure, they could not find any statistically significant
difference in terms of performance among the algorithms.

According to the above studies, it appears that there is
currently reasonable data to model software fault prediction
although the use of public datasets by researchers. Secondly,
method-level metrics appear less to be dominant in software
fault prediction with class-level metrics hardly utilised. Also,
ML algorithms are still the most popular methods compared
to either the statistical methods or the expert opinion-based
approaches. However, among some of the ML algorithms, the
results are not so clear, especially for large amounts of data.
It also appears that the poor and good performances of each
algorithm are highly dependent on each respective dataset
characteristics. In other words, the nature of the attributes
determines the applicability of fault-detection techniques.

4.	 EXPERIMENTAL SET-UP
4.1	 Experiment I

To empirically evaluate the performance of one of the
top five classifiers in data mining (AR, DT, k-NN, NBC and
SVM), an experiment was conducted on four datasets in terms
of misclassification error rate. For each dataset, different types
of metrics are used to predict modules that were likely to
harbour faults. In other words, to carry out the experiments,
they relate individual requirements with software modules.

Three of the four datasets were collected by the NASA
metrics data program (MDP) data repository (http://mdp.ivv.
nasa.gov). They comprised three projects (CM1, JM1 and PC1)
of which only partial requirement metrics are available. There
are 10 attributes that described the requirements. By definition,
CM1 described software artifacts of a NASA spacecraft
instrument; JM1 represented a real-time ground system that
uses simulations to generate flight predictions; PC1 refers to
an Earth orbiting satellite software system. A combination of
the requirement metric and static code metrics were used in
their experiments with CM1 eventually having 266 instances;
JM1 having 97 instances; and PC1 having 477 instances.

The other dataset was drawn from an institutional database
of anomaly reports for multiple missions managed for NASA
by the NASA’s Jet Propulsion Laboratory (JPL/NASA)16. The
reporting mechanism for the anomalies is a report form called
incident/surprise/anomaly (ISA). Incident/surprise/anomaly
is written whenever the behaviour of the system differs from
the expected behaviour as judged by the operator. The dataset
consisted of 199 critical ISAs from seven NASA spacecraft
that occurred between the launch date of each spacecraft and
21 August 2001.

To perform the experiment, each complete dataset was
split randomly into 5 parts (Part I, Part II, Part III, Part IV,
Part V) of equal (or approximately equal) sizes. Five-fold

Def SCI J, Vol. 61, No. 4, JULY 2011

312

cross validation was used for the experiment. For each fold,
four of the parts of the instances in each category were placed
in the training set, and the remaining one was placed in the
corresponding test as shown in Table 1.

4.1.1 Results
Experimental results on the effects of five classifiers

on software faults predictive accuracy have been described.
The error rates for each classifier as a method for handling
software faults were initially averaged over the four datasets.
Then results on the effects of five classifiers for individual
datasets were presented. Also, all the error rates increase over
the complete data case are formed by taking differences.

From Fig. 3, NBC is the overall winner as a fault prediction
technique with an excess error rate of 22.4 per cent, followed
by DT, SVM and k-NN, with excess error rates of 27.3 per
cent, 29.3 per cent and 30.0 per cent, respectively. The worst
technique is AR, which exhibits an error rate of 32.1 per cent.

Training set Test set

Fold 1 Part II + Part III + Part IV + Part V Part I
Fold 2 Part I + Part III + Part IV + Part V Part II

Fold 3 Part I + Part II + Part IV + Part V Part III
Fold 4 Part I + Part II + Part III + Part V Part IV
Fold 5 Part I + Part II + Part III + Part IV Part V

Table 1. Partitioning of dataset to training and test sets

They construct the predictive models using five classifiers
from the WEKA toolkit36. The WEKA is an ensemble of tools
for data classification, regression, clustering, association rules,
and visualisation. The toolkit is developed in Java and it is
a open source software. All the five classifiers are used with
their default settings (and in some cases, control parameters)
as implemented in WEKA. Furthermore, both the WEKA
library and the NASA datasets are publicly available. Thus,
their results can be easily checked and reproduced.

To measure the performance of these classifiers, the
training set-test methodology is employed, i.e., each classifier
is built on the training data and the predicted accuracy is
measured by the smoothed error rate estimated on the test data.
Instead of summing terms that are either 0 or 1 as in the error-
count estimator, the smoothed error rate uses a continuum of
values between 0 and 1 in terms that are summed. The resulting
estimator has a smaller variance than the error-count estimate.
Also, the smoothed error rate can be very helpful when there is
a tie between two competing classes.

Another point to note is the reason for using difference in
error rates when making comparisons between the classifiers
instead of, say, division or ratios of error rates. First, differences
are natural and on understandable scale in this context, that is,
people would understand a p per cent point worsening in error
rate to mean a simple addition of p per cent. Secondly, ratios
of error rates would lead to statements like A increases error
rate by p per cent which would be misinterpreted as meaning
a p per cent difference in error rate. Finally, the analysis of
variance assumes the error rates to be on an additive rather
than multiplicative scale.

All statistical tests were conducted using the MINITAB
statistical software program37. Analyses of variance, using the
general linear model (GLM) procedure38 were used to examine
the main effects and their respective interactions. This was done
using a repeated measures design (where the effect was tested
against its interaction with datasets). The fixed effect factor
is the five classifiers. The four datasets were used to estimate
the smoothed error rate. The results were averaged across five
folds of the cross-validation process before carrying out the
statistical analysis. The averaging was done as a reduction in
error variance benefit.

Figure 3. Performance of classifiers.

Tukey’s multiple comparison tests showed significant
differences between most of the classifiers (with the exception
of SVM and k-NN). The significance level for all the
comparison tests was 0.05.

The results for the performances of the five classifiers for
individual datasets has been given in Fig. 4. From Fig. 4, the
following results are observed.

For the PC1 data problem, it appears that NBC predicts 	
software faults better than the other methods with an
accuracy rate of 78.7 per cent followed by DT (75.3 per
cent), SVM (73.3 per cent), k-NN (71.7 per cent) and
AR (67.1 per cent). Multiple comparison tests showed
significant differences in performances amongst all the
methods at the 5 per cent level.
The results for the JM1 data problem shows NBC (once 	
again) exhibiting the highest accuracy rate (76.6 per
cent), followed by SVM (72.9 per cent), k-NN (70.7 per
cent) and DT (68.0 per cent). The worst performance was
by AR with accuracy rate of 65.7 per cent. Once again,
multiple comparison tests showed the five methods as
significantly different from each other at the 5 per cent
level.
The results presented for the CM1 data problem shows 	
the NBC achieving an accuracy rate of 74.9 per cent,
followed by DT (70.9 per cent), SVM (69.9 per cent),
k-NN (66.8 per cent) and AR (64.4 per cent). Four of
the five classifiers achieve a bigger error rates for this

Twala.: Predicting Software Faults in Large Space Systems using Machine Learning Techniques

313

kind of dataset compared with rates achieved for the
other datasets. No significant difference in performance
between DT and SVM was observed at the 5 per cent
level.
For the JP/NASA data problem, four of the classifiers 	
achieved the smallest error rates compared to rates
obtained from across the other three datasets. In fact, the
average error rate for all the classifiers for this kind of
dataset is 26.1 per cent. SVM is the only classifier that
achieved the highest error rate (33.4 per cent) for this
kind of dataset across the other three datasets (with error
rates of 26.7 per cent for CM1, 27.1 per cent for JM1, and
30.1 per cent for PC1).

4.2	 Experiment II
Experiment II is similar to that described in the previous

experimental section. Hence, detailed experimental methods
are not included but only a subset of the experiment is
given. The main objective of this experiment is to compare
the performance of different ensembles for software fault
prediction. The results for each classifier are used as a baseline.
The correlation maximisation method was used to select the
appropriate number of ensemble classifier members, of which
three classifiers per ensemble were chosen. For each ensemble,
four sampling procedures (bagging, boosting, feature selection,
and randomization) were considered. This is the case for each
individual dataset.

The ensembles (ES1 to ES10) that consists of three
individual classifiers are given as: ES1 (AR, DT, k-NN); ES2
(AR, DT, NBC); ES3 (AR, DT, SVM); ES4 (AR, k-NN, NBC);
ES5(AR, k-NN, SVM); ES6(DT, k-NN, NBC); ES7(DT, k-NN,
SVM); ES8(DT, NBC, SVM); ES9(k-NN, NBC, SVM); ES10
(k-NN, NBC, SVM).

4.2.1 Results Main Effects
All the main effects were found to be significant at the 5

per cent level of significance (F = 87.3, df = 9 for ensembles
methods; F = 17.4, df = 3 for sampling procedures; p < 0.05
for each).

Figure 5 summarises the error rates for 10 classifier

ensembles on software fault-proneness prediction. The
behaviour of these ensemble methods was explored under
varying sampling procedures. The error rates of each ensemble
were averaged over the four datasets. From the results it
follows that the ensemble of AR, DT, and k-NN achieved the
highest accuracy rates (especially when bagging was used as
a sampling procedure). The worst performance was by ES9

Figure 4. Performance of classifiers (individual datasets).

Figure 6.	 Performance of baseline and ensemble classifiers
(CM1).

Figure 5.	 Performance of baseline and ensemble classifiers (all
datasets).

(with feature selection) whose components are k-NN, NBC and
SVM. All the ensembles performed badly when randomization
was used as a sampling procedure.

For the CM1 data problem, Fig. 6 shows that the
ensembles have on an average the best accuracy throughout
the sampling procedure spectrum compared to individual
classifiers. Also, it appears that most of the ensembles, with DT

as one of its components achieve higher accuracy rates. Most
of the ensembles achieved higher accuracy when boosting or
bagging was used as a sampling procedure.

Figure 7 shows a comparison of results for the JM1 data
problem which show the error rates of the 10 ensembles as
a function of predictive accuracy. Randomisation systems
that combine outputs from models constructed using AR and
DT (on the one hand) and either k-NN or SVM or NBC (on

Def SCI J, Vol. 61, No. 4, JULY 2011

314

can be very valuable to engineers, especially those dealing
with software development processes. This is important for
minimising cost and improving effectiveness of the software
testing process. The major contributions have been the
application of one of the top five machine learning algorithms
to predict software faults in space systems and further
use multiple classifier learning to improve software faults
predictive accuracy. Four NASA public datasets were utilised
for this task. The results suggest that the ML algorithms can be
successfully applied in software faults prediction with multiple
classifier learning providing overall significant increases in
classification performance.

Based on evidence, it has been found that most of the
ensembles improve the prediction accuracy of the baseline
classifiers (AR, DT, k-NN, NBC and SVM) with the ensembles
that have AR and DT as their components performing well.
This improvement is achieved mainly in all the datasets for
both bagging and boosting. Surprisingly, most of the ensembles
with NBC as one of its components did not perform as good
as when NBC was just a single classifier. Also, the overall
performance of feature selection for all the ensembles was
very poor. This was the case for all the datasets. Individually,
NBC is the most effective classifier for all the datasets. The
performance of DT is equally good, especially for the bigger
datasets. SVM is more effective for small datasets while AR
is a poor performer for any type of dataset. An important
question is why does NBC outperforms the other classifiers
by such significant margins? One reason could be the level of
inertia displayed by each classifier.

From both experiments, there exists threats to the validity
of the results. All the four datasets were obtained from NASA,
hence, their conclusions could be biased. One such threat was
duplicates in some of the instances. These were deleted from
the analysis. The second threat was the amount of missing
values in the dataset, of which multiple imputation3 was used
to deal with them. This was the case for all the four datasets,
hence, in part, a time-consuming exercise. Help was also
sought from the domain experts to give reaons why some
attributes values could be missing? In addition, clarification
on unclear descriptions on some of the software modules was
also sought from the project personnel.

Figure 9.	 Performance of baseline and ensemble classifiers
(JPL/NASA).

Figure 7.	 Performance of baseline and ensemble classifiers
(JM1).

Figure 8.	 Performance of baseline and ensemble classifiers
(PC1).

the other hand) performed well. However, the performance
of ensembles using randomisation systems and with SVM
and NBC as components (on the one hand) and either NBC
or SVM (on the other hand) performed poorly. Once again,
both bagging and boosting have come out to be the strongest
sampling procedures.

For the PC1 data problem, ES2 has on an average the best
accuracy throughout the spectrum of ensembles and this is the
case when boosting was used as a sampling procedure (Fig. 8).
Once again, the impact of AR and DT as key components of
the ensemble was found to be prominent.

The results using ensemble methods for the JPL/NASA
data problem (Fig. 9) are nearly identical to those observed
for PC1 data. However, the performances of all the ensemble
methods improve for this kind of dataset with error rates
as small as 16.7 per cent (for ES1 when bagging was used)
observed. ES10 using randomisation exhibits the worst
performance with an error rate of 27.3 per cent.

One surprising result is the poor performance of ES10,
especially when boosting was used. This was not the case
for the other datasets where boosting always yielded good
results.

5.	 DISCUSSION AND CONCLUSIONS
Accurate prediction of software faults in space systems

Twala.: Predicting Software Faults in Large Space Systems using Machine Learning Techniques

315

The performances of ensemble imputation methods in
terms of smoothed misclassification error rate were observed.
A natural extension would be to consider the impact of such
ensemble methods on other measures of performance, and
in particular, measures of group separation such as GINI or
the magnitude of relative error that is also commonly used to
assess classifier performances in the SE industry.

The ensembles require further investigation on a number
of fronts, for example, in terms of training parameters and
the combination rules that can be employed. Also, empirical
studies of the application of the ensembles to datasets from
other areas of data mining should be undertaken to assess their
performance across a more general field.

ACKNOWLEDGEMENTS
This work was funded by Department of Electrical

Engineering and Electronic Engineering Science at the
University of Johannesburg, South Africa. The comments and
suggestions from my colleagues and the anonymous reviewers
greatly improved this paper. The author would also like to
thank NASA for making the datasets available.

REFERENCES
Briand, L.; Basili, V. & Thomas, W. A pattern recognition 1.	
approach to software engineering data analysis. IEEE
Trans. Soft. Engg., 1992, 18 (11), 931-42.
Shepperd, M.J. & Schofield, C. Estimating software 2.	
project using analogies. IEEE Trans. Soft. Engg., 1997,
23 (12), 736-43.
Twala, B., & Cartwright, M. Ensemble imputation methods 3.	
for software effort prediction. Intelli. Data Anal., 2010,
14 (1), 299-31.
Evett, M.; Khoshgoftaar, T.; Chien, P. & Allen, E. GP-4.	
based software quality prediction. In Proceedings of the
3rd Annual Genetic Programming Conference, 1998. pp.
60-65.
Fenton, N. & Neil, M. A critique of software defect 5.	
prediction models. IEEE Trans. Soft. Engg.,1999, 25 (5),
675-89.
Neumann, D.E., An enhanced neural network technique 6.	
for software risk analysis. IEEE Trans. Soft. Engg., 2002,
904-12.
Mendonca, M. & Sunderhaft, N.L. Mining software 7.	
engineering data: A survey. DACS-SOAR-99-3. A DACS
state-of-the-art Report. DoD Data and Analysis Center
for Software. 1999.
Menzies, T. Practical machine learning for software 8.	
engineering and knowledge engineering. In Handbook of
software engineering and knowledge engineering. 2001.
http://tim.menzies.com/pdf/00ml.pdf (Accessed on 11
November 2010).
Breiman, L. Bagging predictors. 9.	 Machine Learning,
1996a, 26(2), 123-40.
Freund, Y. & Schapire, R. Experiments with a new 10.	
boosting algorithm. In Machine Learning: Proceedings of
the 13th International Conference, 1996. pp. 148-56.
Ho, T.K. Random decision forests. 11.	 In Proceedings of the

3rd International Conference on Document Analysis and
Recognition, 1995. pp. 278-82.
Dietterich, T. An experimental comparison of three 12.	
methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Machine Learning,
2000, 40(2), 139-58.
Wu, X.; Kumar,V; Quinlan, J.R.; Ghosh, J.; Yang, Q.; 13.	
Motoda, H.; Mclachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.;
Zhou, Z-H.; Steinbach, M.; Hand, D.J. & Steinberg, D.
Top 10 algorithms in data mining. Knowl. Infor. Syst.,
2008, 14(1), 1-37.
Agrawal, R. & Srikant, R. Fast algorithms for mining 14.	
association rules. In Proceedings of 20th International
Conference on Very Large Databases (VLDB 1994,
Santiago de Chile), 1994. pp. 487-99.
Breiman, L.; Friedman, J, Olshen, R., & Stone, C. 15.	
Classification and regression trees, Wadsworth, 1984.
Lutz, R.R. & Mikulski, I.C. Empirical analysis of safety 16.	
critical anomalies during operation. IEEE Trans. Soft.
Engg., 2004, 30(3), 172-80.
Jolliffe, I. Principal component analysis. Springer Verlag, 17.	
1986.
Lai, K.K.; Yu, L.; Wang, S.Y. & Zhou, Lg.G Credit 18.	
risk analysis using a reliability-based neural network
ensemble model. In Lecture Notes in Computer Science,
2006, 4132, 682–90.
Quinlan, JR. C.4.5: Programs for machine learning. Los 19.	
Altos, California, Morgan Kauffman Publishers, Inc.,
1993.
Breiman, L. Bias, variance, and arcing classifiers. Statistics 20.	
Department, University of California at Berkeley,
Technical Report No. 460, 1996b.
Marwala, T. & Hunt, H.E.M. Fault identification using 21.	
finite element models and neural networks. Mech. Syst.
Signal Process., 1999, 13(3), 475-90.
Marwala, T. Probabilistic fault identification using 22.	
vibration data and neural networks. Mech. Syst. Signal
Process., 2001, 15(4), 1109-128.
Yairi, T.; Ishihama, N.; Kato, Y.; Hori, K & Nakasuka, 23.	
S. Anomaly detection method for spacecrafts based on
association rule mining. J. Space Technol. Sci., 2001,
17(1), 1-10.
Koru, A.G. & Tian, J. An empirical comparison and 24.	
characterization of high defect and high complexity
modules. J. Syst. Software, 2003, 67(3), 153-63.
Guo, L.; Cukic, B. & Singh, H. Predicting fault prone 25.	
modules by Dempster-Shafer belief networks. In 18th
IEEE International Conference on Automated Software
Engineering Montreal, Canada, IEEE Computer Society,
2003. pp. 249-52.
Menzies, T.; Distefano, J.S.; Orrego, A. & Chapman, R. 26.	
Assessing predictors of software defects. In Predictive
Software Model Workshop, 2004.
Menzies, T. & Distefano, J.S. How good is your blind spot 27.	
sampling policy? In 8th IEEE International Symposium on
High Assurance Systems Engineering, Tampa, FL, USA.
IEEE Computer Society, 2004. pp. 129-38.

Def SCI J, Vol. 61, No. 4, JULY 2011

316

Fujimaki, R.; Yairi, T. & Machida, K. An approach to 28.	
spacecraft anomaly detection problem using kernel
feature space. In Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery in
Data Mining. 2005. pp. 401-10.
Koru, G. & Liu, H. An investigation of the effect of 29.	
module size on defect prediction using static measures. In
Workshop on Predictor Models in Software Engineering,
St Louis Missouri, 2005. pp. 1-5.
Gondra, I. Applying machine learning to software fault-30.	
proneness prediction. J. Syst. Soft., 2005, 81, 86-195.
Ma, Y.; Guo, L. & Cukic, B. A statistical framework for 31.	
the prediction of fault-proneness. In Advances in machine
learning application in software engineering. 2006. pp.
237-65.
Challagulla, V.U.; Bastani, F.B.; Yen, I. & Paul, R.A. 32.	
Empirical assessment of machine learning-based software
defect prediction techniques. In 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable
Systems, Sedona, Arizona, IEEE Computer Society,
2005. pp. 263-70.
Zhou, Y. & Leaung, H. Empirical analysis of object-33.	
oriented design metrics for predicting high and low
severity faults. IEEE Trans. Soft. Engg., 2006, 32 (10),
771-89.
Menzies, T.; Dekhtyar, A.; Distefano, J.S. & Greenwald, J. 34.	
Problems and precision: A response to comments on data
mining static code attributes to learn defect predictors.
IEEE Trans. Soft. Engg., 2007, 33 (0), 637-40.

Contributor

Prof (Dr) Bhekisipho Twala received his BA (Economics and
Statistics) from University of Swaziland, in 1993; MSc(Computational
Statistics) from Southampton University, in 1995, and PhD
(Machine Learning and Statistics) from the Open University, in
2005. Currently working as a Professor for Artificial Intelligence
and Statistical Science in the Department of Electrical and
Electronic Engineering Science, University of Johannesbug,
South Africa. Currently, he is involved in developing novel and
innovative solutions (using AI technologies) to key research
problems in the field of electrical and electronic engineering
science. His broad research interests include multivariate
statistics, classification methods, knowledge discovery and
reasoning with uncertainty, sensor data fusion and inference,
and the interface between statistics and computing.

Mende, T. & Koschke, R. Revisiting the evaluation 35.	
of defect prediction models. In Proceedings of the
5th International Conference on Predictor Models in
Software Engineering, PROMISE ’09, Vancouver, British
Columbia, Canada, 18-19 May 2009. pp. 1-10.
Witten, I.H. & Frank, E. Data mining: Practical machine 36.	
learning tools and techniques with java implementations.
Morgan Kauffman. 1999.
MINITAB. MINITAB statistical software for Windows 37.	
9.0. MINITAB, Inc., PA, USA. 2002.
Kirk, R.E. Experimental design. Ed. 2. Brooks, Cole 38.	
Publishing Co. Monterey, CA. 1982.
Vapnik, V. The nature of statistical learning theory, 39.	
Springer, New York. 1995.

