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1.	 INTRODUCTION
The growing demand for higher operational efficiency 

and safety in industrial processes has resulted in a huge interest 
in fault-detection techniques. Engineering researchers and 
practitioners remain concerned with accurate prediction when 
building systems. However, software fault or defect prediction 
remains the most popular research area. Software fault 
prediction has both safety and economic benefits in technical 
systems by preventing future failures and further improves 
process maintenance schedules. Lack of adequate tools to 
estimate and evaluate the cost for a software system failure 
is one of the main challenges in systems engineering. They 
used datasets of past projects to build and validate estimation 
or prediction systems of software development efforts, for 
example, which allows them to make management decisions, 
such as resource allocation. Or they may use datasets of 
measurements describing software systems to validate metrics 
predicting quality attributes. The techniques they used to build 
models to measure or predict, on the other hand, often requires 
good quality of data.

When using machine learning (ML) techniques to build 
such prediction systems, poor data quality in either training 
or test (unknown) set or in both sets, can affect prediction 
accuracy. Various ML techniques (e.g., supervised learning) 
have been used in systems engineering to predict faults or 
defects1, software (project) development effort2,3, software 
quality4, and software defects5,6. Reviews of the use of ML in 
software engineering7,8 report that ML in software engineering 
is a mature technique based on widely-available tools using 
well understood algorithms. The decision tree (DT) classifier 
is an example of a ML algorithm that can be used for predicting 

continuous attributes (regression) or categorical attributes 
(classification). Thus, software prediction can be cast as a 
supervised learning problem, i.e., the process of learning to 
separate samples from different classes by finding common 
features between samples of known classes. An important 
advantage of ML over statistically-based approaches as a 
modelling technique lies in the fact that the interpretation of, 
say, decision rules, is more straightforward and intelligible 
to human beings than, say, principal component analysis (a 
statistical tool for finding patterns in data of high dimension). 
In recent years, there has been an explosion of papers in the 
ML and statistics communities discussing how to combine 
models or model predictions. 

One of the major problems for applying ML algorithms in 
fault or failure prediction is the (sometimes) unavailability and 
scarcity of software data, i.e., data for training the model. Most 
of the companies that own (or control) do not share their failure 
data from space systems due to corporate propriety interests 
and national security concerns so that a useful database with a 
great amount of data cannot be developed.

Most techniques for predicting attributes of a large space 
system require past data from which models will be constructed 
and validated. Often data is collected either with no specific 
purpose in mind (i.e., it is collected because it might be useful in 
future) or the analysis being carried out has a different goal than 
that for which the data was originally collected. The relevance 
of this issue is strictly proportional to the dimensionality of 
the collected data. Thus, accurate prediction of software faults 
remains a priority among empirical engineering researchers.

Many works in both the ML and statistical pattern 
recognition communities have shown that combining 
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(ensemble) individual classifiers is an effective technique for 
improving classification accuracy. An ensemble is generated 
by training multiple learners for the same task and then 
combining their predictions. There are different ways in which 
ensembles can be generated, and the resulting output combined 
to classify new instances. The popular approaches to creating 
ensembles include changing the instances used for training 
through techniques such as bagging9, boosting10, changing the 
features used in training11, and introducing randomness in the 
classifier itself12. The interpretability of classifiers can produce 
useful information for experts responsible for making reliable 
classification, making decision trees an attractive scheme.

Few studies have been carried out on the effect of the top 
classifiers in data mining. Wu13, et al. studies that the effect of 
ensemble classifiers on software faults predicting accuracy in 
space systems are rare in engineering.

2.	 MACHINE LEARNING ALGORITHMS
In supervised learning, especially for multivariate data, 

a classification function y = f(x) from training instances of 
the form {(x1, y1),..,(xm, ym)}, predicts one (or more) output 
attribute(s) or dependent variable(s) given the values of the 
input attributes of the form {x, f(x)}. The xi values are vectors 
of the form {xi1,..xim} whose components can be numerically 
ordered, nominal or categorical, or ordinal. The y values are 
drawn from a discrete set of classes {1,…K}in the case of 
classification. Depending on the usage, the prediction can be 
definite or probabilistic over possible values.

Given a set of training examples and any given prior 
probabilities and misclassification costs, a learning algorithm 
outputs a classifier. The classifier is a hypothesis about the true 
classification function that is learned from or fitted to training 
data. The classifier is then tested on test data. A wide range of 
algorithms, in both classical statistics and from various ML 
paradigms, have been developed for this task of supervised 
learning classification.

2.1	 Apriori
The Apriori is a classical data mining algorithm used for 

learning association rules14. It calculates rules that express 
probabilistic relationships between items in frequent item-
sets. For example, a rule derived from frequent item-sets 
containing A, B, and C might state that if A and B are included 
in a transaction, then C is likely to be included.

An association rule states that an item or group of items 
implies the presence of another item with some probability. For 
an example, a rule like: If a customer buys wine and bread, he/
she often buys cheese, too. It expresses an association between 
(sets of) items, which may be products of a supermarket or 
a mail-order company; special equipment options of a car; 
optional services offered by telecommunication companies, etc. 
An association rule states that if we pick a customer at random 
and find out that he/she selected certain items (bought certain 
products, chose certain options, etc.), we can be confident, 
quantified by a percentage, that he/she also selected certain 
other items (bought certain other products, chose certain other 
options, etc.). Of course, they do not want just any association 

rules; they want good rules, rules that are expressive and 
reliable. The standard measures to assess association rules 
are the support and the confidence of a rule, both of which 
are computed from the support of certain item-sets. Unlike 
decision tree rules (described in Section 4.2), which predict a 
target, association rules simply express a correlation.

2.2	 Decision Trees
Decision tree (DT) induction is one of the simplest and 

yet one of the most successful forms of supervised learning 
algorithm. It has been extensively pursued and studied in 
many areas such as statistics15, and ML16 for the purposes of 
classification and prediction.

Decision tree classifiers have four major objectives, these 
are: 

To classify correctly as much of the training sample as (i)	
possible. 
Generalise beyond the training sample so that unseen (ii)	
samples could be classified with as high accuracy as 
possible. 
Be easy to update as more training samples become (iii)	
available (i.e., be incremental),  and
Have as simple a structure as possible. (iv)	
Objective (i) is actually highly debatable and not all 

tree classifiers are concerned with objective (iii).
Decision trees are non parametric (i.e., no assumptions 

about the data are made) and a useful means of representing 
the logic embodied in software routines. A decision tree takes 
as input a case or example described by a set of attribute 
values, and outputs a Boolean or multi-valued decision. For 
the purpose of this paper, we shall stick to the Boolean case.

A classification tree (which is what will be covered in 
this paper) as opposed to a regression tree means that the 
response variable is qualitative rather than quantitative. In the 
classification case, when the response variable takes value in 
a set of previously-defined classes, the node is assigned to the 
class which represents the highest proportion of observations. 
Whereas, in the regression case, the value assigned to cases 
in a given terminal node is the mean of the response variable 
values associated with the observations belonging to a given 
node. Note that in both cases, this assignment is probabilistic, 
in the sense that a measure of error is associated with it. 

2.3	 k-Nearest Neighbour
One of the most venerable algorithms in ML is the nearest 

neighbour (NN). Nearest-neighbour methods are sometimes 
referred to as memory-based reasoning or instance-based 
learning (IBL) or case-based learning (CBL) techniques and 
have been used for classification tasks. They essentially work 
by assigning to an unclassified sample point the classification 
of the nearest of a set of previously-classified points.

The entire training set is stored in the memory. To classify 
a new instance, the Euclidean distance (possibly weighted) 
is computed between the instance and each stored training 
instance and the new instance is assigned the class of the 
nearest neighbouring instance. More generally, the k-nearest 
neighbours are computed, and the new instance is assigned 
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the class that is most frequent among the k neighbours (which 
from now onwards shall be denoted as k-NN). IBL’s have 
three defining general characteristics; a similarity function 
(how close together the two instances are), a typical instance 
selection function (which instances to keep as examples), and 
a classification function (deciding how a new case relates to 
the learned cases).

A further non-parametric procedure of this form is the 
k-NN approach. To classify an unknown pattern, the k-NN 
approach looks at a collection of the k nearest points and uses 
a voting mechanism to select between them, instead of looking 
at the single nearest point and classifying according to that 
with ties broken at random. If there are ties for the kth nearest 
observations, all candidates are included in the vote.

2.4	 Naïve Bayes Classifier
There are two roles for Bayesian methods: (i) to provide 

practical learning algorithms such as Naïve Bayes learning 
and Bayesian belief network learning by combining prior 
knowledge with observed data and (ii) to provide a useful 
conceptual framework that could provide a gold standard for 
evaluating other learning algorithms.

Bayesian learning algorithms use probability theory as 
an approach to concept classification. Bayesian classifiers 
produce probabilities for (possibly multiple) class assignments, 
rather than a single definite classification. Bayesian learning 
should not be confused with the Bayes optimal classifier. Also, 
Bayesian learning should not be confused with the Naïve 
Bayes or idiot’s Bayes classifier, which assumes that the inputs 
are conditionally independent given the target class.

The naïve Bayes classifier is usually applied with 
categorical inputs, and the distribution of each input is estimated 
by the proportions in the training set; hence the naïve Bayes 
classifier (NBC) is a frequentist method.

The NBC is perhaps the simplest and most widely studied 
probabilistic learning method. It learns from the training data, 
the conditional probability of each attribute Ai, given the class 
label C. The strong major assumption is that all attributes Ai 
are independent given the value of the class C. Classification is 
therefore done applying Bayes rule to compute the probability 
of C given A1,...,An and then predicting the class with the 
highest posterior probability. The assumption of conditional 
independence of a collection of random attributes is critical. 
Otherwise, it would be impossible to estimate all the parameters 
without such an assumption.

2.5	 Support Vector Machines
Support vector machines (SVMs) are pattern classifiers 

that can be expressed in the form of hyperplanes to discriminate 
positive instances from negative instances pioneered by 
Vapnik39. Motivated by statistical learning theory, SVMs 
have successfully been applied to numerical tasks, including 
classification. These can perform both binary classification 
(pattern recognition) and real-valued function approximation 
(regression estimation) tasks. These perform structural risk 
minimisation (also used in other systems such as neuro-
fuzzy) and identify key support vectors (the points closest 

to the boundary). Risk minimisation measures the expected 
error on an arbitrarily large test set with the given training 
set and supports vector machines non-linearly map their 
n-dimensional input space into a high dimensional feature 
space. In this high dimensional feature space, a nonlinear 
classifier is constructed.

Support vector machines have been recently proposed 
as a new technique for pattern recognition. Intuitively, given 
a set of points which belong to either of the two classes, a 
linear SVM finds the hyperplane leaving the largest possible 
fraction of points of the same class on the same side, while 
maximising the distance of either class from the hyperplane. 
The hyperplane is determined by a subset of the points of 
the two classes, named support vectors, and has a number of 
interesting theoretical properties.

2.6	 Ensemble Procedure
A motivation for ensemble is that a combination of outputs 

of many weak classifiers produces powerful ensembles with 
higher accuracy than a single classifier obtained from the same 
sample. The ensemble then makes use of all data available 
and utilises a systematic pattern of classification results. The 
generalised ensemble algorithm is summarised in Fig. 1, with 
the overall six-stage scheme of the technique shown in Fig. 2 
and described in more detail in the following sub-sections.

1.	 Partition original dataset into n training datasets, TR1, 
TR2,…,TRn.

2.	 Construct n classifiers (CF1, CF2, …, CFn) with the 
different training datasets TR1, TR2, …, TRn to obtain 
n individual classifiers (ensemble members) generated by 
different machine learning algorithms, thus different.

3.	 Select m de-correlated classifiers using de-correlation 
maximisation algorithm.

4.	 Using Eqn. (3), obtain m classifier output values 
(misclassification error rates) of unknown instance.

5.	 Transform the output value to reliability degrees of 
positive class and negative class, given the imbalance of 
some datasets

6.	 Fuse the multiple CFs into aggregate output in terms 
of majority voting. When there is a tie in the predicted 
probabilities, choose the class with the highest probability, 
or else, use a random choice when the probabilities 
between the two methods are equal.

Figure 1. The ensemble algorithm.

2.6.1 Partitioning Original Dataset
Due to the shortage in some data analysis problems, such 

approaches, such as bagging9,12 have been used for creating 
samples varying the data subsets selected. The bagging 
algorithm is very efficient in constructing a reasonable size 
of training set due to the feature of its random sampling with 
replacement. Therefore such a strategy (which we also use in 
this study) is a useful data preparation method for ML.

2.6.2 Creating Diverse Classifiers
Diversity in ensemble of learnt models constitute one 
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of the main current directions in ML and data mining. It has 
been shown theoretically and experimentally that in order 
for an ensemble to be effective, it should consist of high-
accuracy base classifiers that should have high diversity in 
their predictions. One technique, which has been proved to be 
effective for constructing an ensemble of accurate and diverse 
base classifiers, is to use different training data, or so-called 
ensemble training data selection. Many ensemble training data 
selection strategies generate multiple classifiers by applying 
a single learning algorithm, to different versions of a given 
dataset, Two different methods for manipulating the dataset 
are normally used: (i) random sampling with replacement (also 
called bootstrap sampling) in bagging, and (ii) re-weighting of 
the misclassified training instances in boosting. The authors 
have used bagging in this study.

2.6.3 Selecting Appropriate Ensemble Members
After training, each individual classifier grown 

has generated its own result. However, if there is a 
large number of individual members (i.e., classifiers), 
one needs to select a subset of representatives in order 
to improve ensemble efficiency. Furthermore, it does 
have to follow the rule ‘the more the better’ rule as 
mentioned by some researchers. In this study, a de-
correlation maximisation method17,18 is used to select 
the appropriate number of ensemble members. The idea 
is that the correlations between the selected classifiers 
should be as small as possible. The de-correlation 
matrix can be summarised in the following steps:

Compute the variance-covariance matrix and the 1.	
correlation matrix;
For the 2.	 ith classifier (i = 1,2,…, p), calculate the 
plural-correlation coefficient ηi;
For a pre-specified threshold θ, if η3.	 i < θ, then the i

th 

classifier should be deleted from the p classifiers. 
Conversely, if ηi > θ, then the i

th classifier should 
be retained;
For the retained classifiers, perform Eqns (1)-(3) 4.	
procedures iteratively until satisfactory results 
are obtained.

2.6.4 Performance Measure Evaluation
In the previous phase, the classifier outputs are 

used as performance evaluation measures (in terms 
of misclassification error rates). It has often been 
argued that selecting and evaluating a classification 
model based solely on its error rates is inappropriate. 
The argument is based on the issue of using both the 
false positive (rejecting a null hypothesis when it is 
actually true) and false negative (failing to reject a null 
hypothesis when it is in fact false) errors as performance 
measures whenever classification models are used 
and compared. Furthermore, in the business world, 
decisions (of the classification type) involve costs and 
expected profits. The classifier is then expected to help 
making the decisions that will maximise profits.

For example, predicting faults or failures or defects 
of software systems involves two types of errors: (i) 

predicting software faults as likely to be high when in fact 
these are low, and (ii) predicting software faults as likely to be 
low when in fact these are high. Now, mere misclassification 
rate is simply not good enough to predict software effort. To 
overcome this problem and further make allowances for the 
inequality of mislabelled classes, variable misclassification 
costs are incorporated in our attribute selection criterion via 
prior specification for all our experiments. This also solves the 
imbalanced data problem. Details about how misclassification 
costs are used for both splitting and pruning rules are presented 
by Breiman19, et al.

2.6.5  Integrating Multiple Classifiers into Ensemble 
Output

	 Depending upon the work in the previous stages, a set 

Figure 2.	 General formation process of missing data ensemble learning 
model. 
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of appropriate number of ensemble members can be identified. 
The subsequent task is to combine these selected members into 
an aggregated classifier in an appropriate ensemble strategy. 
Common strategies to combine these single DT results and 
then produce the final output are simple averaging; weighted 
averaging, ranking and majority voting*. 

Simple averaging	  is one of the most frequently used 
combination methods. After training the members of the 
ensemble, the final output can be obtained by averaging 
the sum of each output of the ensemble members. Some 
experiments have shown that simple averaging is an 
effective approach20.
Weighted averaging	  is where the final ensemble result 
is calculated based on individual ensemble members’ 
performances and a weight attached to each individual 
member’s output. The gross weight is 1 and each member 
of an ensemble is entitled to a portion of this gross weight 
according to its performance or diversity.
Ranking	  is where members of the ensemble are called 
low-level classifiers and they produce not only a single 
result but a list of choices ranked according to their 
likelihood. Then the high-level classifier chooses from 
these set of classes using additional information that is 
not usually available to or well represented in a single 
low-level classifier.
Majority voting 	 is the most popular combination 
method for classification problems because of its easy 
implementation. Members of trees voting decide the value 
of each output dimension. It takes over half the ensemble 
to agree a result for it to be accepted as the final output 
of the ensemble (regardless of the diversity and accuracy 
of each tree generalisation). Majority voting ignores the 
fact that some trees that lie in a minority sometimes do 
produce correct results. However, this is the combination 
strategy approach which has been followed in this study. 

3.	 RELATED WORK
Significant advances have been made in the past few 

decades regarding methodologies which handle the prediction 
of software faults, failures, and defects. Unfortunately, these 
methodologies are often not available to many researchers 
for a variety of reasons (for example, lack of familiarity, 
computational challenges). As a result, researchers often 
resort to adhoc approaches in dealing with the software faults. 
Nonetheless, several researchers have still examined various 
statistically-based and machine learning approaches to solve 
the problem in engineering. Specific results are discussed.

Marwala and Hunt21 use vibration data to identify faults 
in structures. The idea is to use a committee of neural networks 
which employ both frequency response functions and modal 
data simultaneously in order to identify faults in structures. 
Their proposed approach is tested on simulated data and it shows 
very promising results. Marwala22 follows up this approach by 
proposing a Bayesian formulated neural network approach 

using hybrid Monte Carlo to scaled conjugate gradient method 
for indentifying faults in structures using modal properties 
and the coordinate models assurance criterion and vibration 
data. Marwala argues that such an approach gives identities of 
damage and their respective standard deviations. The proposed 
approach gives more accurate fault identification results than 
the results given using the existing approaches although 
the proposed  approach was found to be computationally 
expensive. 

An anomaly detection method for spacecraft system based 
on association rules is proposed by Yairi23, et al. The method 
constructs a system behaviour model in the form of a set of 
rules by applying pattern clustering and association rule mining 
using past housekeeping data of engineering test satellite and 
time series data. The proposed approach has the advantage 
of not requiring prior knowledge on the system. Thus, it can 
be applied to various kinds of spacecrafts at small costs. The 
association-rules-based approach compares favourably with 
existing data mining methods but has the slight advantage of 
detecting some anomalies which (otherwise) could have been 
overlooked by conventional approaches. 

Tree-based models were used by Koru and Tian24 to 
investigate the relationship between high defect and high 
complexity software modules in six large-scale products of 
IBM and Nortel Networks. The study was conducted on 15 
method-level metrics for IBM products and 45 method-level 
products for Nortel Networks. They provided evidence of high 
defect-prone modules as generally complex modules and also 
locate below the most complex modules.

The pioneering work by Guo25, et al. performed a 
comprehensive simulation study to evaluate three techniques 
in the context of software faults modelling using NASA’s KC2 
project dataset. These techniques are Bayesian networks (BN), 
logistic regression (LR) and discriminant analysis (DA). Their 
results show BN as not only being more robust to software 
faults prediction but also as a more cost-effective strategy. 
Their results further show LR as a better method for choosing 
the best software metrics that are more prone to faults.

Menzies26, et al. performed a simulation study comparing 
two machine learning methods for software detection 
prediction with the probability of detection and the probability 
of false alarm as their performance evaluation metrics. 
Based on the National Aeronautics and Space Administration 
(NASA) dataset, their results showed the NBC performing 
better than the J48 algorithm. Menzie27 followed up this work 
by carrying out a comparative evaluation (in terms of software 
fault prediction) between linear regression, trees, ROCKY 
and Delphi detectors. NASA datasets were used for this task. 
Their results showed ROCKY performing better than the other 
methods.

Fujimaki28, et al. propose novel anomaly detection 
method for a spacecraft system that is based on kernel feature 
(attribute) space and directional distribution which constructs 
a system behaviour model using telemetry data obtained from 
a simulator of an orbital transfer vehicle designed to make a 
rendezvous manoeuvre with the internal space station. The 
effectiveness of the method shows promising results 

*	 For more information on these strategies, the reader is referred to 
Dietterich12, which are otherwise briefly discussed below.
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Another comparative study of J48, KStar, artificial neural 
networks (ANN), Bayesian networks, and SVM in the context 
of software fault estimation was carried out by Koru and Liu29 
who suggested using fault predictors on large components. 
The simulation study was carried out using public NASA 
datasets for both method and class-levels, with the F-ratio as 
the performance measure. Their results show J48 exhibiting 
higher accuracy rates while methods such as BN, ANN and 
SVM struggled. In addition, most of the methods did not 
perform well whenever there were small components in the 
datasets. In their next study, Koru and Liu29, built prediction 
models using J48, KStar and random forests on NASA datasets. 
Both method-level and class-level metrics were used. They 
showed how class-level metrics improved model performance. 
Detection of faults was also shown to be at class-level instead 
of model level.

The use of ML for the purposes of predicting or estimating 
a software module’s fault-proneness is proposed by Gondra30 
who views fault-proneness as both a continuous measure and 
a binary classification task. An ANN is used to predict the 
continuous measure with SVM used for the classification task. 
A comparative study of the effectiveness of both methods was 
then performed on a NASA public dataset. The experimental 
results confirmed the superior performance of SVMs over 
ANNs.

The performance of LR, DA, DT, boosting, kernel 
density, NBC, J48, IBk, voted perceptron, VF1, hyper-pipes 
and random forest techniques was analysed by Ma31, et al.  
using NASA datasets with g-mean1, g-mean2 and F-ratio as 
performance evaluation metrics. Their results shows balanced 
random forests yielding good results (especially on large 
datasets) with boosting, rule-set and DTs being less robust 
methods for software fault prediction.

Challagulla32, et al. evaluated memory-based reasoning 
(MBR) as a strategy for predicting software faults using 
NASA datasets and 21 method-level metrics. The probability 
of detection, the probability of false alarm and accuracy 
were used as performance evaluation metrics. Their results 
show promise, especially when a framework based on MBR 
configuration is used.

LR, NBC, random forests, and k-NN with generalisation 
techniques were evaluated using NASA’s KC1 datasets in 
the software fault context by Zhou and Leung33. Their results 
showed better performances by methods for low-severity 
faults compared to high-severity faults. They concluded that 
other Chidamber-Kemerer metrics could also be useful for 
fault prediction.

The use of the NBC and the J48 algorithm for predicting 
software faults on a NASA dataset using method-level 
metrics was investigated by Menzies34 et al. The performance 
evaluation metrics used were the probability of faults and the 
probability of defects. Their results showed NBC as more 
efficient with the dataset characteristics playing a major role in 
terms of performance for both algorithms.

Catal and Diri34 evaluate the impact of random forests 
and algorithms based on artificial immune systems with the 
area under the receiver operating characteristics (ROC) curve 

used as a performance evaluation measure. NASA datasets 
were utilised for this task. Their results show random forests 
achieving the highest accuracy rates with other notably good 
performances by methods such as NBC (especially for small 
datasets). Mendes and Koschke35 evaluated several data mining 
algorithms based on fault prediction using 13 NASA datasets. 
Using the area under the ROC curve as the performance 
measure, they could not find any statistically significant 
difference in terms of performance among the algorithms.

According to the above studies, it appears that there is 
currently reasonable data to model software fault prediction 
although the use of public datasets by researchers. Secondly, 
method-level metrics appear less to be dominant in software 
fault prediction with class-level metrics hardly utilised. Also, 
ML algorithms are still the most popular methods compared 
to either the statistical methods or the expert opinion-based 
approaches. However, among some of the ML algorithms, the 
results are not so clear, especially for large amounts of data. 
It also appears that the poor and good performances of each 
algorithm are highly dependent on each respective dataset 
characteristics. In other words, the nature of the attributes 
determines the applicability of fault-detection techniques.

4.	 EXPERIMENTAL SET-UP
4.1	 Experiment I

To empirically evaluate the performance of one of the 
top five classifiers in data mining (AR, DT, k-NN, NBC and 
SVM), an experiment was conducted on four datasets in terms 
of misclassification error rate. For each dataset, different types 
of metrics are used to predict modules that were likely to 
harbour faults. In other words, to carry out the experiments, 
they relate individual requirements with software modules.

Three of the four datasets were collected by the NASA 
metrics data program (MDP) data repository (http://mdp.ivv.
nasa.gov). They comprised three projects (CM1, JM1 and PC1) 
of which only partial requirement metrics are available. There 
are 10 attributes that described the requirements. By definition, 
CM1 described software artifacts of a NASA spacecraft 
instrument; JM1 represented a real-time ground system that 
uses simulations to generate flight predictions; PC1 refers to 
an Earth orbiting satellite software system. A combination of 
the requirement metric and static code metrics were used in 
their experiments with CM1 eventually having 266 instances; 
JM1 having 97 instances; and PC1 having 477 instances.

The other dataset was drawn from an institutional database 
of anomaly reports for multiple missions managed for NASA 
by the NASA’s Jet Propulsion Laboratory (JPL/NASA)16. The 
reporting mechanism for the anomalies is a report form called 
incident/surprise/anomaly (ISA). Incident/surprise/anomaly 
is written whenever the behaviour of the system differs from 
the expected behaviour as judged by the operator. The dataset 
consisted of 199 critical ISAs from seven NASA spacecraft 
that occurred between the launch date of each spacecraft and 
21 August 2001.

To perform the experiment, each complete dataset was 
split randomly into 5 parts (Part I, Part II, Part III, Part IV, 
Part V) of equal (or approximately equal) sizes. Five-fold 
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cross validation was used for the experiment. For each fold, 
four of the parts of the instances in each category were placed 
in the training set, and the remaining one was placed in the 
corresponding test as shown in Table 1.

4.1.1 Results
Experimental results on the effects of five classifiers 

on software faults predictive accuracy have been described. 
The error rates for each classifier as a method for handling 
software faults were initially averaged over the four datasets. 
Then results on the effects of five classifiers for individual 
datasets were presented. Also, all the error rates increase over 
the complete data case are formed by taking differences.

From Fig. 3, NBC is the overall winner as a fault prediction 
technique with an excess error rate of 22.4 per cent, followed 
by DT, SVM and k-NN, with excess error rates of 27.3 per 
cent, 29.3 per cent and 30.0 per cent, respectively. The worst 
technique is AR, which exhibits an error rate of 32.1 per cent.

Training set Test set

Fold 1 Part II + Part III + Part IV + Part V Part I
Fold 2 Part I + Part III + Part IV + Part V Part II

Fold 3 Part I + Part II + Part IV + Part V Part III
Fold 4 Part I + Part II + Part III + Part V Part IV
Fold 5 Part I + Part II + Part III + Part IV Part V

Table 1. Partitioning of dataset to training and test sets

They construct the predictive models using five classifiers 
from the WEKA toolkit36. The WEKA is an ensemble of tools 
for data classification, regression, clustering, association rules, 
and visualisation. The toolkit is developed in Java and it is 
a open source software. All the five classifiers are used with 
their default settings (and in some cases, control parameters) 
as implemented in WEKA. Furthermore, both the WEKA 
library and the NASA datasets are publicly available. Thus, 
their results can be easily checked and reproduced. 

To measure the performance of these classifiers, the 
training set-test methodology is employed, i.e., each classifier 
is built on the training data and the predicted accuracy is 
measured by the smoothed error rate estimated on the test data. 
Instead of summing terms that are either 0 or 1 as in the error-
count estimator, the smoothed error rate uses a continuum of 
values between 0 and 1 in terms that are summed. The resulting 
estimator has a smaller variance than the error-count estimate. 
Also, the smoothed error rate can be very helpful when there is 
a tie between two competing classes.

Another point to note is the reason for using difference in 
error rates when making comparisons between the classifiers 
instead of, say, division or ratios of error rates. First, differences 
are natural and on understandable scale in this context, that is, 
people would understand a p per cent point worsening in error 
rate to mean a simple addition of p per cent. Secondly, ratios 
of error rates would lead to statements like A increases error 
rate by p per cent which would be misinterpreted as meaning 
a p per cent difference in error rate. Finally, the analysis of 
variance assumes the error rates to be on an additive rather 
than multiplicative scale.

All statistical tests were conducted using the MINITAB 
statistical software program37. Analyses of variance, using the 
general linear model (GLM) procedure38 were used to examine 
the main effects and their respective interactions. This was done 
using a repeated measures design (where the effect was tested 
against its interaction with datasets). The fixed effect factor 
is the five classifiers. The four datasets were used to estimate 
the smoothed error rate. The results were averaged across five 
folds of the cross-validation process before carrying out the 
statistical analysis. The averaging was done as a reduction in 
error variance benefit.

Figure 3. Performance of classifiers.

Tukey’s multiple comparison tests showed significant 
differences between most of the classifiers (with the exception 
of SVM and k-NN). The significance level for all the 
comparison tests was 0.05.

The results for the performances of the five classifiers for 
individual datasets has been given in Fig. 4. From Fig. 4, the 
following results are observed.

For the PC1 data problem, it appears that NBC predicts 	
software faults better than the other methods with an 
accuracy rate of 78.7 per cent followed by DT (75.3 per 
cent), SVM (73.3 per cent), k-NN (71.7 per cent) and 
AR (67.1 per cent). Multiple comparison tests showed 
significant differences in performances amongst all the 
methods at the 5 per cent level.
The results for the JM1 data problem shows NBC (once 	
again) exhibiting the highest accuracy rate (76.6 per 
cent), followed by SVM (72.9 per cent), k-NN (70.7 per 
cent) and DT (68.0 per cent). The worst performance was 
by AR with accuracy rate of 65.7 per cent. Once again, 
multiple comparison tests showed the five methods as 
significantly different from each other at the 5 per cent 
level.
The results presented for the CM1 data problem shows 	
the NBC achieving an accuracy rate of 74.9 per cent, 
followed by DT (70.9 per cent), SVM (69.9 per cent), 
k-NN (66.8 per cent) and AR (64.4 per cent). Four of 
the five classifiers achieve a bigger error rates for this 
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kind of dataset compared with rates achieved for the 
other datasets. No significant difference in performance 
between DT and SVM was observed at the 5  per cent 
level.
For the JP/NASA data problem, four of the classifiers 	
achieved the smallest error rates compared to rates 
obtained from across the other three datasets. In fact, the 
average error rate for all the classifiers for this kind of 
dataset is 26.1 per cent. SVM is the only classifier that 
achieved the highest error rate (33.4 per cent) for this 
kind of dataset across the other three datasets (with error 
rates of 26.7 per cent for CM1, 27.1 per cent for JM1, and 
30.1 per cent for PC1).

4.2	 Experiment II
Experiment II is similar to that described in the previous 

experimental section. Hence, detailed experimental methods 
are not included but only a subset of the experiment is 
given. The main objective of this experiment is to compare 
the performance of different ensembles for software fault 
prediction. The results for each classifier are used as a baseline. 
The correlation maximisation method was used to select the 
appropriate number of ensemble classifier members, of which 
three classifiers per ensemble were chosen. For each ensemble, 
four sampling procedures (bagging, boosting, feature selection, 
and randomization) were considered. This is the case for each 
individual dataset.

The ensembles (ES1 to ES10) that consists of three 
individual classifiers are given as: ES1 (AR, DT, k-NN); ES2 
(AR, DT, NBC); ES3 (AR, DT, SVM); ES4 (AR, k-NN, NBC); 
ES5(AR, k-NN, SVM); ES6(DT, k-NN, NBC); ES7(DT, k-NN, 
SVM); ES8(DT, NBC, SVM); ES9(k-NN, NBC, SVM); ES10 
(k-NN, NBC, SVM).

4.2.1 Results Main Effects
All the main effects were found to be significant at the 5 

per cent level of significance (F = 87.3, df = 9 for ensembles 
methods; F = 17.4, df = 3 for sampling procedures; p < 0.05 
for each).

Figure 5 summarises the error rates for 10 classifier 

ensembles on software fault-proneness prediction. The 
behaviour of these ensemble methods was explored under 
varying sampling procedures. The error rates of each ensemble 
were averaged over the four datasets. From the results it 
follows that the ensemble of AR, DT, and k-NN achieved the 
highest accuracy rates (especially when bagging was used as 
a sampling procedure). The worst performance was by ES9 

Figure 4. Performance of classifiers (individual datasets).

Figure 6.	 Performance of baseline and ensemble classifiers 
(CM1).

Figure 5.	 Performance of baseline and ensemble classifiers (all 
datasets).

(with feature selection) whose components are k-NN, NBC and 
SVM. All the ensembles performed badly when randomization 
was used as a sampling procedure.

For the CM1 data problem, Fig. 6 shows that the 
ensembles have on an average the best accuracy throughout 
the sampling procedure spectrum compared to individual 
classifiers. Also, it appears that most of the ensembles, with DT 

as one of its components achieve higher accuracy rates. Most 
of the ensembles achieved higher accuracy when boosting or 
bagging was used as a sampling procedure.

Figure 7 shows a comparison of results for the JM1 data 
problem which show the error rates of the 10  ensembles as 
a function of predictive accuracy. Randomisation systems 
that combine outputs from models constructed using AR and 
DT (on the one hand) and either k-NN or SVM or NBC (on 
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can be very valuable to engineers, especially those dealing 
with software development processes. This is important for 
minimising cost and improving effectiveness of the software 
testing process. The major contributions have been the 
application of one of the top five machine learning algorithms 
to predict software faults in space systems and further 
use multiple classifier learning to improve software faults 
predictive accuracy. Four NASA public datasets were utilised 
for this task. The results suggest that the ML algorithms can be 
successfully applied in software faults prediction with multiple 
classifier learning providing overall significant increases in 
classification performance.

Based on evidence, it has been found that most of the 
ensembles improve the prediction accuracy of the baseline 
classifiers (AR, DT, k-NN, NBC and SVM) with the ensembles 
that have AR and DT as their components performing well. 
This improvement is achieved mainly in all the datasets for 
both bagging and boosting. Surprisingly, most of the ensembles 
with NBC as one of its components did not perform as good 
as when NBC was just a single classifier. Also, the overall 
performance of feature selection for all the ensembles was 
very poor. This was the case for all the datasets. Individually, 
NBC is the most effective classifier for all the datasets. The 
performance of DT is equally good, especially for the bigger 
datasets. SVM is more effective for small datasets while AR 
is a poor performer for any type of dataset. An important 
question is why does NBC outperforms the other classifiers 
by such significant margins? One reason could be the level of 
inertia displayed by each classifier.

From both experiments, there exists threats to the validity 
of the results. All the four datasets were obtained from NASA, 
hence, their conclusions could be biased. One such threat was 
duplicates in some of the instances. These were deleted from 
the analysis. The second threat was the amount of missing 
values in the dataset, of which multiple imputation3 was used 
to deal with them. This was the case for all the four datasets, 
hence, in part, a time-consuming exercise. Help was also 
sought from the domain experts to give reaons why some 
attributes values could be missing? In addition, clarification 
on unclear descriptions on some of the software modules was 
also sought from the project personnel.

Figure 9.	 Performance of baseline and ensemble classifiers 
(JPL/NASA).

Figure 7.	 Performance of baseline and ensemble classifiers 
(JM1).

Figure 8.	 Performance of baseline and ensemble classifiers 
(PC1).

the other hand) performed well. However, the performance 
of ensembles using randomisation systems and with SVM 
and NBC as components (on the one hand) and either NBC 
or SVM (on the other hand) performed poorly. Once again, 
both bagging and boosting have come out to be the strongest 
sampling procedures.

For the PC1 data problem, ES2 has on an average the best 
accuracy throughout the spectrum of ensembles and this is the 
case when boosting was used as a sampling procedure (Fig. 8). 
Once again, the impact of AR and DT as key components of 
the ensemble was found to be prominent.

The results using ensemble methods for the JPL/NASA 
data problem (Fig. 9) are nearly identical to those observed 
for PC1 data. However, the performances of all the ensemble 
methods improve for this kind of dataset with error rates 
as small as 16.7 per cent (for ES1 when bagging was used) 
observed. ES10 using randomisation exhibits the worst 
performance with an error rate of 27.3 per cent.

One surprising result is the poor performance of ES10, 
especially when boosting was used. This was not the case 
for the other datasets where boosting always yielded good 
results.

5.	 DISCUSSION AND CONCLUSIONS
Accurate prediction of software faults in space systems 
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The performances of ensemble imputation methods in 
terms of smoothed misclassification error rate were observed. 
A natural extension would be to consider the impact of such 
ensemble methods on other measures of performance, and 
in particular, measures of group separation such as GINI or 
the magnitude of relative error that is also commonly used to 
assess classifier performances in the SE industry.

The ensembles require further investigation on a number 
of fronts, for example, in terms of training parameters and 
the combination rules that can be employed. Also, empirical 
studies of the application of the ensembles to datasets from 
other areas of data mining should be undertaken to assess their 
performance across a more general field.
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