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1. IntroductIon
In order to measure the security of sequences generated 

by any pseudorandom number generator, designers have to 
count the number of possible seeds and properties of feedback 
polynomial for the generator. In the case of k-stage linear 
feedback shift register (LFSR), number of possible seeds and 
number of feedback polynomials for maximum period 2 1k −  
are well known1,2.

The feedback polynomial of degree k  which generates 
sequences of period 2 1k −  is a primitive polynomial of degree 
k over the finite field (2).GF We know the number of primitive 
polynomials of degree k  over the finite field (2)GF  and given 
by the formula2   (2 1) /k kΦ − , where Φ  is the Euler’s totient 
function.

Also the number of different sequences of period 2 1k −  
generated by k -stage LFSR is equal to the number of primitive 
polynomials of degree k  over the finite field (2).GF  For a 
given sequence over a finite field, the Berlekamp-Massey 
algorithm3 finds the shortest linear feedback shift register that 
can generate the sequence.

Integer recurrence relations (equivalently Lagged 
Fibonacci Generators (LFG)) have been used as pseudorandom 
number generators4 and became popular in recent years. 
The streams generated by the recurrence relation are integer 
sequences over the ring

2e , 1e ≥ . In 1933 Ward5 proposed a 
condition for maximum period of a sequence and condition for 
maximum period was nicely presented in 1992 by Dai6. Dai6 
also counted the number of feedback polynomials over the 
ring 

2
[ ]e x  for a  k -stage IRR with the condition proposed 

by Ward. 

Also another but independent condition for maximum 
period of a sequence over the ring

2e , 1e ≥ was proposed 
by Brent4, in 1994. This condition was on the feedback 
polynomial ( )f x   of degree k which generates the sequences 
modulo 2e of maximum period 1(2 1)2k e−− (polynomial with 
maximum period is called primitive polynomial over the ring 

2
.e The synthesis algorithm to find the shortest linear (integer) 

recurrence relation that can generate a given sequence over the 
finite ring modulo ,m  ( m   is an integer) was given by Reeds 
and Sloane7.  

For LFSR, primitive feedback polynomial of degree k  
over (2)GF  covers all states except zero state i.e. (2 1)k −
states. But in case of IRR, this is not the case; that means a 
primitive polynomial of degree k over the ring 

2e can generate 
( 1)( 1)2 e k− − shift distinct sequences as given in references6,8.  

This paper focuses on the number of polynomials which 
generate sequences of maximum period with respect to Brent’s4 
condition and corresponding number of different sequences of 
maximum period for a k -stage IRR. Another contribution of 
the paper is that it explicitly gives a method for construction 
of primitive polynomials of degree k over the ring 

2e  which 
satisfies Brent’s condition for maximum period.

2. PrelImInarIes
In this section, we give some notations and definitions for 

integer recurrence relations that will be used in the subsequent 
sections. These notations are basically related to the paper of 
Brent4, since our focus is on Brent’s condition. We denote a  
not congruent to b   mod n   by mod .a b n≠  

The 2-stage integer recurrence relation also called 
Fibonacci recurrence relation is given as:

1 2 2n n ns s s for n− −= + ≥
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The generalisation of integer recurrence relation (also 
called generalised Fibonacci recurrence relation) as a pseudo-
random number generator is defined as:

definition 1
Let 1 2, ,..., 1.ek p

a a a e∈ ≥ Given any k -tuple 

0 1 1( , ,..., )ks s s −  elements of ,ep


 
let 0 1( , ,...)s s s∞ = denote 

the infinite sequence of elements of  ,ep
 determined by the 

following linear recurrence relation:

1 1( ... ) mod ,e
n n k n ks a s a s p k n− −≡ + + ≤                         (1)

The system is called k -stage integer recurrence relation 
(IRR) or Lagged Fibonacci Generator (LFG) over the ring ,ep

  
while the sequence s∞ is referred to as the sequence generated 
by IRR (1). The k -tuple 0 1 1( , ,..., )ks s s −  is called initial state of 
the IRR (1).

The polynomial 1
1 ...k k

kx a x a−− − − is called the 
polynomial of the IRR (1).

definition2 2
Let ( ) [ ]pf x x∈  be a non-zero polynomial of degree k . If

(0) 0f ≠ , then the least positive integer ( )pλ for which ( )f x
divides ( ) 1pxλ − is called the order of ( )f x  or period  of ( )f x
. In other words ( )( )( ) 1mod ,px p f xλ ≡ .

If ( ) 1kp pλ = − , then ( )f x is called a primitive 
polynomial of degree k over the field p .

A congruence relation over modulo an integer m , and a 
polynomial ( )f x is defined as:

definition4,9 3
If ( ), ( ), ( )f x a x b x are polynomials with integer 

coefficients. Then ( ) ( )( )( ) mod ,a x b x m f x≡   if 
( )( ) ( ) ( ) ( )a x b x f x u x mv x= + + for some polynomials ( )u x and 

( )v x with integer coefficients.
Since p  and p are equivalent, therefore the definition 

of order over the finite field p (or p ) has been extended over 
the finite ring ep

 as:

definition5,6 4
Let ( ) [ ]pf x x∈ be a non-zero polynomial of degree k

. If (0) 0f ≠ , then the least positive integer ( )epλ for which 

( )( )( ) 1mod ,
ep ex p f xλ ≡

 
is called the order of ( )f x  or 

period of ( ) mod ef x p . The maximum possible period of ( )f x

is 1( 1)e kp p− − and such a polynomial is called a primitive 
polynomial of degree k over ep

 .
For 2p = , the maximum possible period and condition 

for it is given in the following proposition (we call it Brent’s 
condition).

Proposition4,9 1
Let 1

1( ) ...k k
kf x x a x a−= − − − be a primitive polynomial 

modulo 2, and suppose that 0 1 1, ,..., ks s s − are integers not all 
even. 
(a) The period of the recurrence relation (1) mod 2e  is 

1(2 1)2k e−−  for all 1e ≥ if and only if

2 2 2 3( ) ( ) 2 ( ) mod (2 )f x f x f x and+ − ≠  
2 2 2 3( ) ( ) 2( 1) ( ) mod (2 )kf x f x f x+ − ≠ − −                  (2)

(b) The primitive polynomial ( ) 1 mod 2,k lf x x x= + + 2k >
always has period 1(2 1)2k e−− for all 1e ≥ .
The following proposition gives the number of different 

sequences with maximum possible period generated through 
IRR (1) for 2p = .

Proposition8 2
There exist ( 1)( 1)2 e k− − different sequences of period 

1(2 1)2k e−− for all 1e ≥ for a primitive polynomial which 
satisfies the eqn (2).

3. trInomIal of degree 2k >   
In this section, we will find the number of k  -stage 

integer recurrence relations over the ring 
2e which generate 

sequences of maximum possible period 1(2 1)2 , 1k e e−− ≥  and 
correspond to a primitive trinomial mod 2.

Let
0

( ) ,
k

i
i

i
g x a x

=

= ∑  where 1ka = , be a polynomial of degree 

k over the ring
2e , then for the initial state 0 1 1( , ,..., )ks s s − , the 

corresponding integer recurrence relation is 
1 1 0( ... ) mod 2e

n k n n ks a s a s− − −≡ − + +                                (3)
The relation (1) and relation (3) are equivalent in the 

sense of polynomial, so for convenience relation (3) is used 
throughout the paper.

It is enough to enumerate the number of recurrence 
relations (3) which generate sequences of maximum possible 
period 1(2 1)2k e−− with the seed 0 1 1, ,..., ks s s − and with at least 
one odd is . 

Let ( ) 1k lf x x x= + + be a primitive polynomial modulo 
2, then either k is odd and l is even or k is even and l is odd or 
both ,k l are odd. If we take both ,k l even then ( )f x becomes 
reducible polynomial modulo 2 as for 2 ', 2 'k k l l= = for some 
integer ', ',k l we have  2 ' 2 ' ' ' 2( ) 1 ( 1)k l k lf x x x x x= + + = + +
in modulo 2. Therefore, we discuss only three cases of primitive 
trinomial mod 2.

The condition of equivalence between ( )f x and ( )g x
modulo 2 is given by the following obvious lemma.

lemma 1

Let
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1ka =  and 

( ) 1,k lf x x x= + + then ( ) ( ) mod 2g x f x≡ if and only if 
gcd( , 2) 2,1 ( ) 1ia i i l k= ≤ ≠ ≤ − and 0gcd( , 2) 1 gcd( , 2).la a= =  

If ( ) ( ) mod 2g x f x≡ , then it is not necessary that non-
trivial sequences generated by ( )g x have maximum possible 
period.

For instance 4
5 4 3 2

2
( ) 4 4 2 13 [ ]g x x x x x x x= + + + + + ∈

is equivalent to a primitive polynomial 5 2( ) 1mod 2,f x x x= + +
but ( )g x does not generate sequences of maximum possible 
period.

Next theorem gives the condition on 'ia s of ( )g x for the 
maximum possible period. 
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theorem 1
Let ( )f x be a primitive trinomial mod 2, where k odd, l

even, and
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1, 2ka k= > such that
( ) ( ) mod 2g x f x≡ . The period of the sequence corresponding 

to the recurrence relation (3) given by ( )g x is less than 
1(2 1)2k e−− for all 3e ≥ if and only if

i.  4 1 ( , / 2) 1, 0ia r for i l l k r= ≤ ≠ ≤ − ≥  and

ii.  /2 2la r=  for odd values of 1r ≥ and

iii.  4 1 4 3, 0ia r or r r= + + ≥ for 0,i l= that means  both 0a
and la have value either 4 1 4 3.r or r+ +
To prove Theorem 1, we first prove the following 

lemmas.

lemma 2
Let 

2
0

( ) [ ]e

k
i

i
i

g x a x x
=

= ∈∑  , 1ka =  be a polynomial of 
degree k . Then

 1
2 2 2 2

0 0 2 ,
2

( ) ( ) 2 ( ) 2 ( 1) 4 ,
k

i i j
i i i j

i i j k
i j m

g x g x g x a a x a a x
−

+

= ≤ < ≤
+ =

+ − − = − +∑ ∑  

where 0 .m k< <    
Proof: For given ( ),g x

1
2 2 2 2

0 0 0
( ( )) ( ) 2 .

k k k k
i i i j

i i i j
i i i j i

g x a x a x a a x
−

+

= = = >

= = +∑ ∑ ∑∑  

Replacing x by x− we get,

2 2 2 2

0 0 0
( ( )) ( ) 2 ( 1) .

k k
i i i j i j

i i i j
i i i j k

g x a x a x a a x+ +

= = ≤ < ≤

− = = + −∑ ∑ ∑2 2 2 2

0 0 0
( ( )) ( ) 2 ( 1) .

k k
i i i j i j

i i i j
i i i j k

g x a x a x a a x+ +

= = ≤ < ≤

− = = + −∑ ∑ ∑
Therefore,

2 2 2 2

0 0
( ( )) ( ( )) 2 2 (1 ( 1) )

k
i i j i j

i i j
i i j k

g x g x a x a a x+ +

= ≤ < ≤

+ − = + + −∑ ∑           

2 2

0 0 ,
2

2 4 ,0 .
k

i i j
i i j

i i j k
i j m

a x a a x m k+

= ≤ < ≤
+ =

= + < <∑ ∑
Also,

 
2 2

0
( ) .

k
i

i
i

g x a x
=

= ∑  

Therefore,
1

2 2 2 2

0 0 ,
2

( ( )) ( ( )) 2 ( ) 2 ( 1) 4 ,0 .
k

i i j
i i i j

i i j k
i j m

g x g x g x a a x a a x m k
−

+

= ≤ < ≤
+ =

+ − − = − + < <∑ ∑  

lemma 3
Let 

2
0

( ) [ ]e

k
i

i
i

g x a x x
=

= ∈∑  , 1ka =  be a polynomial of 
degree k . Then

 1
2 2 2 2

0 0 2 ,
2

( ) ( ) ( 1) 2 ( ) 2 ( ( 1) ) 4 ,
k

k i k i i j
i i i j

i i j k
i j m

g x g x g x a a x a a x
−

+ +

= ≤ < ≤
+ =

+ − − − − = − − +∑ ∑  

where 0 .m k< <    

lemma 4
Let ( )f x be a primitive trinomial mod 2 of degree ,k for k  

odd, l even and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  such that 
( ) ( ) mod 2.g x f x≡  Then

2 2 2( ) ( ) 2 ( ) 0 mod 8g x g x g x+ − − ≡                              (4)
if and only if

i. 4ia r= for 1 ( , / 2) 1, 0i l l k r≤ ≠ ≤ − ≥  and  
ii. /2 2la r=  for odd values of 1r ≥  and
iii. 4 1, 0ia r r= + ≥ for 0, .i l=   

Proof:  Using Lemma 2,
2 2 2( ) ( ) 2 ( ) 0 mod 8g x g x g x+ − − ≡    

if and only if 
1

2

0 0 ,
2

2 ( 1) 4 0 mod 8
k

i i j
i i i j

i i j k
i j m

a a x a a x
−

+

= ≤ < ≤
+ =

− + ≡∑ ∑   

if and only if coefficient of each power of x is zero mod 8. 
That is 0 02 ( 1) 0 mod8a a − ≡  and 

0 ,
2

2 ( 1) 4 0 mod 8m m i j
i j k

i j m

a a a a
≤ < ≤
+ =

− + ≡∑ for 1 1.m k≤ ≤ −   

Since 0a  and la are only odd terms, therefore 

0

0 ,
2

4
4 mod 8 2

0,

l
i j

i j k
i j m

la a if m
a a

otherwise≤ < ≤
+ =

 =≡ 


∑  

 
Thus Eqn. (4) holds if and only if 

  
1

2
0

0
2 ( 1) 4 0 mod 8

k
i l

i l
i

a a x a a x
−

=

− + ≡∑  

 if and only if 
2 ( 1) 0 mod 8i ia a − ≡  for 20 ( ) 1li k≤ ≠ ≤ − and            (5)

2 2
02 ( 1) 4 0 mod 8l l la a a a− + ≡                                         (6)

Since 0a and la are odd, therefore Eqn. (5) holds if and 
only if

4ia r= for 1 ( , ) 1, 0
2
li l k r≤ ≠ ≤ − ≥  and

4 1ia r= +  for 0, .i l=      
The Eqn. (6) holds if and only if  /2 2la r= , where r is an 

odd integer.

lemma 5
Let ( )f x be a primitive trinomial mod 2 of degree ,k for 

k  odd, l even and 2
0

( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  such 

that ( ) ( ) mod 2.g x f x≡  Then
2 2 2( ) ( ) ( 1) 2 ( ) 0 mod 8kg x g x g x+ − − − − ≡                   (7)

if and only if

i. 4ia r= for 1 ( , / 2) 1, 0i l l k r≤ ≠ ≤ − ≥  and  

ii. /2 2la r=  for odd values of 1r ≥  and

iii. 4 3, 0ia r r= + ≥ for 0, .i l=   

Proof of theorem 1
From Equation (2), the period of sequences corresponding 

to ( )g x is less than the maximum possible for 3e ≥ if and 
only if either Equation (4) holds or Equation (7) hold or both 
holds.

Using Lemma 4 and 5, conditions hold if and only if 
4ia r= for 1 ( , / 2) 1, 0i l l k r≤ ≠ ≤ − ≥  and  

/2 2 ,la r=  where r is an odd integer, 1r ≥  and
 both 0a and la have values either 4 1 4 3.r or r+ +
 Hence the result.
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corollary 1
Let ( )f x be a primitive trinomial mod 2 of degree ,k for 

k  odd, l even. Then the number of 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑ 

1, 2ka k= >  such that ( ) ( ) mod 2g x f x≡ and corresponding 
sequences have period less than 1(2 1)2k e−−  for all 3e ≥ is 

( 2) 12 .e k− +

Proof: Using Theorem 1, the number of choices for 
each ' , 1 ( , / 2) 1ia s i l l k≤ ≠ ≤ −  and /2la  has 22e− choices 
for odd values of r . Furthermore, la and 0a has form either 
4 1 4 3,r or r+ +  then their number of choices is ( 1) ( 2)2 ,e e− + −

because of their dependencies. Hence the number of desired 
( )g x  is  ( 2)( 3) 2 ( 1) ( 2) ( 2) 12 2 2 2 .e k e e e e k− − − − + − − +=

corollary 2
Let ( )f x be a primitive trinomial mod 2 of degree ,k

for k  odd, l even. The number of 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑ 

1, 2ka k= >  such that ( ) ( ) mod 2g x f x≡ and corresponding 
sequence has maximum period 1(2 1)2k e−−  is ( 2) 1 12 (2 1)e k k− + − −  
for all 3.e ≥

Proof: Clearly total choices for ( )g x such that 
( ) ( ) mod 2g x f x≡  is ( 1)2 e k− and choices for those ( )g x which 

generate sequences of lesser period is ( 2) 12 .e k− +  Therefore, the 
number of ( )g x which generate sequences of maximum period 
is ( 2) 1 12 (2 1)e k k− + − − .

example Take 5 2( ) 1f x x x= + +  which is 
a primitive polynomial modulo 2 of degree 5. Let 

2 3 4 5
0 1 2 3 4( )g x a a x a x a x a x x= + + + + + be a polynomial of 

degree 5 over the ring 42
 such that ( ) ( ) mod 2.g x f x≡  The 

polynomial ( )g x satisfies eqn. (4) if and only if the coefficients
'ia s take any value out of the following { }0 1,5,9,13 ,a ∈

{ }1 2,6,10,14 ,a ∈ { }2 1,5,9,13 ,a ∈  { }3 0, 4,8,12 ,a ∈  and 
{ }4 0, 4,8,12 .a ∈  
The polynomial ( )g x satisfies eqn. (7) if and only if 

the coefficients 'ia s take any value out of the following 
{ }0 3,7,11,15 ,a ∈  { }1 2,6,10,14 ,a ∈  { }2 3,7,11,15 ,a ∈  
{ }3 0, 4,8,12 ,a ∈    and { }4 0, 4,8,12 .a ∈   Then the number 

of choices for polynomial ( )g x to satisfy Eqns. (4) and (7) 
simultaneously is 2 2 2 2 2 112(2 2 ).(2 ).(2 ).(2 ) 2 ,=  which is equal 
to the formula, given in Corollary 1. Therefore, the number of 
primitive polynomials 42

( ) [ ]g x x∈  corresponding to ( )f x
is 11 42 (2 1).−
lemma 6

Let ( )f x be a primitive trinomial mod 2 of degree ,k for 

k  even, l odd, and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  such 

that ( ) ( ) mod 2.g x f x≡  Then
2 2 2( ) ( ) 2 ( ) 0 mod 8g x g x g x+ − − ≡  

if and only if

i. 4ia r= for 1 ( , / 2) 1, 0i l k k r≤ ≠ ≤ − ≥  and  
ii. /2 2ka r=  for odd values of 1r ≥  and
iii. 4 1, 0ia r r= + ≥ for 0, .i l=   

lemma 7
Let ( )f x be a primitive trinomial mod 2 of degree ,k for 

k  even, l odd, and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  such 

that ( ) ( ) mod 2.g x f x≡  Then
2 2 2( ) ( ) 2( 1) ( ) 0 mod 8kg x g x g x+ − − − − ≡  

if and only if

i. 4ia r= for 1 ( , / 2) 1, 0i l k k r≤ ≠ ≤ − ≥  and  

ii. /2 2ka r=  for odd values of 1r ≥  and

iii. 4 3, 0la r r= + ≥ and

iv. 0 4 1, 0.a r r= + ≥    

theorem 2
Let ( )f x be a primitive trinomial mod 2 of degree ,k

for k  even, l odd, and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  

such that ( ) ( ) mod 2.g x f x≡  The period of the sequence 
corresponding to the recurrence relation (3) given by ( )g x is 
less than 1(2 1)2k e−− for all 3e ≥ if and only if  
i. 4ia r= for 1 ( , / 2) 1, 0i l k k r≤ ≠ ≤ − ≥  and  
ii. /2 2ka r=  for odd values of 1r ≥  and
iii. 2 1, 0la r r= + ≥ and
iv. 0 4 1, 0.a r r= + ≥    

Proof: Using Lemma 6 and 7, result holds.

corollary 3
Let ( )f x be a primitive trinomial mod 2 of degree ,k

for k  even, l odd. The number of  
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑ 

1, 2ka k= >  such that ( ) ( ) mod 2g x f x≡ and corresponding 
sequences have period
i. less than 1(2 1)2k e−−  is ( 2) 12 e k− + for all 3.e ≥
ii. 1(2 1)2k e−−  is ( 2) 1 12 (2 1)e k k− + − − for all 3.e ≥

theorem 3
Let ( )f x be a primitive trinomial mod 2 of degree ,k

for k  odd, l odd, and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  

such that ( ) ( ) mod 2.g x f x≡  The period of the sequence 
corresponding to the recurrence relation (3) given by ( )g x is 
less than 1(2 1)2k e−− for all 3e ≥ if and only if  
i. 4ia r= for 1 ( , ( ) / 2) 1, 0i l k l k r≤ ≠ + ≤ − ≥  and  

ii. ( )/2 2k la r+ =  for odd values of 1r ≥  and

iii. 4 1, 0la r r= + ≥ and

iv. 0 2 1, 0.a r r= + ≥    

corollary 4
Let ( )f x be a primitive trinomial mod 2 of degree ,k

for k  odd, l odd. The number of  
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑ 
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1, 2ka k= >  such that ( ) ( ) mod 2g x f x≡ and corresponding 
sequences have period
i. less than 1(2 1)2k e−−  is ( 2) 12 e k− + for all 3.e ≥

ii. 
1(2 1)2k e−−  is ( 2) 1 12 (2 1)e k k− + − − for all 3.e ≥

Therefore, from Corollary 2, 3 and 4, the number 
of 

2
0

( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  1, 2ka k= >  such that 

( ) ( ) mod 2g x f x≡ and corresponding sequences have period 

maximum period is ( 2) 1 12 (2 1)e k k− + − − for all 3.e ≥  

corollary 5
Let ( )f x be a primitive trinomial mod 2 of degree k , the 

number of different sequences of IRRs of period 1(2 1)2 ,k e−−

3e ≥ corresponds to a unique ( )f x is ( 1)(2 3) ( 1) 12 (2 1).k e e k− − + − − −   
Proof: According to Proposition 2, each primitive trinomial 
mod 2 generate ( 1)( 1)2 k e− −  different sequences of maximum 
possible period. The number of different polynomials 
which generate sequences of maximum possible period is 

( 2) 1 12 (2 1)e k k− + − − . Therefore, the number of different sequences 
with maximum possible period which correspond to ( )f x is 

( 1)(2 3) ( 1) 12 (2 1).k e e k− − + − − −
Thus for a unique primitive trinomial modulo 2, there 

are huge number of different sequences of maximum possible 
period. Furthermore, for a primitive trinomial modulo 2, all 
of the forms can be determined explicitly using Theorem 1, 2, 
and 3.

4. other than trInomIal of degree k>2  
In this section, we will enumerate the number of 

polynomials over 
2e corresponding to a primitive polynomial 

(other than trinomial) over mod 2 satisfying the Eqn. (2).
The structure of primitive polynomial f(x) mod 2 is 

unknown in terms of their weight; therefore assume the general 
polynomial as:

Let ( ) ,i

i A
f x x

∈

= ∑ where { }0 1 2 1, , , ..., sA l l l l += and 

0 1 1... 0, 1s sk l l l l s+= > > > > = > be a primitive polynomial 
mod 2 of degree ,k which satisfies the Eqn. (2) and let 

2
0

( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1ka =  be a polynomial of 

degree .k  We assume this throughout the section.

lemma 8
Let 

2
( ) [ ]eg x x∈ and ( )f x be two polynomials as 

considered above, then ( ) ( ) mod 2g x f x≡  if and only if 
gcd( , 2) 1, ,ia i A= ∈ otherwise gcd( , 2) 2.la =  

lemma 9
Let ( )f x be a primitive polynomial mod 2 of degree k  

and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1, 2ka k= >  such that 

( ) ( ) mod 2g x f x≡ . Then
2 2 2( ) ( ) 2 ( ) 0 mod 8g x g x g x+ − − ≡                              (8)

if and only if
i. 4 3, 0ia r r= + ≥ , for some  i A∈ and 

ii. 4 1, 0ia r r= + ≥ , for some  i A∈ and 
iii. 4 , 0ia r r= ≥ , for some  i A∉ and 
iv. 2 ,ia r r=  odd,  for other  .i A∉

Proof: Using Lemma 2,
2 2 2( ) ( ) 2 ( ) 0 mod 8g x g x g x+ − − ≡

 if and only if 
1

2

0 0 ,
2

2 ( 1) 4 0 mod 8, 0
k

i ji
i i i j

i i j k
i j m

a a x a a x m k
−

+

= ≤ < ≤
+ =

− + ≡ < <∑ ∑   
 

if and only if  coefficient of each power of x is zero mod 
8. That is 

0 02 ( 1) 0 mod 8a a and− ≡  

0 ,
2

2 ( 1) 4 0 mod 8 1 1.m m i j
i j k

i j m

a a a a for m k
≤ < ≤
+ =

− + ≡ ≤ ≤ −∑  

Since ,ia i A∈   is odd and ,ia i A∉  is even, therefore
 

0 ,
2

4 ,
4 mod 8

0,
i j

i j
i j k

i j m

a a for some i j A
a a

otherwise≤ < ≤
+ =

∈
≡ 


∑

Thus Eqn (8) holds if and only if
 2 ( 1) 4 0 mod 8m m i ja a a a− + ≡  for some m                 (9)
and corresponding to some ,i j A∈  and
 2 ( 1) 0 mod 8m ma a − ≡   for other 'm s                        (10)
The Eqn (9) holds if and only if

2 ,ma r r=  odd for some even value of ma  and 
4 3, 0ma r r= + ≥ , for some odd value of ma .

Also the Eqn (10) holds if and only if
4 , 0ma r r= ≥ , for some even value of  ma  and 
4 1, 0ma r r= + ≥ , for some odd value of ma .

Therefore, Eqn (8) holds if and only if
4 3, 0ma r r= + ≥ , for some m A∈  and 
4 1, 0ma r r= + ≥ , for other m A∈ and
4 , 0ma r r= ≥ , for some m A∉  and 
2 ,ma r r= odd, for other m A∉ .

lemma 10
Let ( )f x be a primitive polynomial mod 2 of degree k  

and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1, 2ka k= >  such that 

( ) ( ) mod 2g x f x≡ . Then
2 2 2( ) ( ) 2( 1) ( ) 0 mod 8kg x g x g x+ − − − − ≡                 (11)

if and only if
i. 4 3, 0ia r r= + ≥ , for some  i A∈ and 
ii. 4 1, 0ia r r= + ≥ , for some  i A∈ and 
iii. 4 , 0ia r r= ≥ , for some  i A∉ and 
iv. 2 ,ia r r=  odd, for other  .i A∉

The condition in following theorem is the combination of 
conditions in Theorem 1, 2 and 3.

theorem 4
Let ( )f x be a primitive polynomial mod 2 of degree k  

and 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1, 2ka k= >  such that 
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( ) ( ) mod 2g x f x≡ . The period of the sequence corresponds to 
the recurrence relation (3) is less than 1(2 1)2k e−− for all 3e ≥  
if and only if
i. 4 , 0,ia r r= ≥ for some i A∉  and  
ii. 2 ,ia r r= odd, for some i A∉  and  
iii. 4 1, 0,ia r r= + ≥ for some i A∈  and
iv. 4 3, 0,ia r r= + ≥ for some i A∈  and
v. 4 3 4 1, 0,ia r or r r= + + ≥ for some i A∈  and (if 

occurs for more than one ia  as in Theorem 1 because of 
dependency).

corollary 6
Let ( )f x be a primitive polynomial mod 2 of degree .k  

The number of 
2

0
( ) [ ],e

k
i

i
i

g x a x x
=

= ∈∑  where 1, 2ka k= >  

such that ( ) ( ) mod 2g x f x≡ and corresponding sequences 
have period
i. Less than 1(2 1)2k e−−  is ( 2) 12 e k− +  for all 3.e ≥  
ii. 1(2 1)2k e−−  is 1 ( 2) 1(2 1)2k e k− − +−  for all 3.e ≥  

corollary 7
Let ( )f x be a primitive polynomial mod 2 of degree 

,k the number of different sequences of IRRs of period 
1(2 1)2 , 3k e e−− ≥ corresponding to a unique ( )f x is 

( 1)(2 3) ( 1) 12 (2 1).k e e k− − + − − −
Thus the number of different sequences is same as in 

Corollary 5.

5. trInomIal of degree 2k =  
In this section, we will enumerate 

2
1 0 2

( ) [ ],eg x x a x a x= + + ∈  3e ≥ for maximum possible 
period 2 1(2 1)2e−− with 1a and 0a as an odd integers.

If 1 1a = and 0 1a = , then the only primitive trinomial 
2( ) 1f x x x= + + modulo 2 does not satisfies the condition of 

maximum possible period as given in Proposition 1. Therefore, 
the condition given in Proposition 1 is for 2.k >   Instead of 
this, a degree 2 trinomial can generate sequences of maximum 
possible period for other odd values of 1a and 0a and these 
values can be determined from the following theorem.

theorem 5
Let 2

1 0 2
( ) [ ],eg x x a x a x= + + ∈  3e ≥ be a polynomial, 

then
2 2 2( ) ( ) 2 ( ) 0 mod 8g x g x g x+ − − ≠  and                    (12)
2 2 2 2( ) ( ) 2( 1) ( ) 0 mod 8g x g x g x+ − − − − ≠                 (13)

if and only if 0 4 3, 0a r r= + ≥ .
Proof: Using Lemma 2 and 3, 
2 2 2 2

1 1 0 0 0( ) ( ) 2 ( ) [2 ( 1) 4 ] 2 ( 1)g x g x g x a a a x a a+ − − = − + + −  
and 

2 2 2 2 2
1 1 0 0 0( ) ( ) 2( 1) ( ) [2 ( 1) 4 ] 2 ( 1).g x g x g x a a a x a a+ − − − − = + + + −

Since 0a and 1a are odd, then 1 1 02 ( 1) 4 0 mod 8a a a− + ≡
for 1 3a ≥ always. Thus Eqns (12) and (13) depends only on 

0a .

Therefore Eqns. (12) and (13) holds if and only if

0 02 ( 1) 0 mod 8a a − ≠ .
Since 0a is odd, then 0 02 ( 1) 0 mod 8a a − ≠ if and only if 

0 4 1, 0a r r≠ + ≥ .
Thus Eqns. (12) and (13) holds if and only if  

0 4 3, 0.a r r= + ≥

corollary 8
For odd 0a and 1a , the number of different 

2
1 0 2

( ) [ ],eg x x a x a x= + + ∈ 3e ≥  which generate sequences 
of maximum period is 2 32 e− .

Proof: Since 1a  is an odd integer, therefore 1a  has 12e−

choices. Also 0a is odd and has the form 4 3, 0,r r+ ≥ therefore 
0a  has 22e− choices. Thus number of different polynomials 

which generate sequences of maximum period is 2 32 .e−  

corollary 9
The number of different sequences corresponding to 

2-degree IRR of maximum possible period for 3e ≥  is 3 42 .e−

Proof: Since each polynomial generates ( 1)( 1)2 e k− − different 
sequences (using Proposition 2), therefore the number of 
different sequences of period  13*2e−  is 3 42 .e−  

If 2k = , then the number of different sequences  in 
Corollary 5 is equal to the number of different sequences in 
Corollary 9.

For each case, the number of different polynomials of 
maximum period is ( 1)(2 3) ( 1) 12 (2 1)k e e k− − + − − − for 3e ≥ and the 
number of different polynomials of period less than maximum 
is ( 2) 12 e k− +  for all 3e ≥ . 

If 1e = , then the number of different polynomials of 

maximum period is (2 1) ,
k

k
Φ −  since primitive polynomial 

mod 2 has maximum period.
If 2e = , then polynomial ( )f x given in Proposition 

(1a)  needs to satisfy only the second part of  the Eqn.  (2) for 
maximum period as given in references4,9.  Therefore Lemma 
5 holds only for one choice of ( ),g x out of total 2k choices 
of ( )g x in 22

[ ]x . Thus the number of different polynomials 
giving maximum period in 22

[ ]x is 2 1.k −  Similarly for other 
cases, we get the same result.

remark: The number of primitive polynomials of degree
k in modulo 2 satisfying the condition of Proposition 1 is 

( 2) 1 1(2 1) 2 (2 1)
k

e k

k
− + −Φ −

−  for 3.e ≥  For general ,p  we refer 

the readers to the article10 and the references cited there. The 
way of counting (as explained in previous part of this paper) 
the number of desired polynomials also describes an explicit 
method for the construction of polynomials for maximum 
period.

6. conclusIon
Integer recurrence relations are being used in  

cryptographic applications as pseudo random number sequence 
generators.  For a given primitive polynomial modulo 2 
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satisfying the condition of maximum period given by Brent, 
there exist many different polynomials in the ring

2
[ ]e x  with 

same period and this number is huge. It will be difficult for 
a cryptanalyst to find out the exact one used in the designed 
system. We have counted the number of such polynomials 
and also given an explicit method for construction of such 
polynomials.
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