
636

NomeNclature
Bri 16-bit branch
MK 64-bit master key
MKi 16-bit word
rki 16-bit subkey
rF Round function

()j
irk k 32-bit round key

F Compression function
⊕ Bitwise exclusive-OR operation

n Left cyclic shift by n bits
n Right cyclic shift by n bits

[i]2 Binary representation of integer i
RC Round constant [i]2 for round i
 Concatenation of two n-bit strings
& Bitwise AND of two n-bit strings
B A← A is transformed to B

1. INtroDuctIoN
Last two decades will be commemorated as a revolutionary

period in the field of information technology. There is a sharp
increase in the usage of internet in mobile applications and
shopping through e-commerce portals. We need to secure
the internet data traffic to boost the confidence of common
people and thereby achieving the dream goals like digital India
movement1 by Government of India. Hash function plays an
important role in authentication of data traffic over the internet.
Hash functions are mainly intended to ensure the integrity of
data in cryptographic applications2. But there is other usage

of hash functions in speeding up the search of data in look-up
tables3. Hash function takes an arbitrary length input message
and converts it into a fixed size output4. The outcome is known
as the message digest and works like a thumb print for the
intended message. Any single bit difference in the input should
result in approximately 50 per cent change in output bits.

Hash functions were introduced by Diffie and Hellmen
in 1970 and most of the hash designs were based on block
ciphers. The first hash function was based on block cipher
DES5. There are hundreds of new hash functions published
since their evolution6,7. The widely used hash functions
are MD58,9 and SHA-1 family10. NIST announced SHA-3
competition for selecting a secure and efficient hash function.
In 2012, sponge based construction Keccak was selected as
SHA-3 standard11. The design of hash functions can be divided
into three categories: hash function based on block ciphers,
hash function based on arithmetic functions and dedicated hash
functions12. The majority of cryptographic hash functions lies
in dedicated hash function category.

In the process of designing a secure and efficient hash
function, we should make use of the cryptographic components
that are well reviewed over the years as well as efficient to
implement in software and hardware3,13. Block ciphers have a
long fascinating history and data encryption standard (DES) is
the first established block cipher. There are much clear security
definitions to prove the security claims for a block cipher
and we can utilise the design and evaluation effort of a block
cipher5. Therefore, we have used the lightweight block cipher
FeW14 in the compression function to increase the efficiency
without compromising the security. Since, the key expansion
algorithm in block ciphers is not designed very carefully, it

HeW: a Hash Function based on lightweight Block cipher FeW

Manoj Kumar#,@,*, Dhananjoy Dey#, S.K. Pal#, and Anupama Panigrahi@

#Scientific Analysis Group, Delhi - 110 054, India
@Department of Mathematics, University of Delhi, Delhi - 110 007, India

*E-mail: manojkumar@sag.drdo.in

aBStract

A new hash function HeW: A hash function based on light weight block cipher FeW is proposed in this paper.
The compression function of HeW is based on block cipher FeW. It is believed that key expansion algorithm of
block cipher slows down the performance of the overlying hash function. Thereby, block ciphers become a less
favourable choice to design a compression function. As a countermeasure, we cut down the key size of FeW from
80-bit to 64-bit and provide a secure and efficient key expansion algorithm for the modified key size. FeW based
compression function plays a vital role to enhance the efficiency of HeW. We test the hash output for randomness
using the NIST statistical test suite and test the avalanche effect, bit variance and near collision resistance. We
also give the security estimates of HeW against differential cryptanalysis, length extension attack, slide attack and
rotational distinguisher.

Keywords: Block cipher; FeW; Lightweight block cipher; Wide-pipe construction

Defence Science Journal, Vol. 67, No. 6, November 2017, pp. 636-644, DOI : 10.14429/dsj.67.10791
 2017, DESIDOC

Received : 17 October 2016, Revised : 29 March 2017
Accepted : 08 August 2017, Online published : 06 November 2017

KuMAR, et al.: HeW: A HASH FuNcTION BASeD ON LIGHTWeIGHT BLOcK cIPHer FeW

637

may lead to an attack on block cipher based hash function. We
need a strong key schedule for the block cipher which can be
used to design a compression function. Therefore, we modified
the key size of block cipher to 64-bit and provide a stronger
key expansion algorithm for FeW used in HeW.

2. lIGHtWeIGHt BlocK cIPHer: FeW
FeW is a lightweight block cipher with 64-bit block size

and 80/128 bits key size proposed by Kumar14, et al. It is based
on Feistel-M structure which is an admixture of Feistel and
generalised Feistel structures. FeW is designed to achieve high
efficiency in software based applications. Nemati15, e. al. have
illustrated that FeW can be implemented in hardware with
very small area requirement. It suggests that FeW can also be
applied in hardware based platforms.

We now briefly discuss the round function and key
expansion algorithm for 64-bit key. Swap function is used after
32 rounds of each iteration.

2.1 one round FeW
We divide the 64-bit input block into four branches

1 2 3, ,Br Br Br and 4Br of size 16-bit each. round function rF
takes 3 4, Br Br and 32-bit round key as input and produces the
32-bit output. Most significant 16 bits of the output are XOred
with 1Br and least significant 16 bits are XOred with 2Br ,
which gives the new values of 3Br and 4Br for next round.
Old values of 3Br and 4 Br remains unchanged and these are
the new values of 1Br and 2Br respectively for next round. One
round of FeW is shown in Fig. 1.

2.3 Key expansion algorithm (FeWKe)
Block cipher based hash function treats the input message

as a key for the underlying block cipher used in the compression
function. Any tiny weakness in the key expansion algorithm
can lead to a serious attack on the hash function, so we need
a stronger key expansion algorithm. We reduce the key size
to 64-bit and present the key expansion algorithm of FeW for
the 64-bit key which is much stronger than the key expansion
algorithm for 80-bit key. We use the modified version of FeW
to design the compression function of HeW. We write the 64-
bit master key MK as a concatenation of four 16-bit words

1 2 3 , , MK MK MK , and 4MK . current contents of 1MK is stored
as the first 16-bit round key. Key register is updated using
S-box and cyclic shift. S-box is applied on most significant 4
bits of 1 4& MK MK and least significant 4 bits of 4MK while
the middle 8 bits of 4MK is XOred with a round constant
rc. Finally, the 64-bit register is left rotated by 13 bits. After
updating the key register, current contents of MK1 is stored as
the subsequent 16-bit round keys. Key expansion algorithm for
64-bit key is given in Fig. 3.

2.4 Swap Function
We have 64-bit output after processing the 64-bit input

message and the 64-bit key in each round. After 32 rounds,
swap function is used to exchange the current contents in the
least significant 32 bits and most significant 32 bits.

3. merKle-DamGårD aND WIDe-PIPe
coNStructIoNS
There are many approved hash construction methods

which can be used to design a hash function based on a block
cipher15-17. Merkle-Damgård is the basic construction method
which is used by the majority of hash function designs18. This
method uses only one compression function f to compute

the hash digest. After padding the arbitrary length input
message, it processes the b -bit message block and n -bit
 as input and generates the n -bit hash digest after
processing all message blocks iteratively.

x 0 1 2 3 4 5 6 7 8 9 a B c D e F
S(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D

table 1. S-box (S)

Figure 1. FeW1R.

Figure 2. round function rF.

2.2 round Function (rF)
round Function takes 32-bit input iX in the form of two

16-bit Feistel branches. First, these 2 branches are XOred with
two 16-bit round subkeys. Thereafter, it mixes the data between
Feistel branches by swapping the least significant bytes of the
two branches. Then, S-box S(Table 1) is applied 4 times in
parallel on each branch. Finally, there is an application of two
different permutation layers on each branch. We get the output

iY from rF. round function of FeW is shown in Fig. 2.

638

DeF. ScI. J., VOL. 67, NO. 6, NOVeMBer 2017

{ } { } { } : 0,1 0,1 0,1n b nf × →

Wide-pipe construction was proposed by Stefan Lucks18,19.
This method was proposed to counter the weaknesses in Merkle-
Damgård construction which was prone to the length extension
attack. This method uses two compression functions f and g
to compute the hash digest. After padding the arbitrary length
message, first function f is used to iteratively process the b
-bit message block and w -bit  to generate w -bit output.
After processing the complete message, second function g
takes w -bit input to generate the n -bit message digest.

{ } { } { } : 0,1 0,1 0,1w b wf × →

{ } { } : 0,1 0,1w ng →

 where w n≥

4. ProPoSeD HaSH FuNctIoN: HeW
We use Wide-pipe construction method to design our

proposed hash function HeW. Message block size and chaining
variable size are to be of same length (2n -bit) to generate the n
-bit hash digest. compression function takes two inputs (512-
bit message block im and 512-bit chaining variable 1ih −) and
outputs a 256-bit hash digest, where initial value of chaining
variable is fixed as 512

0 0h = = .

4.1 Padding rule
HeW iteratively processes the 512-bit input message

blocks. The length of input message may not be a multiple of
512, so we need to pad20 the arbitrary length input message to
make it a multiple of 512. If the message length is a multiple
of 512 then we add one dummy padding block to the message.
Suppose length of an input message M is  bits. We append
the bit ‘1’ at the end of message M , after that we append
()2 512 0̀ ' k mod− − ≡

bits and finally the bit ‘1’ is appended
at the end of padding. We now have a padded message m
whose length is a multiple of 512.

4.2 Parsing
We divide the input padded message m in t blocks of size

512-bit each as follows:
1 2 || () || || ... || tm M Pad M m m m= =

We process one 512-bit message block im at a time
iteratively.

4.3 compression Function
In each iteration of compression function F , we process

the 512-bit message block im by dividing it into the eight 64-
bit words : 0 7 j

im j≤ ≤ . There are eight parallel applications
of FeW inside F and these 64-bit words are used as key. For
each 64-bit word, we apply key expansion algorithm KEFeW .
We get 32 round keys of size 32-bit each corresponding to the
one 64-bit word. In total, we generate 256 32-bit round keys for
eight 64-bit words. We divide 512-bit chaining variable 1ih − into
eight 64-bit words 1 : 0 7j

ih j− ≤ ≤ . We take these 64-bit words
as input messages to the eight applications of FeW. 1RFeW
is applied using round keys (): 0 7 , 1 32 j

irk k j k≤ ≤ ≤ ≤
and message 1

j
ih − : 0 7 j≤ ≤ .After each round, 512-bit register

is rotated left by 16 bits. After 32 rounds, SWAPFeW is applied
on each 64-bit word. After processing the last 512-bit message
block, the most significant 256-bit is stored as hash digest of
the message. Figure 4 gives the processing of one message
block using HeW.

4.4 Hash construction
Compression function of HeW takes chaining variable

1 ih − and message block im as inputs in each iteration.
Compression function updates the chaining variable to ih after
each iteration. After processing all of the t message blocks, the
most significant 256 bits are received as the hash digest for the
input message M as follows (Algorithm 1):

()
() ()

0

1

256

 , 1 i i i

t

h
h F h m for i t

Hash M trunc h
−

=

= ≤ ≤

=



5. aNalYSIS
Software and hardware performance of HeW is presented

here. We also discuss the statistical analysis of HeW and
differential cryptanalysis, length extension attack, slide attack
and rotational attack on the compression function of HeW.

5.1 Software Performance
We have used an Intel(r) core(TM) i7-3770 cPu @3.40

GHz processor with 8 GB rAM and 64-bit operating system
for benchmarking. We run the code of HeW and SHA-256
several times for three different size data files and calculated
the throughput as average running time in MB/Sec. We show
the performance comparison of HeW and SHA-256 in Table 2.
The results indicate that HeW performs better than SHA-256
in software.

5.2 Hardware Performance
Nemati15, et. al. have illustrated that lightweight

block cipher FeW is quite efficient for hardware oriented
applications. It is shown that FeW can be implemented

File size (mB) HeW (s) SHa256 (s)
1 0.227 0.352
5 1.127 1.738
10 2.238 3.471

table 2. Software performance

Figure 3. Key expansion algorithm.

KuMAR, et al.: HeW: A HASH FuNcTION BASeD ON LIGHTWeIGHT BLOcK cIPHer FeW

639

in hardware with very small area requirements. It will be
practically implemented using 125 number of slices and
264 look up tables (LuT). We have used FeW eight times
in parallel in compression function of HeW with reduced
key size (64-bit). reduction in the key size will not have
much effect on its performance. We estimate that HeW can
be efficiently implemented in hardware with a maximum of
1000 slices and 2112 look up tables. This seems to be a good
number in terms of hardware performance.

5.3 NISt randomness tests
Hash digest for any arbitrary length message must

satisfy the randomness properties21. We test the random
nature of hash digest using NIST Statistical Test Suite SP800-
2222. We need 100 different files and each file should contain
approximately 10 lakh bits for testing the randomness. We
process each message and get a 256-bit hash output for the
intended message. To generate the required 10 lakh bits, we
keep on applying the hash function HeW until we get the 10
lakh bits in the output file. We have the following results
(Table 3) on 100 files using the NIST suite for the 5 basic
randomness tests.

5.4 Near-collision resistance
If two different input messages generate the almost same

hash value, then this can lead to a collision attack23. If it is
computationally hard to find two different messages whose
hash output differ in the small number of bits then hash

Figure 4. compression function F.

1 2

0 1 7
1 1 1 1

0 1

64 64 6

7

4
0

input : , ,...,
1) do

(|| || ... ||) ,

 (

for (
= 0 ||0 ||...||0 ,

|| || ... ||) ,
0 7) do

 (),

 h

 for (

t

i i i i

i i i i

j j
i KE i

m m m
i to t

h h h h

m m m m
j to
RK FeW m

− − − −

=

←

←
=

←

= � � �

1 1

0 1

 for (
 for

 (1) || (2) || ... || (32)
 end

1 32) do
0 7) do

 ((),)
 end
 || | .

(

|

j j j j
i i i i

i R i i

i i i

RK rk rk rk

k to
to

C FeW rk k h

C C C

−

=

=
=

←

=

  



7

16
0 1 7

0 1 7 0 1 7
1 1 1

.. || ,
 ()

 || || ... ||

 (|| || ... ||) (|| || ... ||)
 end

0 7) do
 (),

 for

 en

(

i

i i

i i i i

i i i i i i

j j
i SWAP i

C
D rotl C

D D D D

h h h D D D

j to
h FeW D

− − −

←

=

←

=

←

0 1 7

256

d
 || || ... ||
end

 ();

i i i i

t

h h h h

return H MSB h

=

←algorithm 1. Hash construction

640

DeF. ScI. J., VOL. 67, NO. 6, NOVeMBer 2017

function is called near-collision resistant. We checked the near-
collision resistance of HeW by generating the large number of
input files. We have generated 100,000 random input message
files and calculated their hash value using HeW. We selected
two random files from the hash digest lot and calculate their
hamming distance. We can choose two files out of 100,000

files in
100000

2
 
 
 

 different ways which gives 4,999,950,000

different file combinations. We analysed the results for all
combination of files. We can get the hamming distance values
in the range of 0,1 , 2, ... , 256 . We got the minimum and
the maximum value of hamming distance as 78 and 181 bit
differences, respectively. The maximum value for
the hamming distance occurred 249,073,042 times
which is recorded for the 128 bit difference.

We get the difference between 108 and 148 for
the following number of files

(108 <\ # files <148)=4,948,691,207(i.e., 98.97%)
We got approximately 99 per cent of the

files having the hamming distance range between
128 20± which indicates that these won’t lead to
any near-collision attack. The hamming distance
between two files needs to be really small viz. up to 16-bit
to generate a near collision. Hence, we can say that HeW is
resistant to near-collision attack.

5.5 avalanche effect
Avalanche criterion states that if we change 1-bit in the

input then there must be an approximate 50 per cent change in
the output bits23. We tested the Avalanche effect on the output

of HeW. We started with a 1024-bit message M0 which is shown
in Appendix B.

For 1 1024i≤ ≤ , we generated 1024 messages (iM) with
1 -bit difference from 0M as follows:

0 (1)iM M i= ⊕ <<

We applied HeW on these 1025 messages and calculated
256-bit hash for each message. For 1 1 024i≤ ≤ , we found
the hamming distance between Hash (0M) and Hash (iM)
as shown in Table 4. We also computed the
hamming distances word-wise. We divided the
256-bit hash output into the eight 32-bit words
(1 2 8, ,..., W W W). results for the minimum (Min), maximum
(Max), mode and average value of distances is shown in
Table 4. We plotted the hamming distance range of 1024 files
for 256-bit hash digest in Fig. 5 which shows that they are
almost uniformly distributed i.e., change in one bit of the input
carries 50 per cent change in the hash digest.

5.6 Bit Variance test
Bit variance test is one of the statistical tests for testing

the random nature of the binary data. This test measures the

Statistical test P-Value Proportion
Frequency 0.026948 100/100
Block frequency 0.2022686 100/100
Runs 0.637119 99/100
Overlapping template 0.085587 100/100
Serial 0.102526 99/100

table 3. NISt test results

range of hamming
distances

Number of files
within range

change in output bits of
HeW digest (per cent)

128 + 5 538 52.53

128 + 10 806 78.71

128 + 15 969 94.62

128 + 20 1011 98.73

table 5. range of hamming distances

Figure 5. Hamming distances range of the 1024 files.

changes W1 W2 W3 W4 W5 W6 W7 W8 HeW

Min 7 7 8 8 7 7 8 8 96

Max 24 24 24 26 24 24 25 25 153

Mode 17 17 16 17 17 15 16 16 126

Mean 16.08 15.94 15.95 16.05 16.14 15.89 16.07 16.01 128.17

table 4. Hamming distances

AVALANcHe eFFecT

N
u

M
B

er
 O

F
B

IT
S

FL
IP

Pe
D

NuMBer OF FILeS

KuMAR, et al.: HeW: A HASH FuNcTION BASeD ON LIGHTWeIGHT BLOcK cIPHer FeW

641

impact for change in the input message bits on the digest bits.
A variable length input is transformed to a 256-bit hash digest
using HeW. If there is a change in one or some of the input bits,
then impact of this change on each of the output bit should be
uniform23. We took the same set of 1025 messages which we
have used to measure the avalanche effect. We got the 256-
bit hash output for each of the 1025 messages. For each bit
position in the hash digest, we calculate the probability of
this bit being 1 . If the probability, () ()1 0 1/ 2i iP P= = for all
digest bits 1, ..., 256i = then we assured that HeW passes the bit
variance test. Since it is computationally infeasible to consider
all input message bit changes, we have considered the results
only for 1025 files, viz. 0 1 2 1024, , , , M M M M… . We found the
following results for mean frequency of 1s:

Digest length = 256
Number of digests = 1025
Mean frequency of 1s (expected) = 512.50
Mean frequency of 1s (calculated) = 512.44
We plotted the probability for each of the bits (256-bit) in

Fig. 6 and observed that average probability of 1’s is
approximately 0.50. This indicates that HeW passes the bit
variance test.

5.7 Differential cryptanalysis
Differential attack is the basic cryptanalysis technique

used on block ciphers. It was the first successful attack applied
on DES by Biham and Shamir24, which reduced the key search
complexity of DeS than the exhaustive search. We used
the probabilistic relationship between the input and output
differences of a cipher to mount this attack. We analysed the
components of a cipher to construct a high probability trail
by joining several one round relations. We used lightweight
block cipher FeW to design the hash function HeW. Security
proof of FeW is provided by Kumar14, et.al. which shows that
FeW is secure against differential cryptanalysis. It is proved
that differential attack on FeW cannot be applied beyond 14
rounds. We have theorem 1 for the bound on the number of
active S-boxes in any three rounds of FeW.

theorem 1. Any three rounds of FeW have a minimum of
five active S-boxes14.

We used the technique of counting the minimum number
of active S-boxes in a differential trail25,26. HeW uses single
4 4 S× -box inside the compression function. The maximum
differential probability in one S-box application14 is 22− . There
are 8 parallel applications of 1RFeW on the 512-bit register
inside the compression function. After each round, 512-bit
register is rotated left by 16 bits. We called the 1RFeW block
as active 64-bit word, if there is some non-zero nibble as input
to 1RFeW block. We start with a non-zero difference in a
4-bit nibble within one 64-bit message block. After applying
key expansion algorithm, it is guaranteed that the non-zero
difference in any 4-bit nibble will be used as a round subkey
after 2 rounds. We do not count the S-boxes which are activated
during the key expansion. We considered the effect of one 4-bit
non-zero nibble only. We counted the number of active 1RFeW
blocks which are shown in the Fig. 7 and Table 6. We also have
the following theorem for 1RFeW blocks.

theorem 2. After every 2 rounds in the compression
function of HeW, one new 64-bit block gets activated for input
to the 1RFeW .

All 1RFeW blocks (i.e. 8) gets activated after 17 rounds.
using theorem 1 and 2, we find the minimum number of active
S-boxes in the full round differential trail of HeW as follows:
(i) There are 60 active S-boxes in the first 16 rounds of

compression function.
(ii) Due to one active 1RFeW block, there are 25 active

S-boxes in the last 16 rounds.
(iii) We get 200 active S-boxes in the last 16 rounds due to the

8 active 1RFeW blocks from round 17 to 32.
Thus, any 32-round differential trail will consist of 260

active S-boxes, which guarantees that we can get ()26022− i.e,
5202− as the maximum differential probability for any 32-round

trail of HeW. As a result, we require 5202 chosen plain-text
pairs to distinguish the most significant 64-bit of the hash
digest. This bound ensures that differential attack cannot be
applied to the hash function HeW.

Figure 6. the probability of the bit position.

BIT VArIANce TeST

Pr
O

B
A

B
IL

IT
y

 O
F

1’
S

BIT POSITIONS

642

DeF. ScI. J., VOL. 67, NO. 6, NOVeMBer 2017

5.8 length extension attack
If we used hash function as a message authentication

code (MAC), then length extension attack can lead to forgery
attack against MAc’s. This attack was devised for MD5 hash
algorithm which process the n -bit message and n -bit  in
one iteration and finally generates n -bit hash digest18. For a
message M , we get padded message as () ||m M Pad M= . If
we use MD5 hash function and know the length of the message,
then we can use ()H m as  and append the message 'M
as ()' || 'm H m M= . We now calculated the hash value of the
extended message, which will be a valid MAC for the message

'm . To prevent this attack, we can use wide-pipe mode of hash
construction which takes 2n -bit  and 2n -bit message as
input and n -bit hash digest is generated. HeW takes two inputs
(512-bit  and 512-bit message block) and outputs 256-bit

hash digest. In case of hash function HeW, length of the hash
output is half of the length of  , therefore we conclude that
length extension attack cannot be applied on HeW.

5.9 Slide attack
Slide attack was proposed for block ciphers and it is used

to recover the key in a block cipher27. It exploits the weakness
in the key schedule of a block cipher and construct a slid pair
using the similarity in the round keys. We have used the block
cipher FeW to design the hash function HeW, so we need to
consider the security from slide attack. There are two types
of possible slide attacks. The first kind of slide attack applies
sliding on round transformation, while the second kind of
attack applies sliding on message block. There are certain
preventive measures used in FeW to counter this attack. The
first layer of security is the use of round constant in the key
expansion algorithm. Secondly, we imbibe a 16-bit left rotation
in HeW which is another measure to prevent the slide attack.
We, therefore conclude that slide attack cannot be applied to
HeW.

5.10 rotational Distinguisher
Rotational distinguisher was proposed to analyse the

ArX based structures28. This attack has been less effective
on the designs using S-box and MDS type layers in their
round function27. There is an application of 4x4 S-box in the
round function of HeW. This attack can work for HeW, if the
rotation amount is a multiple of the size of the S-box (i.e. 4).
The rotational value other than 4 will be destroyed by the
application of 4x4 S-box. If we take the rotational value as 4,
then rotational pair will be further destroyed by the application
of nibble permutation layer on 16-bit branches inside round
function and 16 bits rotation after every round. We, therefore

round No of active
FeW1R blocks

round No of active
FeW1R blocks

1 0 17 8
2 0 18 8
3 1 19 8
4 1 20 8
5 2 21 8
6 2 22 8
7 3 23 8
8 3 24 8
9 4 25 8
10 4 26 8
11 5 27 8
12 5 28 8
13 6 29 8
14 6 30 8
15 7 31 8
16 7 32 8

table 6. minimum number of active FeW1R blocks in 32-
round trail

Figure 7. Differential trail for round 3 to 16.

KuMAR, et al.: HeW: A HASH FuNcTION BASeD ON LIGHTWeIGHT BLOcK cIPHer FeW

643

conclude that rotational distinguisher cannot be effectively
applied to our hash function HeW.

6. coNcluSIoN
A new hash function HeW which is based on a lightweight

block cipher is proposed in this paper. The compression
function of HeW is built using a software oriented lightweight
block cipher FeW which can also be implemented in hardware
efficiently. The collision resistance bound for HeW is 2128, which
is better than present security recommendations of 2112. We have
presented the analysis of HeW for differential attack, length
extension attack, slide attack and rotational distinguisher. We
applied NIST test suite on the data generated using HeW and it
passes the randomness tests. It also passed other tests including
avalanche effect, bit variance test and near-collision resistance.
Software efficiency of our design is better than SHA-256. The
compression function of MD4 and SHA-1 family are based
on Merkle-Damgård construction which is prone to the length
extension attack. Therefore, our proposed scheme can work as
a better alternative to the MD4 and SHA-1 family in terms of
security and efficiency.

reFereNceS
1. Government of India, digital India - Power to empower.

http://digitalindia.gov.in (Accessed on Accessed on 13
September 2016)

2. Naor, M. & yung, M. universal one-way hash functions
and their cryptographic applications. In Proceedings 2st
AcM Symposium on the Theory of computing, 1990, pp.
33-43.

 doi: 10.1145/73007.73011
3. Bartkewitz, T. Building hash functions from block

ciphers. their security and implementation properties,
ruhr-university Bochum, 2009, pp. 1-22.

4. Preneel, B. Analysis and design of cryptographic hash
functions. Doctoral Dissertation, Katholieke universiteit
Leuven, 1993, pp. 1-338.

5. Lai, X. & Massey, J. Hash functions based on block
ciphers. In Eurocrypt, LNCS, Springer, 1993, 658, pp.
55-70.

 doi: 10.1007/3-540-47555-9_5.
6. Damgard, I. A design principle for hash functions. In

Crypto, LNCS, Springer, 1989, 435, 416-427.
 doi: 10.1007/0-387-34805-0_39
7. Gauravaram, P. & Knudsen, L.r. cryptographic hash

functions. In Handbook of Information and communication
Security. Springer, 2010, pp. 59-80.

8. rivest, r.L. The MD4 message digest algorithm. In
Advances in cryptology, Proceedings crypto 1990.
LNCS, Springer-Verlag, 1991, 537, 303-311.

 doi: 10.1007/3-540-38424-3_22
9. coron, J.S.; Dodis, y.; Malinaud, c. & Puniya, P. Merkle-

damgard revisited: How to construct a hash function,
advances in cryptology. In Proceedings crypto, LNcS,
Springer-Verlag, 2005, 3621, pp. 430-448.

 doi: 10.1007/11535218_26
10. regenscheid, A.; Perlner, r.; chang, S.; Kelsey, J.;

Nandi, M. & Paul, S. Status report on the first round of

the SHA- 3 cryptographic hash algorithm competition.
NIST Internal reports 7620, 2009. http://csrc.nist.gov/
groups/ST/hash/sha-3/round1/documents (Accessed on
27 December 2015).

11. Bertoni, G.; Daemen, J.; Peeters M. & Assche, G. V. The
Keccak SHA-3 submission. 2011. http://keccak.noekeon.
org/ (Accessed on 2 August 2015).

12. ISO/Iec 10118, Information Technology, Security
Techniques, Hash-functions, Pt 1: General, 2000; Pt 2:
Hash-functions using an n-bit Block cipher Algorithm,
2000; Pt 3: Dedicated Hash-functions, 2003; Pt 4: Hash-
functions using Modular Arithmetic, 1998.

13. Stam, M. Block cipher based hashing revisited, fast
software encryption. LNCS, Springer-Verlag, 2009, 5665,
67-83.

 doi: 10.1007/978-3-642-03317-9_5
14. Kumar, M.; Pal, S.K. & Panigrahi, A. FeW: A lightweight

block cipher. cryptology ePrint Archive, report 2014/326,
2014. http://eprint.iacr.org/2014/326.pdf (Accessed on 25
June 2015).

15. Nemati, A.; Feizi, S.; Ahmadi, A.; Haghiri, S.; Ahmadi,
M. & Alirezae, S. An efficient hardware implementation
of FeW lightweight block cipher. In IEEE Symposium on
Artificial Intelligence and Signal Processing, 2015, pp.
273-278.

 doi: 10.1109/AISP.2015.7123493.
16. Preneel, B.; Govaerts, r. &Vandewalle, J. Hash functions

based on block ciphers: A synthetic approach. Advances
in Cryptology, In Proceedings crypto, LNcS, Springer-
Verlag, 1994, 773, 368-378.

17. rogaway, P. & Steinberger, J.P. constructing cryptographic
hash functions from fixed-key block ciphers. Advances
in Cryptology, In Proceedings crypto, LNcS, Springer-
Verlag, 2008, 5157, pp. 433-450.

 doi: 10.1007/978-3-540-85174-5_24
18. Lucks, S. A failure friendly design principle for hash

functions. Asiacrypt, LNcS, Springer, 2005, 3788, 474-
494.

 doi: 10.1007/11593447_26
19. Hirose, S. Some plausible constructions of double-block-

length hash functions. Fast Software encryption, LNcS,
Springer-Verlag, 2006, 4047, 210-225.

 doi: 10.1007/11799313_14.
20. Dunkelman, O. & Biham, e. A framework for iterative

hash functions. HAIFA, 2nd NIST cryptographic Hash
Workshop, 2006. https://eprint.iacr.org/2007/278.pdf
(Accessed on 18 January 2016).

21. Karras, D. & Zorkadis, V. A novel suite of tests for
evaluating one-way hash functions for electronic
commerce applications. IEEE, 2000, pp. 464-468.

22. Gallagher, P. A statistical test for random and pseudorandom
number generators for cryptographic application, April,
2010. https://www.nist.gov/. (Accessed on 28 April
2016).

23. Bussi, K.; Dey, D.; Kumar, M. & Dass, B.K. Kupy-neev
hash function. Italian J. Pure Appl. Math., 2016, 36,
929-944.

24. Biham, e. & Shamir, A. Differential cryptanalysis of

644

DeF. ScI. J., VOL. 67, NO. 6, NOVeMBer 2017

 test Vectors
We generate the test values of hash digest for three different inputs: , a ab and abc . The hash output for each input is given

below:
Hash(a) = 3d3292c7dcf9d9f0990bdb41afe37d10 69d5bb87e9474945d0560a0ae539dd10
Hash(ab) = 90c4984c4ccc7dfa44d21c2537b0ba3f d6b744bb90c28a8eaa44f5f039cad560
Hash(abc) = 0e7f4db99d30a4ebac17845ba756c504 c753ae8a23516b24e9fe349b2e238b3d

the full 16-round DeS. In Proceedings crypto, LNcS,
Springer, 1993, 740, pp. 487-496.

 doi: 10.1007/3-540-48071-4_34.
25. Wang, M. Differential cryptanalysis of reduced-round

present. Africacrypt, LNcS, springer, 2008, 5023, 40-49.
 doi: 10.1007/978-3-540-68164-9_4.
26. Bogdanov, A.; Knudsen, L.r.; Leander, G.; Paar,

c.; Poschmann, A.; robshaw, M. J. B.; Seurin, y. &
Vikkelsoe, c. Present: An ultra-lightweight block cipher.
cHeS, LNcS, Springer, 2007, 4727, 450-466.

 doi: 10.1007/978-3-540-74735-2_31.
27. Wu, W.;Wu, S.; Zhang, L.; Zou, J. & Dong, L. LHash: A

lightweight hash function. Inscrypt, LNcS, 2014, 8567,
291-308.

 doi: 10.1007/978-3-319-12087-4_19.
28. Khovratovich, D. & Nikolic, I. rotational cryptanalysis

of ArX. Fast software encryption. LNCS, 2010, 6147,
333-346.

 doi: 10.1007/978-3-642-13858-4_19

acKNoWleDGemeNtS
We would like to thank Director, SAG and Ms. Pratibha

yadav for their valuable guidance and continuous support to
work in this direction. We would also like to thank anonymous
reviewers who have invested their precious time to suggest the
improvements in the paper.

coNtrIButorS

mr manoj Kumar received M.Phil form ccS university, Meerut,
in 2004 and pursuing PhD from Department of Mathematics,
university of Delhi. He is currently working as a Scientist in
Scientific Analysis Group, DrDO. His research area includes
design and analysis of block ciphers.
In current study, his contributions are in design and analysis
of the hash function and implementation of various tests.

Dr Dhananjoy Dey received his PhD form Jadhavpur university.
He is currently working as a Scientist in Scientific Analysis
Group, DrDO. His areas of interest are design and analysis
of hash functions.
In current study, his contributions are in overall design sketch
and various tests like bit variance test, length extension attack
and near collision resistance.

Dr Saibal K. Pal received his PhD form university of Delhi.
He is currently working as a Scientist ‘G’ in Scientific Analysis
Group, DrDO. His interest areas include multimedia and network
security, computational intelligence and data mining.
In current study, he has guided at various design stages and
provided his inputs to improve the design.

Dr anupama Panigrahi received her PhD from Allahabad
university (HrI). She has been post-doctoral fellow in ISI,
Kolkata. She is currently working as an Assistant Professor
in Department of Mathematics, university of Delhi. Her
main research areas include number theory and elliptic curve
cryptography.
In current study, she contributed to provide the overall guidance
and critical suggestions in analysis of the scheme.

appendix a

appendix B

message 0M
We take the following 1024-bit Message 0M (in hex) for Avalanche and Bit variance tests:v
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef

