
636

NomeNclature
Bri 16-bit branch
MK 64-bit master key
MKi 16-bit word
rki 16-bit subkey
rF Round function

( )j
irk k  32-bit round key

F Compression function
⊕  Bitwise exclusive-OR operation

n  Left cyclic shift by n bits
n  Right cyclic shift by n bits

[i]2 Binary representation of integer i 
RC Round constant [i]2 for round i
  Concatenation of two n-bit strings
& Bitwise AND of two n-bit strings
B A←  A is transformed to B 

1. INtroDuctIoN
Last two decades will be commemorated as a revolutionary 

period in the field of information technology. There is a sharp 
increase in the usage of internet in mobile applications and 
shopping through e-commerce portals. We need to secure 
the internet data traffic to boost the confidence of common 
people and thereby achieving the dream goals like digital India 
movement1 by Government of India. Hash function plays an 
important role in authentication of data traffic over the internet. 
Hash functions are mainly intended to ensure the integrity of 
data in cryptographic applications2. But there is other usage 

of hash functions in speeding up the search of data in look-up 
tables3. Hash function takes an arbitrary length input message 
and converts it into a fixed size output4. The outcome is known 
as the message digest and works like a thumb print for the 
intended message. Any single bit difference in the input should 
result in approximately 50 per cent change in output bits.

Hash functions were introduced by Diffie and Hellmen 
in 1970 and most of the hash designs were based on block 
ciphers. The first hash function was based on block cipher 
DES5. There are hundreds of new hash functions published 
since their evolution6,7. The widely used hash functions 
are MD58,9 and SHA-1 family10. NIST announced SHA-3 
competition for selecting a secure and efficient hash function. 
In 2012, sponge based construction Keccak was selected as 
SHA-3 standard11. The design of hash functions can be divided 
into three categories: hash function based on block ciphers, 
hash function based on arithmetic functions and dedicated hash 
functions12. The majority of cryptographic hash functions lies 
in dedicated hash function category.

In the process of designing a secure and efficient hash 
function, we should make use of the cryptographic components 
that are well reviewed over the years as well as efficient to 
implement in software and hardware3,13. Block ciphers have a 
long fascinating history and data encryption standard (DES) is 
the first established block cipher. There are much clear security 
definitions to prove the security claims for a block cipher 
and we can utilise the design and evaluation effort of a block 
cipher5. Therefore, we have used the lightweight block cipher 
FeW14 in the compression function to increase the efficiency 
without compromising the security. Since, the key expansion 
algorithm in block ciphers is not designed very carefully, it 
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may lead to an attack on block cipher based hash function. We 
need a strong key schedule for the block cipher which can be 
used to design a compression function. Therefore, we modified 
the key size of block cipher to 64-bit and provide a stronger 
key expansion algorithm for FeW used in HeW.

2. lIGHtWeIGHt BlocK cIPHer: FeW
FeW is a lightweight block cipher with 64-bit block size 

and 80/128 bits key size proposed by Kumar14, et al. It is based 
on Feistel-M structure which is an admixture of Feistel and 
generalised Feistel structures. FeW is designed to achieve high 
efficiency in software based applications. Nemati15, e. al.  have 
illustrated that FeW can be implemented in hardware with 
very small area requirement. It suggests that FeW can also be 
applied in hardware based platforms.

We now briefly discuss the round function and key 
expansion algorithm for 64-bit key. Swap function is used after 
32 rounds of each iteration.

2.1  one round FeW
We divide the 64-bit input block into four branches 

1 2 3, ,Br Br Br  and 4Br  of size 16-bit each. round function rF
takes 3 4, Br Br and 32-bit round key as input and produces the 
32-bit output. Most significant 16 bits of the output are XOred 
with 1Br and least significant 16 bits are XOred with 2Br , 
which gives the new values of 3Br  and 4Br  for next round. 
Old values of 3Br  and 4  Br remains unchanged and these are 
the new values of 1Br  and 2Br respectively for next round. One 
round of FeW is shown in Fig. 1.

2.3 Key expansion algorithm (FeWKe)
Block cipher based hash function treats the input message 

as a key for the underlying block cipher used in the compression 
function. Any tiny weakness in the key expansion algorithm 
can lead to a serious attack on the hash function, so we need 
a stronger key expansion algorithm. We reduce the key size 
to 64-bit and present the key expansion algorithm of FeW for 
the 64-bit key which is much stronger than the key expansion 
algorithm for 80-bit key. We use the modified version of FeW 
to design the compression function of HeW. We write the 64-
bit master key MK  as a concatenation of four 16-bit words 

1 2 3 , , MK MK MK , and 4MK . current contents of 1MK  is stored 
as the first 16-bit round key. Key register is updated using 
S-box and cyclic shift. S-box is applied on most significant 4 
bits of 1 4&  MK MK and least significant 4 bits of 4MK while 
the middle 8 bits of 4MK is XOred with a round constant 
rc. Finally, the 64-bit register is left rotated by 13 bits. After 
updating the key register, current contents of MK1 is stored as 
the subsequent 16-bit round keys. Key expansion algorithm for 
64-bit key is given in Fig. 3.

2.4  Swap Function
We have 64-bit output after processing the 64-bit input 

message and the 64-bit key in each round. After 32 rounds, 
swap function is used to exchange the current contents in the 
least significant 32 bits and most significant 32 bits.

3. merKle-DamGårD aND WIDe-PIPe 
coNStructIoNS
There are many approved hash construction methods 

which can be used to design a hash function based on a block 
cipher15-17. Merkle-Damgård is the basic construction method 
which is used by the majority of hash function designs18. This 
method uses only one compression function f to compute 

the hash digest. After padding the arbitrary length input 
message, it processes the b -bit message block and n -bit 
 as input and generates the n -bit hash digest after 
processing all message blocks iteratively.

x 0 1 2 3 4 5 6 7 8 9 a B c D e F
S(x) 2 E F 5 C 1 9 A B 4 6 8 0 7 3 D

table 1. S-box (S)

Figure 1. FeW1R.

Figure 2. round function rF.

2.2  round Function (rF)
round Function takes 32-bit input iX in the form of two 

16-bit Feistel branches. First, these 2 branches are XOred with 
two 16-bit round subkeys. Thereafter, it mixes the data between 
Feistel branches by swapping the least significant bytes of the 
two branches. Then, S-box S(Table 1) is applied 4 times in 
parallel on each branch. Finally, there is an application of two 
different permutation layers on each branch. We get the output

iY from rF. round function of FeW is shown in Fig. 2.
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{ } { } { } : 0,1 0,1 0,1n b nf × →

Wide-pipe construction was proposed by Stefan Lucks18,19. 
This method was proposed to counter the weaknesses in Merkle-
Damgård construction which was prone to the length extension 
attack. This method uses two compression functions f  and g  
to compute the hash digest. After padding the arbitrary length 
message, first function f is used to iteratively process the b
-bit message block and w -bit  to generate w -bit output. 
After processing the complete message, second function g  
takes w -bit input to generate the n -bit message digest.

{ } { } { } : 0,1 0,1 0,1w b wf × →

{ } { } : 0,1 0,1w ng →

 where w n≥

4. ProPoSeD HaSH FuNctIoN: HeW
We use Wide-pipe construction method to design our 

proposed hash function HeW. Message block size and chaining 
variable size are to be of same length ( 2n -bit) to generate the n
-bit hash digest. compression function takes two inputs (512-
bit message block im  and 512-bit chaining variable 1ih − ) and 
outputs a 256-bit hash digest, where initial value of chaining 
variable is fixed as 512

0 0h = = .

4.1 Padding rule
HeW iteratively processes the 512-bit input message 

blocks. The length of input message may not be a multiple of 
512, so we need to pad20 the arbitrary length input message to 
make it a multiple of 512. If the message length is a multiple 
of 512 then we add one dummy padding block to the message. 
Suppose length of an input message M  is   bits. We append 
the bit ‘1’ at the end of message M , after that we append 
( )2   512  0̀ ' k mod− − ≡

bits and finally the bit ‘1’ is appended 
at the end of padding. We now have a padded message m  
whose length is a multiple of 512.

4.2  Parsing
We divide the input padded message m in t blocks of size 

512-bit each as follows:
1 2 ||  ( )  || || ... || tm M Pad M m m m= =

We process one 512-bit message block im  at a time 
iteratively.

4.3 compression Function
In each iteration of compression function F , we process 

the 512-bit message block im  by dividing it into the eight 64-
bit words  : 0  7 j

im j≤ ≤ . There are eight parallel applications 
of FeW inside F and these 64-bit words are used as key. For 
each 64-bit word, we apply key expansion algorithm KEFeW . 
We get 32 round keys of size 32-bit each corresponding to the 
one 64-bit word. In total, we generate 256 32-bit round keys for 
eight 64-bit words. We divide 512-bit chaining variable 1ih −  into 
eight 64-bit words 1  : 0  7j

ih j− ≤ ≤ . We take these 64-bit words 
as input messages to the eight applications of FeW. 1RFeW
is applied using round keys ( ): 0  7 , 1 32 j

irk k j k≤ ≤ ≤ ≤
and message 1

j
ih − : 0  7 j≤ ≤ .After each round, 512-bit register 

is rotated left by 16 bits. After 32 rounds, SWAPFeW is applied 
on each 64-bit word. After processing the last 512-bit message 
block, the most significant 256-bit is stored as hash digest of 
the message. Figure 4 gives the processing of one message 
block using HeW.

4.4  Hash construction
Compression function of HeW takes chaining variable 

1  ih − and message block im  as inputs in each iteration. 
Compression function updates the chaining variable to ih  after 
each iteration. After processing all of the t  message blocks, the 
most significant 256 bits are received as the hash digest for the 
input message M  as follows (Algorithm 1):

( )
( ) ( )

0

1

256

             
               ,           1   i i i

t

h
h F h m for i t

Hash M trunc h
−

=

= ≤ ≤

=



5. aNalYSIS
Software and hardware performance of HeW is presented 

here. We also discuss the statistical analysis of HeW and 
differential cryptanalysis, length extension attack, slide attack 
and rotational attack on the compression function of HeW.

5.1  Software Performance
We have used an Intel(r) core(TM) i7-3770 cPu @3.40 

GHz processor with 8 GB rAM and 64-bit operating system 
for benchmarking. We run the code of HeW and SHA-256 
several times for three different size data files and calculated 
the throughput as average running time in MB/Sec. We show 
the performance comparison of HeW and SHA-256 in Table 2. 
The results indicate that HeW performs better than SHA-256 
in software.

5.2  Hardware Performance
Nemati15, et. al. have illustrated that lightweight 

block cipher FeW is quite efficient for hardware oriented 
applications. It is shown that FeW can be implemented 

File size (mB) HeW (s) SHa256 (s)
1 0.227 0.352
5 1.127 1.738
10 2.238 3.471

table 2. Software performance

Figure 3. Key expansion algorithm.
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in hardware with very small area requirements. It will be 
practically implemented using 125 number of slices and 
264 look up tables (LuT). We have used FeW eight times 
in parallel in compression function of HeW with reduced 
key size (64-bit). reduction in the key size will not have 
much effect on its performance. We estimate that HeW can 
be efficiently implemented in hardware with a maximum of 
1000 slices and 2112 look up tables. This seems to be a good 
number in terms of hardware performance.

5.3  NISt randomness tests
Hash digest for any arbitrary length message must 

satisfy the randomness properties21. We test the random 
nature of hash digest using NIST Statistical Test Suite SP800-
2222. We need 100 different files and each file should contain 
approximately 10 lakh bits for testing the randomness. We 
process each message and get a 256-bit hash output for the 
intended message. To generate the required 10 lakh bits, we 
keep on applying the hash function HeW until we get the 10 
lakh bits in the output file. We have the following results 
(Table 3) on 100 files using the NIST suite for the 5 basic 
randomness tests.

5.4 Near-collision resistance
If two different input messages generate the almost same 

hash value, then this can lead to a collision attack23. If it is 
computationally hard to find two different messages whose 
hash output differ in the small number of bits then hash 

Figure 4. compression function F.
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function is called near-collision resistant. We checked the near-
collision resistance of HeW by generating the large number of 
input files. We have generated 100,000 random input message 
files and calculated their hash value using HeW. We selected 
two random files from the hash digest lot and calculate their 
hamming distance. We can choose two files out of 100,000 

files in 
100000 

2
 
 
 

 different ways which gives 4,999,950,000 

different file combinations. We analysed the results for all 
combination of files. We can get the hamming distance values 
in the range of 0,1 , 2,  ... , 256 . We got the minimum and 
the maximum value of hamming distance as 78 and 181 bit 
differences, respectively. The maximum value for 
the hamming distance occurred 249,073,042 times 
which is recorded for the 128 bit difference.

We get the difference between 108 and 148 for 
the following number of files 

(108 <\ # files <148)=4,948,691,207(i.e., 98.97%)
We got approximately 99 per cent of the 

files having the hamming distance range between 
128 20±  which indicates that these won’t lead to 
any near-collision attack. The hamming distance 
between two files needs to be really small viz. up to 16-bit 
to generate a near collision. Hence, we can say that HeW is 
resistant to near-collision attack.

5.5  avalanche effect
Avalanche criterion states that if we change 1-bit in the 

input then there must be an approximate 50 per cent change in 
the output bits23. We tested the Avalanche effect on the output 

of HeW. We started with a 1024-bit message M0 which is shown 
in Appendix B.

For 1  1024i≤ ≤ , we generated 1024 messages ( iM ) with 
1 -bit difference from 0M  as follows:

0   (1 )iM M i= ⊕ <<

We applied HeW on these 1025 messages and calculated 
256-bit hash for each message. For 1  1 024i≤ ≤ , we found 
the hamming distance between Hash ( 0M ) and Hash ( iM )  
as  shown  in Table 4. We also computed the  
hamming distances word-wise. We divided the 
256-bit hash output into the eight 32-bit words  
( 1 2 8, ,..., W W W ). results for the minimum (Min), maximum 
(Max), mode and average value of distances is shown  in  
Table 4. We plotted the hamming distance range of 1024 files 
for 256-bit hash digest in Fig. 5 which shows that they are 
almost uniformly distributed i.e., change in one bit of the input 
carries 50 per cent change in the hash digest.

5.6  Bit Variance test
Bit variance test is one of the statistical tests for testing 

the random nature of the binary data. This test measures the 

Statistical test P-Value Proportion
Frequency 0.026948 100/100
Block frequency 0.2022686 100/100
Runs 0.637119 99/100
Overlapping template 0.085587 100/100
Serial 0.102526 99/100

table 3. NISt test results

range of hamming 
distances

Number of files 
within range

change in output bits of 
HeW digest (per cent)

128 + 5 538 52.53

128 + 10 806 78.71

128 + 15 969 94.62

128 + 20 1011 98.73

table 5. range of hamming distances

Figure 5. Hamming distances range of the 1024 files.

changes W1 W2 W3 W4 W5 W6 W7 W8 HeW

Min 7 7 8 8 7 7 8 8 96

Max 24 24 24 26 24 24 25 25 153

Mode 17 17 16 17 17 15 16 16 126

Mean 16.08 15.94 15.95 16.05 16.14 15.89 16.07 16.01 128.17

table 4. Hamming distances
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impact for change in the input message bits on the digest bits. 
A variable length input is transformed to a 256-bit hash  digest 
using HeW. If there is a change in one or some of the input bits, 
then impact of this change on each of the output bit should be 
uniform23. We took the same set of 1025 messages which we 
have used to measure the avalanche effect. We got the 256-
bit hash output for each of the 1025 messages. For each bit 
position in the hash digest, we calculate the probability of 
this bit being 1 . If the probability, ( ) ( )1  0 1/ 2i iP P= = for all 
digest bits 1, ..., 256i = then we assured that HeW passes the bit 
variance test. Since it is computationally infeasible to consider 
all input message   bit changes, we have considered the results 
only for 1025 files, viz. 0 1 2 1024, , , , M M M M… . We found the 
following results for mean frequency of 1s:

Digest length = 256
Number of digests = 1025
Mean frequency of 1s (expected) = 512.50
Mean frequency of 1s (calculated) = 512.44
We plotted the probability for each of the bits (256-bit) in  

Fig. 6 and observed that average probability of 1’s is 
approximately 0.50. This indicates that HeW passes the bit 
variance test.

5.7  Differential cryptanalysis
Differential attack is the basic cryptanalysis technique 

used on block ciphers. It was the first successful attack applied 
on DES by Biham and Shamir24, which reduced the key search 
complexity of DeS than the exhaustive search. We used 
the probabilistic relationship between the input and output 
differences of a cipher to mount this attack. We analysed the 
components of a cipher to construct a high probability trail 
by joining several one round relations. We used lightweight 
block cipher FeW to design the hash function HeW. Security 
proof of FeW is provided by Kumar14, et.al. which shows that 
FeW is secure against differential cryptanalysis. It is proved 
that differential attack on FeW cannot be applied beyond 14 
rounds. We have theorem 1 for the bound on the number of 
active S-boxes in any three rounds of FeW.

theorem 1. Any three rounds of FeW have a minimum of 
five active S-boxes14.

We used the technique of counting the minimum number 
of active S-boxes in a differential trail25,26. HeW uses single
4 4 S× -box inside the compression function. The maximum 
differential probability in one S-box application14 is 22− . There 
are 8 parallel applications of 1RFeW  on the 512-bit register 
inside the compression function. After each round, 512-bit 
register is rotated left by 16 bits. We called the 1RFeW  block 
as active 64-bit word, if there is some non-zero nibble as input 
to 1RFeW  block. We start with a non-zero difference in a 
4-bit nibble within one 64-bit message block. After applying 
key expansion algorithm, it is guaranteed that the non-zero 
difference in any 4-bit nibble will be used as a round subkey 
after 2 rounds. We do not count the S-boxes which are activated 
during the key expansion. We considered the effect of one 4-bit 
non-zero nibble only. We counted the number of active 1RFeW
blocks which are shown in the Fig. 7 and Table 6. We also have 
the following theorem for 1RFeW  blocks.

theorem 2. After every 2 rounds in the compression 
function of HeW, one new 64-bit block gets activated for input 
to the 1RFeW .

All 1RFeW  blocks (i.e. 8) gets activated after 17 rounds. 
using theorem 1 and 2, we find the minimum number of active 
S-boxes in the full round differential trail of HeW as follows:
(i) There are 60 active S-boxes in the first 16 rounds of 

compression function.
(ii) Due to one active 1RFeW  block, there are 25 active 

S-boxes in the last 16 rounds.
(iii) We get 200 active S-boxes in the last 16 rounds due to the 

8 active 1RFeW  blocks from round 17 to 32.
Thus, any 32-round differential trail will consist of 260 

active S-boxes, which guarantees that we can get ( )26022− i.e, 
5202−  as the maximum differential probability for any 32-round 

trail of HeW. As a result, we require 5202  chosen plain-text 
pairs to distinguish the most significant 64-bit of the hash 
digest. This bound ensures that differential attack cannot be 
applied to the hash function HeW.

Figure 6. the probability of the bit position.
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5.8  length extension attack
If we used hash function as a message authentication 

code (MAC), then length extension attack can lead to forgery 
attack against MAc’s. This attack was devised for MD5 hash 
algorithm which process the n -bit message and n -bit  in 
one iteration and finally generates n -bit hash digest18. For a 
message M , we get padded message as ( ) ||m M Pad M= . If 
we use MD5 hash function and know the length of the message, 
then we can use ( )H m  as   and append the message 'M  
as ( )'  || 'm H m M= . We now calculated the hash value of the 
extended message, which will be a valid MAC for the message 

'm . To prevent this attack, we can use wide-pipe mode of hash 
construction which takes 2n -bit   and 2n -bit message as 
input and n -bit hash digest is generated. HeW takes two inputs 
(512-bit   and 512-bit message block) and outputs 256-bit 

hash digest. In case of hash function HeW, length of the hash 
output is half of the length of  , therefore we conclude that 
length extension attack cannot be applied on HeW.

5.9  Slide attack
Slide attack was proposed for block ciphers and it is used 

to recover the key in a block cipher27. It exploits the weakness 
in the key schedule of a block cipher and construct a slid pair 
using the similarity in the round keys. We have used the block 
cipher FeW to design the hash function HeW, so we need to 
consider the security from slide attack. There are two types 
of possible slide attacks. The first kind of slide attack applies 
sliding on round transformation, while the second kind of 
attack applies sliding on message block. There are certain 
preventive measures used in FeW to counter this attack. The 
first layer of security is the use of round constant in the key 
expansion algorithm. Secondly, we imbibe a 16-bit left rotation 
in HeW which is another measure to prevent the slide attack. 
We, therefore conclude that slide attack cannot be applied to 
HeW.

5.10  rotational Distinguisher
Rotational distinguisher was proposed to analyse the 

ArX based structures28. This attack has been less effective 
on the designs using S-box and MDS type layers in their 
round function27. There is an application of 4x4 S-box in the 
round function of HeW. This attack can work for HeW, if the 
rotation amount is a multiple of the size of the S-box (i.e. 4). 
The rotational value other than 4 will be destroyed by the 
application of 4x4 S-box. If we take the rotational value as 4, 
then rotational pair will be further destroyed by the application 
of nibble permutation layer on 16-bit branches inside round 
function and 16 bits rotation after every round. We, therefore 

round  No of active 
FeW1R blocks

round  No of active  
FeW1R blocks

1 0 17 8
2 0 18 8
3 1 19 8
4 1 20 8
5 2 21 8
6 2 22 8
7 3 23 8
8 3 24 8
9 4 25 8
10 4 26 8
11 5 27 8
12 5 28 8
13 6 29 8
14 6 30 8
15 7 31 8
16 7 32 8

table 6.  minimum number of active FeW1R blocks in 32-  
round trail

Figure 7. Differential trail for round 3 to 16.
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conclude that rotational distinguisher cannot be effectively 
applied to our hash function HeW.

6. coNcluSIoN
A new hash function HeW which is based on a lightweight 

block cipher is proposed in this paper. The compression 
function of HeW is built using a software oriented lightweight 
block cipher FeW which can also be implemented in hardware 
efficiently. The collision resistance bound for HeW is 2128, which 
is better than present security recommendations of 2112. We have 
presented the analysis of HeW for differential attack, length 
extension attack, slide attack and rotational distinguisher. We 
applied NIST test suite on the data generated using HeW and it 
passes the randomness tests. It also passed other tests including 
avalanche effect, bit variance test and near-collision resistance. 
Software efficiency of our design is better than SHA-256. The 
compression function of MD4 and SHA-1 family are based 
on Merkle-Damgård construction which is prone to the length 
extension attack. Therefore, our proposed scheme can work as 
a better alternative to the MD4 and SHA-1 family in terms of 
security and efficiency.
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appendix a

appendix B

message 0M
We take the following 1024-bit Message 0M  (in hex) for Avalanche and Bit variance tests:v
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef
1234567890abcdef 1234567890abcdef1234567890abcdef1234567890abcdef


