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1. INTRODUCTION
Laser induced breakdown spectroscopy (LIBS) employs a 

laser pulse to create a plasma source that emits light in the visible 
and near infrared regions1-3. The emission strength depends on 
various parameters including the number of emitting species, 
plasma  temperature4, matrices on which the sample is present5 
and the environmental conditions. The possibility of stand-off/
remote detection, minimal sample preparation and capability 
of getting the signal from all the elements of the periodic table 
are great advantages and make it an attractive spectroscopic 
tool. LIBS spectra can be used in two distinct ways - elemental 
analysis6,7 and material classification/identification3,8. While 
the elemental analysis utilises calibration9, calibration –free10,11 
or multivariate methods12, classification/identification relies 
predominantly on the multivariate methods3,12. LIBS has added 
a new paradigm in various fields like space13, archaeology14, 
biology15, isomer identification16 biomedical17,18, industrial19, 
defense2,20, food processing21, nuclear waste22 and forensics23, 24. 
LIBS received a boost with the availability of the compact, 
high power lasers and Echelle type gratings for the applications 
related to classification and identification of materials. There is 
a growing interest towards LIBS as a potential technique for 
the detection of high energy materials (HEMs) because of its 
stand-off capability25. LIBS is also incorporated on Mars rover 
curiosity with a measurement distance of seven meters26. 

Detection of HEMs with LIBS poses several challenges, 

such as similar elemental composition of Carbon (C), 
Hydrogen (H), Oxygen (O) and Nitrogen (N), the common 
interferences like grease, oils, biological material27, etc. In 
addition, the presence of oxygen, nitrogen in the ambient air 
and hydrogen, oxygen in moisture can be a serious problem 
for field experiments. It has been demonstrated that with the 
application of various chemometric algorithms, it is possible 
to distinguish the similar type of materials based on their LIBS 
spectra. Different methods like soft independent modelling of 
class analogy (SIMCA)3, partial least squares –discriminate 
analysis (PLS-DA)28,29, support vector machines (SVM)30, 31 and 
artificial neural networks (ANN)32,33 etc. have been successfully 
implemented for the classification of a wide variety of materials. 
In this approach, multiple spectra are recorded to incorporate 
all possible variations that can arise with the type of system in 
use. As a next step, these datasets are used to create a model 
and test the identification capability. However, there are few 
limitations while recording the multiple data sets – 
(a)  Sufficient number of data sets for accurate representation 

of the possible variations is not clear
(b)  Availability of sufficient quantity of sample for recording 

multiple datasets
(c)  Time required to record the data. 

In this paper, authors investigated the feasibility of a novel 
methodology to construct multiple spectra using a very small 
number of experimental spectra. This approach eliminates the 
need of acquiring a large number of experimental spectra. It is 
now possible to generate a required number of spectra which 

An Approach to Reduce the Sample Consumption for LIBS  
based Identification of Explosive Materials

S.K. Anubham#, R. Junjuri#, A.K. Myakalwar#,!, and M.K. Gundawar#,*

#Advanced Centre of Research in High Energy Materials, University of Hyderabad, Hyderabad - 500 046, India  
!Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberska -182 51, Czech Republic 

*E-mail: manoj@uohyd.ac.in

ABSTRACT

An experimental design based on spectral construction, which has potential to minimise the sample consumption, 
the number of laser shots and time required to collect the data from laser induced breakdown spectroscopy for 
identification of the explosive materials is reported in the study. This approach is an ideal solution in the field of 
hazardous material detection, where the availability of the sample can be a serious limiting factor. The experimental 
data recorded on a set of five high energy materials has been considered to test the performance of the proposed 
methodology. Multiple spectra are constructed by assuming a normal distribution at each wavelength of the spectrum, 
where random numbers are generated using the mean and standard deviations obtained from arbitrarily chosen 
five experimental spectra from each class. The newly generated spectra are called as synthetic spectra. The correct 
classification obtained from – K - nearest neighbour combined with principal component analysis and partial least 
square – discriminant analysis demonstrated very promising results. The correct classification rates differed by only  
4 per cent - 7 per cent as compared to conventional approach where experimental spectra alone are considered for the 
analysis. Further, when RDX is excluded, the obtained results are almost identical with conventional approach.

Keywords: Laser induced breakdown spectroscopy; Synthetic spectra; Identification; K – Nearest neighbour

Received : 03 October 2016, Revised : 28 March 2017 
Accepted : 06 April 2017, Online published : 24 April 2017



ANuBHAM, et al.: A NOVEL APPROACH TO REDuCE THE SAMPLE CONSuMPTION FOR LIBS BASED IDENTIFICATION OF EXPLOSIVE

255

otherwise may be impractical to acquire experimentally. This 
can greatly reduce the load on the resources in terms of laser 
shots and time taken for the experiments. Finally, validation 
has been done using two different classifiers, PLS-DA and 
KNN.

 
2. MATERIALS AND METHODS
2.1 Experimental

The samples were irradiated by the pulses from the second 
harmonic of  Nd: YAG laser at 532 nm, 7 ns at 1 Hz34. The details 
of the experimental setup can be found in Myakalwar35, et al. 
Experiments were performed on a set of five HEMs- HMX, 
NTO, PETN, RDX, and TNT in ambient conditions to acquire 
multiple spectra. As KNN requires the same size of dataset of 
each class, sixty spectra per sample were considered.

Typical LIBS spectra of all samples normalised to 
oxygen peak centred at 777.2 nm are as shown in Fig. 135. 
Each spectrum is constituted with 25699 data points. The 
obtained spectra have features of C, Mg, Ca, H, N, O, Na, CN 
and C2. The Oxygen peak at 777.2 nm is dominant followed 
by CN at 383.3 nm. CN and C2 peaks are the characteristics 
of organic molecules. 

2.2 Methodology
The conventional way of identification of materials 

involves the acquiring multiple spectra per class from the LIBS 
experiment. These spectra are utilised for training, validation 
and testing the model. The method investigated in this paper  
uses only a very small number of experimental spectra. After 
acquiring the spectra, there are two steps in this approach 
(a)  Construction of spectra with the aid of a little number of 

experimental spectra and 
(b)  Multivariate analysis to obtain the percentage correct 

classification. 
The intensities at a given wavelength of the experimental 

spectra is modelled as a normal distribution with the probability 
distribution function given by,
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where sl, ml, and Il corresponds to standard deviation, mean 
and intensity count at each wavelength respectively. The mean 
and standard deviation(s) are calculated at all wavelengths for 
each class of the experimental spectra. The intensity at each 
wavelength varies from one spectrum to another in accordance 
with the distribution stated above. These parameters are 
specific to each of the samples considered. The construction of 
spectra is performed by generating random numbers for each 
wavelength using mean and standard deviation(s) obtained 
from the experimental spectra. These constructed spectra are 
called as synthetic spectra.

The second part of the methodology involves the 
process of building a chemometric model which is capable of 
identifying an unknown test sample. A chemometric model 
is constructed based on a data subset which is referred to as 
a training set. As a next step, the model is tested using the 
remaining part of the data which is referred to as testing set. The 
analysis is performed to mimic the actual application scenario 
where synthetic spectra are used for training and testing is 
performed on the experimental data. The results are compared 
with the traditional method, where both training and testing 
are performed on only the experimental data. The efficiency 
of detection can be quantified in different ways, one of such 
parameters is the percentage correct classification (PCC). 
The data has been split into training, testing sets multiple 
times and the correct classification is taken as an average over 
multiple iterations. The flow chart of complete algorithm is  
as shown in Fig. 2.

3 RESuLTS AND DIScuSSIONS
The mean and standard deviation(s) were calculated at 

each wavelength of the full spectrum for all the five classes 
separately for randomly selected five experimental spectra. 
The number of experimental spectra that need to be considered 
has been estimated on the basis of fluctuations in the mean and 
standard deviation(s). A typical graph of mean and standard 
deviation(s) with error bars calculated from hundred iterations 
and relative standard deviation at 247.8 nm (Carbon) for HMX 
is as shown in Figs. 3(a) and 3(b). It can be seen from Fig. 3, that 
the mean and standard deviations does not show a considerable 
variations for a number of spectra more than five.

Figure 1. The typical LIBS spectra of TNT, RDX, PETN, NTO, 
and HMX normalised to Oxygen peak centered at 
777.2 nm.

Although the spectra of all the classes are almost identical, 
the peak intensities exhibit variations among and within the 
classes. The fluctuations among the spectra of the same class 
may be attributed to different reasons like the uncertainty in 
laser energy and inhomogeneity in the sample morphology. 
The mean and standard deviation(s) at each wavelength are the 
key features for constructing multiple spectra. The fluctuations 
are modelled with a normal distribution as inferred from the 
quintile - quintile plot. The details of the methodology will be 
explained in section 3. K – Nearest neighbour combined36,37 

with principal component analysis and partial least squares 
–discriminate analysis have been employed for validating the 
proposed methodology.
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Sixty random numbers were generated in normal 
distribution at each wavelength for each class separately, 
using the mean and standard deviation(s) of five experimental 
spectra. A typical synthetic spectrum was constructed, by 
connecting the generated random numbers at all wavelengths 
in a single trial. These spectra were smoothened by multiscale 
principal component analysis to nullify the undesirable 
randomness introduced in the synthetic spectra especially 
at peak positions. A typical normalised synthetic spectrum 
together with an experimental spectrum is as shown in Fig. 4(a). 
The overwhelming similarity between the synthetic and 
the experimental spectra is evident. Figure 4(b) shows the 
dendrogram with experimental and synthetic spectra. The 
leaves of a single clade in a dendrogram clearly belong to a 
single class.

At this point, there are two sets of data – experimental 
and synthetic. Each set consists of sixty spectra per class 
which imply three hundred spectra per set. Two classifiers 

Figure 2. The flow chart of steps involved in proposed method.

Figure 3. (a) The mean (top) and standard deviation (bottom) 
with error bars calculated over 100 iterations and  
(b) Relative standard deviation, as a function of 
number of experimental spectra for HMX at carbon 
peak 247.8 nm.

Figure 4. (a) A typical LIBS spectrum of experimental (bottom) 
and synthetic (top) for HMX normalised to OI 
centered at (777.2 nm) peak and (b) The dendrogram 
representation of experimental and synthetic spectra 
for five samples. The prefix ‘S’ stands for synthetic.
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KNN-PCA and PLS-DA have been employed for estimating 
classification efficiencies. The analysis performed for only the 
experimental set will be referred to as the traditional method. 
The experimental data has been split into training and testing 
sets of 70 per cent and 30 per cent respectively. In the proposed 
method, the training was performed by choosing 70 per cent of 
the synthetic spectra and testing was done with 30 per cent of 
experimental data to mimic the practical scenario.

Since PCA is an unsupervised technique, KNN is 
performed after executing the dimensionality reduction with 
PCA for quantification. Here the features are the first three 
principal components (PC’s) extracted from the given data 
using PCA. Similarly, the test data set was also projected 
onto PC space. Optimisation of K- parameter has been done 
in each iteration with a validating data set, by considering K 
value at maximum PCC. Typically, its value was one to eight 
for experimental data and one to three for synthetic data. In the 
case of PLS-DA, the number of PLS components were fixed at 
five for simplifying algorithm. The averaged PCC for all sample 
classes are as shown in Table 1. The PCC’s were averaged over 
hundred iterations, wherein each time training and testing sets 
were randomly selected. It can be seen, except for RDX, the 
PCC with the proposed method shows an excellent agreement 
with the traditional method.

the fact that only five experimental spectra were utilised for the 
analysis, and the classification rates of above 90 per cent are 
very encouraging. The PCC were calculated as a function of 
the number of synthetic spectra. Here, a different number of 
synthetic spectra were generated and the same protocol was 
used. The results showed no significant dependence on the 
number of synthetic spectra. 

The results show that the synthetic spectra based method 
can substitute the traditional methodology for dealing with 
classification and identification problems using LIBS data. 
It is important to note that while in the traditional method 
sixty experimental spectra per class were used whereas in 
the proposed method only five experimental spectra per class 
were used. The results have multiple implications on how 
the experiments for classification related applications can be 
performed with very limited quantity of sample, resulting 
in reduction of time required to perform the experiment and 
most importantly reduction in the number of laser shots. The 
reduction in the number of laser shots can enhance the life time 
of a laser, which will be of considerable interest for a field 
device operated on a battery.

4. cONcLuSIONS
A novel spectral construction method for LIBS based 

explosive classification/identification has been studied. We 
successfully showed that this approach has the potential to 
drastically reduce the sample consumption for performing 
LIBS experiments, by eliminating the need of experimental 
repetition. The average percentage correct classification shows 
an excellent agreement with the traditional method. This 
method can result in overall reduction resource investment for 
performing LIBS based classification/identification experiment. 
It may be generalised and adapted to deal with similar kind of 
problems employing other spectroscopic methods. 
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