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1. INTRODUCTION
Nowadays, the development of military weapons and 

increasing capability of modern anti-armour threats require 
highly effective composite armour systems. Due to the low 
density, high compressive strength and hardness1-23, ceramics 
play an important role in improving the ballistic performance 
of composite armours, and have been extensively utilised for 
lightweight armour applications such as personal body armour, 
fighting vehicles and helicopters1-4. To further improve the 
ballistic performance of armour ceramic now has become one 
of the focuses in ceramic composite armour systems5,6.

The parameters possibly having an influence on the 
ballistic performance of armour ceramics include geometry, 
size and backing material as well as the shape, size and velocity 
of projectiles7-11. In addition, the ballistic performance of 
different armour ceramic may vary in a wide range according 
to their manufacturing processes and the depth of penetration 
(DOP) test conditions7,12-14. However, due to experimentation 
limitations, experimental results are not always reproducible, 
and thus it is difficult to evaluate the ballistic performance 
of ceramic tiles from different reference sources for a same 
type ceramic15,16. Based on the comparison of ceramic types, 
Moynihan17, et al.  pointed out the boron carbide (B4C) tiles 
had higher ballistic efficiency than both silicon carbide (SiC) 
and alumina (Al2O3) tiles. However, the research carried out 
by Kaufmann18, et al. proved that SiC tiles had higher ballistic 
efficiency than B4C, Al2O3 and modified Al2O3 tiles. It was 
also reported19 that SiC and B4C tiles behaved similarly when 

considering the areal densities, whereas B4C tiles performed 
worse than SiC and TiB2 tiles at the same thickness. Based on 
the comparison of tile thickness, the ballistic efficiency for a 
given velocity was found to decrease with the increase in tile 
thickness for 99.5 per cent Al2O3 tiles, while for 95 per cent 
Al2O3 tiles, it was found to increase with the increase in tile 
thickness8. Savio20, et al. discovered that as B4C tile thickness 
increased, the ballistic efficiency did not change significantly. 
Moreover, according to the comparison of projectile velocity, 
Madhu8, et al. and Zhang21, et al. showed that the ballistic 
efficiency of Al2O3 tiles increased with the increase in 
projectile velocity. However, according to Woolmore22, et al., 
SiC and Al2O3 tiles both showed a similarly linear decrease 
in the ballistic efficiency of the ceramic armour system when 
the projectile velocity increased. Additionally, many efforts 
have been put to correlate the ballistic performance of ceramic 
tiles to the key material properties such as density, hardness, 
strength, Young’s modulus and fracture toughness since the 
1960s4,7,18,23. Several fundamental mechanical properties, such 
as the dynamic compressive strength, hardness and Young’s 
modulus, have been used to guide the selection of ceramics for 
light armours24,25. The damage mechanism of ceramic layer in 
the whole ceramic composite armour against the projectile was 
analysed in previous studies9,26. However, few reports focused 
on the mechanism of ballistic protection for different ceramic 
layers were published. Therefore, particular attention needs to 
be paid to the relationship between ceramic properties and the 
ballistic performance.

However, it is difficult to investigate the ballistic 
performance of armour ceramics systematically due to the 
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high costs (human and material resources). There are many 
contradict information of the ceramic ballistic efficiency in 
literatures concerning the ceramic type, tile thickness and 
projectile velocity. The authors did not necessarily use the same 
ceramic compositions, manufacturing processes and DOP test 
conditions. These differences can make sense if we incorporate 
the parameters that are listed. 

Through an analysis on the ballistic performance of 
armour ceramics based on the literatures published from 1988 
to present, the effects of ceramic properties and DOP test 
parameters on the ballistic performance were investigated 
systematically. The effects of monolithic ceramic types (Al2O3, 
SiC, B4C and TiB2) on the differential efficiency factor (Δec) 

and the depth of penetration (not include tile thickness) (Pa) 
were investigated. Additionally, the effects of tile thickness 
and projectile velocity on the Δec and Pa were investigated. 

2. METHOD
In this study, earlier published literatures were investigated 

with information about the ceramic properties, DOP test 
parameters and the ballistic performance (Pa, Pa/(Pa+tc) and 
Δec) of different ceramic tiles (Tables 1-4). All the work 
reported in this study entirely relied on the literature data. The 
schematic diagram of DOP test configuration is as shown in 
Fig. 1. All the DOP tests were performed at room temperature 
under normal impact.

Studies ρc
(g/cm3)

tc
(mm)

Projectile Pa
(mm)

Pa/(Pa+tc)
(%) ΔecType v (km/s)

Moynihan17, et al. 3.2-3.3 1-5 Caliber.30 APM2 0.84 0-42 0-96 2.6-8.9

Roberson and Hazell19 3.14-3.15 6-8 7.62×51 mm 
NATO 0.97 2-14 6.2-6.6

Woolmore22, et al. 3.18 18 14.5 mm AP 0.75-1.1 \ \ 3.5-5.0a

Rozenberg and Yeshurun31 3.07-3.17 6-10 12.7 mm AP 0.92 \ \ 6.9

14.5 mm AP 0.98 \ \ 7±0.3

Flinders34, et al. 3.14-3.22 6.35 7.62×51 mm M993 0.91 4-17 40-72 5.9-7.6a

Tong36 3.16 6 12.7 mm API 0.82 15-22 29-55 5.5-8.2

Reaugh10 3.16 10-60 W rod 1.35-2.6 0-18 0-58 1.4-5.8a

Cao35 3.09-3.14 26-29 W rod 1.3-1.4 12-13 30-33 4.1-5.6

Rosenberg37, et al. 3.15 20-80a W rod 1.70 3-40a \ 1.2-2.6a

‘a’ Calculated or measured by the authors; ‘AP’ represents armor piercing projectile; ‘API’ represents armor piercing incendiary projectile; ‘W rod’ represents tungsten 
rod projectile.

Table 2. The published DOP test parameters and ballistic performance of SiC ceramic tiles from different resources

Studies ρc 
(g/cm3)

tc
(mm)

Projectile Pa 
(mm)

Pa/(Pa+tc)
(%) ΔecType v (km/s)

Madhu8, et al. 3.85 6-8 7.62 mm AP 0.83 1-2 18-35 3.8-5.0

3.68-3.85 10-14 12.7 mm AP 0.50-0.83 0-38 2-53 1.8-4.2

Moynihan17, et al. 3.7 1.3-6.4 Caliber.30 APM2 0.84 0-42 0-97 1.9-5.8

Woolmore22, et al. 3.89 18 14.5 mm AP 0.75-1.10 \ \ 1.7-3.2a

Savio30, et al. 3.91 3-6 7.62 mm AP 0.82 5-34 47-92 4.7-5.6

Rozenberg and Yeshurun31 \ 6-10 12.7 mm AP 0.92 \ \ 4.2-5.0

14.5 mm AP 0.98 \ \ 3.6-5.3

Reaugh10, et al. 3.40-3.75 10-60 W rod 1.35-2.60 0-39 0-83 0.9-2.0a

Zhang and Li21 3.54 50 W rod 1.0-1.5 22-49 27-48 1.9-3.0

Li27 3.62 6-30 W rod 1.50-2.50 37-60 57-91 2.1-4.9

Anderson and Morris28 3.60 28, 42 W rod 1.50 \ \ 1.7-2.2a

Anderson and Royaltimmons33 3.90 25.9 W rod 1.53 -1.78 20-63 55-69 1.4-3.5

Hohler32, et al. 3.85 20-80 W rod 1.25-3.0 12-78 15-88 1.4-2.0a

Sun29 3.5 30 Fe rod 1.1-1.3 7-32 20-51 2.0-2.6
‘a’ Calculated or measured by the authors; ‘AP’ represents armor piercing projectile; ‘W rod’ represents tungsten rod projectile; ‘Fe rod’ represents 
35CrMnSi rod projectile.

Table 1. The published DOP test parameters and ballistic performance of Al2O3 ceramic tiles from different resources.
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Table 4. The published DOP test parameters and ballistic performance of TiB2 ceramic tiles from different resources

  Studies ρc
(g/cm3)

tc
(mm)

Projectile
Pa (mm)

Pa/(Pa+tc)
(%) ΔecType v (km/s)

Roberson and Hazell19 4.5 5-8a 7.62×51 mm NATO 0.97 2-10a 23-64 4.2-4.5a

Rozenberg and Yeshurun31 4.46 6-10 12.7 mm AP 0.92 \ \ 5.05

14.5 mm AP 0.98 \ \ >5.2

Song39 4.5 18-20 14.5 mm API 0.99 5-7 21-28 2.9-3.2

Reaugh10, et al. 4.49 8-40 W rod 1.3-2.7 0-34 0-68 2.1-7.1a

Rosenberg37, et al. 4.45 20-70a W rod 1.70 0-36a \ 1.7-2.4a

‘a’ Calculated or measured by the authors; ‘AP’ represents armor piercing projectile; ‘API’ represents armor piercing incendiary projectile; ‘W rod’ represents tungsten 
rod projectile.

Studies ρc
(g/cm3)

tc
(mm)

Projectile
Pa (mm) Pa/(Pa+tc)

(%) ΔecType v (km/s)

Savio20, et al. 2.31-2.49 5-10 7.62 mm AP 0.6-0.8 0.5-30 5-80 3.0-8.5

Roberson and Hazell19 2.5 5-8 7.62×51 mm NATO 0.97 18-26 71-81 5.6-6.9

Sun38 2.47 8 12.7 mm API 0.82-0.85 17-19 68-69 4.3-4.5a

Rozenberg and Yeshurun31 2.51 6-10 12.7 mm AP 0.92 \ \ 7.8a

14.5 mm AP 0.98 \ \ 8.3

Moynihan17, et al. 2.49 1-4 Caliber.30 APM2 0.84 0-42 0-96 2.7-10.4

Reaugh10, et al. 2.51 10-60 W rod 1.2-2.6 0-28 0-73 1.4-6.2a

Rosenberg37, et al. 2.5 48.45a W rod 1.70 32.0a \ 1.1a

84a 7.5a \ 2.04a

‘a’ Calculated or measured by the authors; ‘AP’ represents armor piercing projectile; ‘API’ represents armor piercing incendiary projectile; ‘W rod’ represents tungsten 
rod projectile.

Table 3.  The published DOP test parameters and ballistic performance of B4C ceramic tiles from different resources

Figure 1. Schematic diagram of DOP test configuration: (a) Reference depth of penetration (P0) in backing plate without ceramic 
tiles and (b) Residual depth of penetration (Pb) in backing plate.

(a) (b)
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In this study, the Δec and Pa were used to rank the ceramic 
tiles based on their ballistic performance25. The reference 
DOP value (P0) was obtained on the bare backing plate and 
the residual DOP value (Pb) was obtained on the same backing 
plate after penetration of the ceramic tile in front.

0( )b b cp
c

c c

P P T
e

t
ρ × − −

∆ =
ρ ×

                                               (1)

a b cpP P T= +                                                                   (2)
where ρb and ρc are the density of the backing material and 

ceramic, respectively. P0 is the reference depth of penetration 
in the bare backing material. Pb is the residual depth of 
penetration in the backing material. Tcp and tc are the thickness 
of cover target and ceramic tile respectively. Pa is the depth of 
penetration (not include tile thickness).

Most of the Δec and Pa could be obtained from literatures, 
but the ones that were not given clearly were calculated using 
Eqns (1) and (2). All these calculated data were labelled as 
‘a’ in Tables 1-4. If the tile density or thickness published 
in literatures was in a range, the average value was used to 
calculate the Δec.

3. RESULTS 
3.1 Effect of Ceramic Type

According to the different tile densities, the ballistic 
performance of four typical armour ceramics subjected to 
the impact of armour piercing (AP) projectiles and long rod 
projectiles is presented in Fig. 2. As it can be seen, most data 
shows a linear relationship. The Δec of different ceramic tiles 
decreases in the order of B4C, SiC, Al2O3 and TiB2 tiles when 
impacted by AP projectiles as well as long rod projectiles  
(Fig. 2(a)). Significant differences are found with respect 
to the Δec of different ceramics in the case of AP projectiles 
rather than long rod projectiles. For Pa (Fig. 2(b)), the data is 
approximately within the range of 0-44 mm and most Pa of 
Al2O3 tiles are higher than 44 mm, and this is closely related 

to thin ceramic tiles or high impact velocity, which indicates 
that ceramic composite armours could not provide effective 
ballistic protection with relatively thin ceramic tiles or at high 
impact velocity. There is no sufficient data to draw general 
trend for DOP tests of TiB2 tiles against AP projectiles, which 
might be related to limited applications due to its high density. 
In a word, Pa shows no obvious difference among different 
ceramic tiles.

The Δec is very sensitive to tile density, which are not 
coincided with Pa, and with a higher tile density, a lower Δec 
could be obtained, which is in agreement with the results 
observed by Wilkins40, et al. It needs to be further considered 
that when investigating the armour ceramics with long rod 
projectiles, DOP test conditions such as the backing material 
and confinement can influence the ballistic performance of 
ceramic tiles, which causes the ballistic performance of ceramic 
tiles against long rod projectiles less obvious than using AP 
projectiles. Therefore, ballistic performance criteria and DOP 
test conditions should be chosen carefully.

3.2 Effect of Tile Thickness
The effects of tile thickness on the Δec of three armour 

ceramics are as shown in Fig. 3. As it can be seen, most data 
exhibits a linear relationship. It can be observed that the Δec of 
the Al2O3 and SiC tiles increases as the tile thickness increases, 
no matter the AP projectiles or long rod projectiles are used. 
However, with the increase in tile thickness, the Δec of B4C tiles 
is found to increase when using AP projectiles but decrease when 
using long rod projectiles, which may be related to the limited 
ballistic data for thick ceramic tiles or the large scatter of the 
existing data. It should be noted that the ballistic performance 
of TiB2 tiles is not analysed here due to the lack of data.

Figure 4 gives the correlations between Pa and tile 
thickness of three armour ceramics against AP projectiles 
and log rod projectiles. A decrease in Pa is observed with the 
increase in tile thickness by both using the AP projectiles 

Figure 2.  The effect of ceramic types on the ballistic performance of armour ceramics: (a) Δec and (b) Pa.
(a) (b)
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(Fig. 4(a)) and long rod projectiles (Fig. 4(b)). A linear fitting 
equation is given as follow:

a cP kt b= +                                                                     (3)
the slopes and intercepts of the linear fits for Al2O3, SiC, B4C 
and above three ceramic tiles are listed in Table 5. It can be 
evidently found that for AP projectiles impacting ceramic 
faced armours the intercepts, namely the reference DOP, 
have smaller deviations (with the maximum deviation of  
8.24 mm), when compared to that for long rod projectiles 
(with the maximum deviation of 27.5 mm). This also proves 

that there are some limitations when investigating the ballistic 
performance of armour ceramics with long rod projectiles. 
Generally, the Δec decreases as the tile thickness increases, 
which is similar to the results when considering of Pa.

3.3 Effect of Projectile Velocity
Due to the limitations of using long rod projectiles 

discussed above, this study only focuses on analysing the 
effects of tile thickness on the ballistic performance of three 
armour ceramics against AP projectiles, as shown in Fig. 5. An 
increase in the Δec is first observed as the projectile velocity 
increases from 0.50 km/s to 0.80 km/s and then it decreases 
by further increasing the velocity after 0.90 km/s (Fig. 5(a)) as 
well as Pa (Fig. 5(b)) with the maximum Δec for AP projectiles 
is achieved at the impact velocity of 0.80 km/s - 0.90 km/s. 
Overall, both the Δec and Pa, as function of projectile velocity, 
have similar trend.

(a)

(a)

(b)

(b)

Figure 4.  The effect of tile thickness on Pa of armour ceramics impacted by (a) AP projectiles and (b) long rod projectiles.

Figure 3. The effect of tile thickness on the Δec of armour ceramics impacted by (a) the AP projectiles and (b) the long rod 
projectiles.

Parameters Al2O3 SiC B4C Three ceramics

Slope, k -1.99 -4.46 -3.55 -1.88

Intercept, b 31.42 35.29 35.49 27.25

Table 5. Linear fitting results for Al2O3, SiC, B4C and above 
three ceramics
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3.4 Discussion
The primary mechanical properties of each armour 

ceramic vary widely among literatures. Generally, B4C and SiC 
exhibit high hardness and flexural strength, and Al2O3 displays 
high fracture toughness but low Young’s modulus. In this 
study, the correlations between the ballistic performance and 
ceramic material properties, such as flexural strength, Knoop 
hardness, Young’s modulus, and fracture toughness, have 
been considered. The mechanical properties are taken from 
Karandikar23, et al. based on CAP-3, SiC-N and Ceralloy-546 4E. 

With the increase in tile density, a decrease in Knoop hardness, 
Young’s modulus, a slight increase in fracture toughness and 
insignificant change in flexural strength are found in Fig. 6. 
In addition, with the increase in tile density, the slope (k) of 
Pa versus tile thickness has negative correlation with flexural 
strength (Fig. 6(a)), while it has no direct relationship with 
Knoop hardness (Fig. 6(b)), Young’s modulus (Fig. 6(c)) and 
fracture toughness (Fig. 6(d)), which indicates that the flexural 
strength can be one of the criteria to evaluate the performance 
of ceramics in armours.

Figure 5.  The effect of projectile velocity on the ballistic performance of armour ceramics: (a) Δec and (b) Pa.
(a) (b)

Figure 6. Relationships among tile density, slope (k) of Pa vs tile thickness and (a) flexural strength, (b) Knoop hardness, (c) Young’s 
modulus and (d) fracture toughness.

(a)

(c)

(b)

(d)
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4.  CONCLUSIONS
Through an analysis on ceramic properties, DOP test 

parameters and the ballistic performance of armour ceramics 
which dated from 1988 to present, the effects of ceramic 
type, tile thickness and projectile velocity on the ballistic 
performance were investigated systematically. Based on these 
analyses, the following conclusions are as follows:
(i)  The ceramic type, tile thickness and projectile velocity 

have significant influence on the ballistic performance of 
armour ceramics. The ballistic performance of different 
armour ceramics mainly depends on its density. The 
differential efficiency factor (Δec) of different ceramic 
tiles decreases in the order of B4C, SiC, Al2O3 and TiB2 
tiles and Pa shows no obvious difference among different 
ceramic tiles. The Δec decreases as the tile thickness 
increases, which is similar to the results when considering 
depth of penetration (not include tile thickness) (Pa). In 
addition, the Δec and Pa increase at first then decrease 
with the increase in projectile velocity. And the maximum 
ballistic efficiency for AP projectiles is achieved at the 
impact velocity of 0.80 km/s - 0.90 km/s.

(ii)  Ballistic performance criteria and DOP test conditions 
should be chosen carefully. The differential efficiency 
factor is very sensitive to tile density, which is not 
coincided with Pa. In addition, when investigating the 
ballistic performance of armour ceramics with long rod 
projectiles, the effects are less remarkable than that of 
using AP projectile. 

(ii) Mechanical properties have significant correlations with 
the ballistic performance of armour ceramics. With 
the increase in tile density, the slope of Pa versus tile 
thickness has negative correlation with flexural strength, 
which indicates that the flexural strength can be one of the 
criteria to evaluate the performance of armour ceramics.
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