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aBSTRaCT

A dimensionless model for the depth of penetration (DOP) of a projectile penetrating into a concrete target, 
based on the similarity theory involving intermediate asymptotics, complete similarity, and incomplete similarity is 
presented. The calculated numerical results are in good agreement with previous experimental data, including two 
sets of full-scale and twenty-four sets of sub-scale penetration of non-deformable projectiles into concrete targets. 
Moreover, compared with several empirical and semi-empirical DOP models, the new model is applicable within 
a relatively broader range, including the penetration of both sub-scale and full-scale projectiles. For the limitations 
of the validity, dimensionless parameters Π3  =ϕt/ϕ larger than 12, Π4 = (ϕ3fc)/(Mv0

2) smaller than 0.1, and the initial 
impact velocity of the projectile less than about 900 m/s to 1000 m/s are necessary for the model.

Keyword: Similarity theory; Intermediate asymptotics; Complete similarity; Incomplete similarity; Non-deformable 
projectile; Concrete target

NOMENCLaTURE
v0   Initial impact velocity 
M   Projectile mass
E         Modulus of elasticity
μ   Poisson ratio
ϕ  Projectile shank diameter
ϕin  Inner cavity diameter
ϕt  Target diameter
l  Projectile shank length
lin   Inner cavity shank length
V  Projectile volume
Vin   Inner cavity volume
ρp   Projectile density
ρt   Target density 
H   Target thickness
P   Depth of penetration 
S   Empirical coefficient
A        Projectile shank cross sectional area
ψ          Caliber-radius-head 
fc   Concrete unconfined compressive strength
F and Fi Some unknown function (i= 1, 2, 3, …)
α, αi, βi and γ Some undetermined constants (i= 1, 2, 3, …)

1. INTRODUCTION
Projectile penetration into the concrete targets has 

received much attention in the field of weapon design and civil 
engineering for a long time1. Research on such a problem has 
also been conducted over many years2,3, which includes mainly 
three approache, i.e., experimental study, theoretical analysis 
and numerical simulation. Among those, the experimental study 
on developing empirical models for engineering applications 
has played a very important role4-7, because of the difficulties 

in both the theoretical analysis and the numerical simulation 
due to the complexity of the dynamic constitutive behaviours 
of materials. Over the past decades, many empirical or semi-
empirical DOP models for the projectile penetration into 
various materials have been opened8-12. Young13 proposed an 
empirical DOP model based on a number of experimental data 
for the penetration of full-scale projectiles at sub ordnance 
and ordnance velocities into quasi-brittle materials such 
as concrete, rock and soil; Forrestal and his colleagues14-16  

also presented an semi-empirical DOP formula for an ogival-
nosed projectile penetrating into concrete targets, based on 
the spherical cavity-expansion theory and their experimental  
data of sub-scale projectiles. Li & Chen17 developed again 
a semi-empirical DOP formula available for the penetration 
of sub-scale projectiles by using dimensional analysis, 
in which an impact function and a geometry function are 
introduced for the first time. In addition, there are still 
some other empirical DOP models2,5,18. However, calculated 
results from all these existing models are usually not so 
consistent with each other, which makes it difficult to estimate 
their practical engineering applications. Meanwhile, there 
seems not yet a relatively general DOP formula applicable 
for both the sub-scale and the full-scale projectiles. So that a 
relatively general DOP model is expected urgently.

This study therefore focuses on developing a more 
general DOP model for projectile penetration into concrete, 
and based on the similarity theory involving intermediate 
asymptotics, complete similarity, and incomplete similarity, a 
new dimensionless DOP model is proposed. 

2. SIMILaRITY aNaLYSIS
For a projectile penetrating into a concrete target, its DOP 

P depends on the initial impact velocity v0 and several other 
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physical and geometric properties of both the projectile and the 
target, which can be expressed qualitatively as

 ( )0 , , , , , , , , , , , , ,in t c t t tP f v M E l V V H f E= µ φ φ ρ µ          (1)
where M, ϕ, l, V, E and μ are the mass, shank diameter, 
length, volume, modulus of elasticity, and Poisson ratio of the 
projectile, respectively; Vin is the volume of the inner cavity 
of the projectile, which may be filled with the shaped charge; 
H, ϕt, fc, ρt, Et, and μt are the thickness, diameter, unconfined 
compressive strength, bulk density, Young’s modulus and 
Poisson’s ratio of the concrete target, respectively.

For penetration of non-deformable projectiles at sub 
ordnance or ordnance velocity into concrete targets, it is found 
experimentally that the influence of both modulus of elasticity 
and Poisson ratio of the projectile19 as well as of the target20,21 

on the DOP can be neglected. In addition, most DOP models10 
appear independent on ρt. For the penetration into concrete 
targets, the density of the concrete varies over a narrow range, 
and the density of the projectile ρp could be determined by its 
mass M and volume V, which is why both ρt and ρp are left 
out of consideration in this analysis. Additionally, the omitted 
parameters will prove to be reasonable by the calculation in 
Section 3. As a result, one can re-write  Eqn. (1) into

( )0 , , , , , , , ,in t cP f v M V V l H f= φ φ                                  (2)
In the MLT (mass, length, time) class of systems of 

units, the dimension of each quantity involved in  Eqn. (2) is, 
respectively,
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It is straight forward to verify that the dimensions of v0, 
M and ϕ are independent. Taking v0, M and ϕ as the governing 
parameters, one has
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By the Buckingham Pi theorem,  Eqn. (4) can be written 
into the following dimensionless form

( )1 2 3 4 5 6, , , , ,FΠ = Π Π Π Π Π Π                                   (5)
where F is an arbitrary function, and
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                     (6)

Substituting  Eqn. (6) into  Eqn. (5), there is
3

2 3 3
0

, , , , ,t c inf VP l H VF
Mv

 φ φ
=  φ φ φ φ φ φ 

                               (7)

There exists now six dimensionless arguments in  Eqn. 
(5) or  Eqn. (7), which can be simplified further by using 
intermediate asymptotics, complete similarity, and incomplete 
similarity22,23. 

Firstly, consider the parameter Π2. When the other 
dimensionless parameters remain constant, the DOP will be a 
non-zero finite value as H →∞, i.e., the limits of Π are finite 

and non-zero at Π2 →∞. That is, for a semi-infinite target with 
sufficiently large Π2, there is complete similarity or similarity 
of the first kind in the parameter Π2. Therefore, for a semi-
infinite target, the parameter Π2 in  Eqn. (5) can be excluded, 
and hence Eqn. (5) becomes

( )1 1 1 3 4 5 6, , , ,FΠ = α Π Π Π Π Π                                       (8)
where α1 is a constant coefficient and F1 is another arbitrary 
function different from the arbitrary function F.

Next, according to Fig. 3 in the work by Frew & 
Forrestal24, et al. there exists negligible change in the DOP as 
ϕt/ϕ increases from 12 up to 24, which makes it reasonable 
to infer that Π tends to a non-zero finite value as Π3 →∞. In 
other words, for sufficiently large Π3, there exits complete 
similarity in the parameter Π3. Similar to the aforementioned 
procedure, the dimensionless argument Π3 in  Eqn. (8) can also 
be excluded, and hence  Eqn. (8) reaches to

( )1 2 2 1 4 5 6, , ,FΠ = α α Π Π Π Π                                         (9)
where α2 is also a constant coefficient and F2 is an arbitrary 
function different from both F and F1. 

Thirdly, when the length of the projectile tends to infinite, 
i.e., l →∞, or Π1 →∞, the bulk density of the projectile ρp will 
tend to infinitesimal, and thus the DOP should also tend to 
infinitesimal, that is, Π→ 0. Therefore, for sufficiently large Π1, 
there is the first type of incomplete similarity in the parameter 
Π1, and then  Eqn. (9) can be further written in the following 
simplified form

( )1
1 2 1 3 4 5 6, ,FβΠ = α α Π Π Π Π                                        (10)

where β1 is an undetermined negative constant exponent and F3 
is an arbitrary function.

Finally, for the parameter Π4, it is straightforward to 
understand that P→∞ when fc→ 0 (which implies that the 
resistance of projectile penetration vanishes), i.e., Π→∞ when 
Π4→ 0. Thus, for sufficiently small Π4, there is the first type 
of incomplete similarity in the parameter Π4, and Eqn. (10) 
becomes

( )1 2
1 2 1 4 4 5 6,Fβ βΠ = α α Π Π Π Π                                        (11)

where β2 is another undetermined negative constant exponent 
and F4 is an arbitrary function.

Moreover, when Π5→∞, Π does not converge to any 
limit. Actually, we have here the second type of incomplete 
similarity as Π5→∞. Then,  Eqn. (11) could be rewritten in the 
following form

( )31 2
1 2 1 4 5 5 6 5Fββ βΠ = α α Π ⋅Π ⋅Π ⋅ Π Π                           (12)

where β3 is an undetermined constant exponent, and F5 is 
an arbitrary function, which will be determined by using a 
numerical fitting approach. To this end,  Eqn. (12) is assumed 
as in the following form

( ) 431 2
1 4 5 6 5

βββ β  Π = Π ⋅Π ⋅Π ⋅ α Π Π + γ                         (13)
where α and γ are constant coefficients, β4 are undetermined 
constant exponents.

To determine the values of the six constants α, β1, β2, β3, β4 
and γ in the new penetration model,  Eqn. (13), the numerical 
fitting technique together with six sets (two full-scale and four 
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previous sub-scale) of experimental data14 of non-deformable 
projectile penetration into concrete target has been developed, 
which bases on the data analysis software of Origin. For the 
numerical fitting, begin with fitting the data of Π1, and Π4 for 
Π, obtaining

 1 20.53,   0.67β = − β = −                                            (14)
Then, fitting the data of Π5, and Π6 for 1 2

1 4( )β βΠ Π Π
yields

 3 40.08,   1.94,   1.37,   0.03α = β = β = γ =                    (15)
wherein data of the necessary parameters are listed in Table 1, 
lin and ϕin are the shank length and diameter of the inner cavity 
of the projectile, the two full-scale ones are denoted as Set 1 
and Set 2, and the sub-scale ones are denoted as Set 3− Set 
614, respectively. The shank volume of the inner cavity of the 
projectile Vin could be approximately evaluated by Vin= πlinϕin

2/4. 
Substituting  Eqns. (14) and (15) into  Eqn. (13) reaches the 
new DOP empirical formula as follows

( )1.370.53 0.67 1.94
1 4 5 6 50.08 0.03− −  Π = Π Π Π ⋅ Π Π +          (16)

or, substituting  Eqn. (6) into  Eqn. (16) reads in the form of the 
ratio of the DOP to the diameter of the projectile, as

( ) ( )0.671.37 1.94 0.53 7.3 2
00.03 0.08 in c

P V V V l Mv f− − = + ⋅ φ φ
(17)

Note that, the influence of the shaped charge on DOP 
could be approximately quantified by filling it into the inner 
cavity of the projectile Vin.

Necessarily, the new model should satisfy all conditions 
for the application of similarity analysis. For the first type of 
incomplete similarity in the parameter Π1, complete similarity 
or similarity of the first kind in the parameter Π2 and Π3, and 
the second type of incomplete similarity in the parameter Π5, 
parameters Π1, Π2, Π3, and Π5 should be sufficiently large. 
For example, according to Barenblatt22,23, Π should converge 
sufficiently rapidly to a limit as Π1, Π2, Π3, and Π5 tend to 
infinity, that is, for Π1 =l/ϕ, Π2 =H/ϕ, Π3 =ϕt/ϕ, and Π5 =V/
ϕ3 larger than 10, Π will assume values sufficiently close to 
that limit. Generally, to eliminate the boundary effect on the 
penetration, the thickness of the target H is limited to be semi-
infinite, while according to Frew22, Π3 should be larger than 12. 
For the first type of incomplete similarity in the parameter Π4 
should be sufficiently small. For example, Barenblatt considers 
Π4 = (ϕ3fc)/(Mv0

2) should be smaller than 0.122,23, which proves 
to be reasonable by the calculation from Section 3.

3. NUMERICaL RESULTS
To certify the universality of the new empirical DOP 

formula,  Eqn. (16) or  Eqn. (17), another twenty sets of 
previous sub-scale experimental data (Set 7− Set 26) for the 
DOP14,25 have also been calculated. Denote the relative-error 
between the calculated results of the new DOP formula P and 
the experimental data Pe by R =(P − Pe)/Pe. The numerical 
results of the relative-errors under different impact velocities 
are as listed in Table 2. It can be seen that for most experimental 
data except for a few individual data, predictions of  Eqn. (16) 
or  Eqn. (17) are in good agreement with the experimental 
data, which remain the relative-errors generally less than  
20 per cent. In general, the experimental data are difficult to be 
fitted into just one curve because of their scattering. Therefore, 
the range of relative error of this model is proposed as about  
20 per cent, when taken the total data results into account. 

Table 1. Parameters in the experiments

Sets v0
(m/s)

M
(kg)

ϕ
(mm)

ϕin
(mm)

l
(mm)

lin
(mm)

fc
(MPa)

Pe
(m)

1 737 101 153 106 812 812 30 4.57
2 835 81 140 100 849 849 30 5.1
3 499 0.912 26.9 10.1 206.8 201.7 33.5 0.48
4 584 0.898 26.9 10.1 206.8 201.7 91 0.384
5 371 0.064 12.92 6.35 67.5 50.8 14 0.127
6 345 0.064 12.92 6.35 63.1 50.8 14 0.111

Figure 1. Comparison between the calculated numerical results 
and the experimental data.

For clarity, both the calculated results from the new DOP 
formula and the experimental data are as shown in Fig. 1, 
which also displays the agreement. 

As comparison with the new DOP model, five well-known 
empirical formulas for the DOP are discussed briefly in the 
following.

Based on the extensive wartime penetration tests and 
previous research, Young13 developed empirically the Young/
Sandia penetration equation (Young’s formula) for concrete 
targets, as

0.7 2 4
0

0.7
0

0.008 ( ) ln(1 2.15 10 ), 61m/s
0.000018 ( ) ( 30.5), 61m/s

SN M A v v
P

SN M A v v

− + <= 
− >                     

(18)
where the projectile has cross sectional area of the shank A, 
caliber-radius-head ψ, and nose performance coefficient N, 
which takes the form N = 0.18 (ψ− 0.25)0.5+ 0.56, and the 
target has the index of penetrability S, which is an empirical 
coefficient and usually equal to 0.9. Equation (18) may not 
be applicable when M < 5 kg. As shown in Table 2 and  
Fig. 2, in the full-scale experiments, Young’s formula 
predicts acceptable DOP compared with the experimental 
data. However, Young’s formula is not applicable for 
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Table 2. The relative-error R between the experimental data and predictions

Formula
sets

M
(kg)

v0
 (m/s)

Eqn. (19)
(%)

Young
(%)

Forrestal
(%)

Li-Chen
(%)

aCE
(%)

BRL
(%)

1 101 737 −14.7 −16.9 −18.3 −32.3 −17.7 2.6
2 81 835 7.2 −21.4 −13.9 −27.7 −16.8 2.1
3 0.912 499 10.8 0.4 2.7 −15.4 −15.9 13.5
4 0.898 584 −13.4 46.3 11.2 −13.3 −19.6 4.5
5 0.064 371 10.8 −13.5 −4.1 −19.6 −15.7 17.5
6 0.064 345 6.7 −2.0 −3.0 −22.2 −12.9 22.1
7 0.901 591 14.4 11.2 4.6 −1.1 −8.8 20.1
8 0.901 773 4.4 −12.7 5.4 −0.9 −15.6 7.3
9 0.904 800 6.2 −18.0 9.5 −0.5 −15.2 7.4
10 0.907 431 −2.8 −0.3 −19.9 −31.1 −25.6 1.7
11 0.905 642 16.8 0.8 12.7 2.2 −8.2 19.8
12 0.907 561 −9.8 53.8 10.8 −11.8 −16.4 9.1
13 0.898 584 −13.4 46.3 7.5 −13.3 −19.6 4.5
14 0.908 608 −18.6 40.2 2.1 −15.3 −23.2 −0.7
15 0.064 371 10.8 -- −3.7 -19.6 −15.7 17.5
16 0.064 590 −16.0 -- −12.5 −17.4 −33.3 −11.3
17 0.064 670 −13.4 -- −5.5 −9.7 −30.2 −8.7
18 0.064 722 −17.0 -- −7.1 −10.8 −32.5 −12.6
19 0.064 945 −23.0 -- −7.0 −10.5 −35.1 −19.1
20 0.064 345 6.7 -- −2.6 −22.2 −12.9 22.1
21 0.064 585 −23.0 -- −13.8 −16.1 −34.1 −12.3
22 0.0685 839 −26.4 −14.8 4.0 3.6 −31.3 −13.4
23 0.0685 901 −28.4 −18.9 3.5 3.9 −32.6 −15.7
24 0.069 967 −18.2 −9.3 20.9 22.0 −22.2 −3.7
25 0.0688 1046 −20.3 −13.7 20.2 21.9 −23.4 −6.2
26 0.0684 1149 −12.7 −8.3 34.2 36.7 −15.1 2.4

Note: The symbol -- denotes empty values.

Figure 2. Comparison of П(П4) relationship between the 
experimental data and the calculated results (the 
new DOP model, Young formula, and Forrestal 
formula).

penetration of sub-scale projectiles.
Based on their experimental data and 

dynamic cavity expansion theory, Forrestal 
and his colleagues have presented another 
semi-empirical formula14,15 (Forrestal 
formula) for an ogival-nosed projectile 
penetrating into concrete targets in the 
following form

0

2
1

, 2

ln 1 2 , 2
2

t

t c

v
P

c M
P

N vM P
A N Sf

 < φ
= 

 ρ + + φ > φ  ρ  

                

                                                               (19)
where S is an empirical constant, and for 
ogive-nose projectiles. 

2 2 2
2 0 0 1
12 2

2 ( )8 1, ,
224 4

c

t

Mv A Sf M v v
N v c

M A N
− φ −ψ −

= = =
+ φ ρψ φ

2 2 2
2 0 0 1
12 2

2 ( )8 1, ,
224 4

c

t

Mv A Sf M v v
N v c

M A N
− φ −ψ −

= = =
+ φ ρψ φ  

                                   (20)

However, it is necessary to determine 
the empirical constant S in advance. 
Moreover, the Forrestal formula seemed 
more applicable for the sub-scale 
experiments under the impact velocity v0 
varying from 300 m/s to 900 m/s. As shown 
in Table 2 and Fig. 2, for v0> 900 m/s or full-
scale projectiles, significant discrepancies 
are introduced, which shows why the 
Forrestal formula is not so applicable in the 
high-velocity penetration or that with full-
scale projectiles. 

Li and Chen16 have further improved 
the Forrestal formula by presenting a semi-
empirical formula (Li-Chen formula), in the 
form of

( )( )
( )( )

( )
( )

1 4 4 ,
1

12 ln ,
1 4

k N k PI k
I NP

I N PN k k
k N

 + π
 ≤

π φ += 
φ   +

+ > π + π φ   

   
(21)

where k= 2, and 
2
0

3 3

1 1,
c t

Mv MI N
S f N ∗

   
= =   φ ρ φ   

                               (22)

For ogive-nose projectiles, N*= (8ψ− 1)/(24ψ2). However, 
although it shows that experimental data on shallow, medium 
and deep penetration in a broad range of concrete strength, 
impact velocity and projectile geometry can be uniquely 
represented by the two dimensionless numbers I and N, this 
formula is applicable in the range basically similar to that of 
the Forrestal formula.

Based on the experimental data from Ordnance Department 
of the uS Army and the Ballistic Research Laboratory prior to 
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1943, the Army corps of engineers developed an ACE formula5 
for the DOP, as

4
0.215 1.5

03

3.5 10 0.5
c

P M v
f

−  ×
= φ + φ φ 

 

                             (23)

As shown in Table 2 and Fig. 3, however, there are some 
larger relative errors in the calculated results comparing with 
the sub-scale experimental data. For example, for v0 varying 
from 300 m/s to 800 m/s, the relative error scan reach up to 
approximately more than −30 per cent. In other words, the ACE 
formula seems applicable only for the penetration experiments 
of full-scale projectiles.

is developed by similarity analysis involving intermediate 
asymptotic, complete similarity, and incomplete similarity. 
Comparing with the well-known empirical or semi-empirical 
DOP formulas such as the Young, Forrestal, Li-Chen, ACE, 
and BRL formulas, the newly developed DOP formula will be 
applicable within a broader range, including the penetration of 
both full-scale and sub-scale projectiles.
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