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1. INTRODUCTION
Multi-sensor image fusion (MIF) is a technique that

combines two or more registered images to increase the
spatial resolution of acquired low detail multi-sensor images
and preserving their spectral information. Of late MIF has
emerged as an innovative and promising research area in
image processing. The benefiting fields from MIF are viz.
military, remote sensing, machine vision, robotic, surveillance,
enhanced vision system, and medical imaging, etc. The
problem that MIF tries to solve is to merge the information
content from several images (or acquired from different
imaging sensor modalities) taken from the same scene in
order to accomplish a fused image that contains the finest
information coming from the different original source images1.
Hence, the fused image would provide enhanced superiority
image than any of the original source images. Depending
on the merging stage, MIF could be performed at three
different levels viz. pixel level, feature level, and decision
level2,3.  In this paper, pixel-level based MIF is presented
that represents a fusion process generating a single combined
image containing an additional truthful description than
individual source image.

The simplest MIF is to take the average of the grey
level source images pixel by pixel. This technique would
produce several undesired effects and reduced feature
contrast in the fused image. To overcome these problems,
multi-scale transforms, such as wavelets1,4-12, image
pyramids3,13-16, spatial frequency17, statistical signal processing18-

21 and fuzzy set theory22 have been proposed. Multi-resolution
wavelet transforms could provide good localisation in
both spatial and frequency domains. Discrete wavelet transform
would provide directional information in decomposition
levels and contain unique information at different resolutions4, 5.
In this paper, the multi-resolution discrete cosine transform
(MDCT) is applied to fuse the source images.
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One of the important prerequisites to be able to apply
fusion techniques to source images is the image registration
i.e., the information in the source images needed to be
adequately aligned and registered prior to fusion of the
images. In this paper, it is assumed that the images to be
fused are already registered.

2. DISCRETE COSINE TRANSFORM
Discrete cosine transform (DCT) is an important transform

in image processing. Large DCT coefficients are concentrated
in the low frequency region; hence, it is known to have
excellent energy compaction properties.

The 1D discrete cosine transform X(k) of a sequence
x(n) of length N is defined as23-28:
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One can observe that for k=0, the Eqn (1) becomes
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of all samples in the sequence and is known as DC coefficient,
and other transform coefficients are known as AC coefficients.

The inverse discrete cosine transform is defined as:
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Eqn (1) is generally called as analysis formula or forward
transform and Eqn (3) is called as synthesis formula or
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The 2D DCT is a direct extension of 1D DCT. The
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where 1( )ka and 2( )ka  are similar to Eqn (2).

Similarly, the 2D inverse discrete cosine transform is
defined as: 1 2
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Both DCT and IDCT are separable transformation and
the advantage of this property is that 2D DCT or 2D IDCT
can be computed in two steps by successive 1D DCT or
1D IDCT operations on columns and then on rows of an
image x(n

1
,n

2
) as shown in Fig. 1.

3. MULTI-RESOLUTION DCT
Multi-resolution DCT (MDCT) is very similar to wavelets

transform, where signal is filtered separately by low-pass
and high-pass finite impulse response (FIR) filters and the
output of each filter is decimated by a factor of two to

achieve first level of decomposition. The decimated low
pass filtered output is filtered separately by low-pass and
high-pass filter followed by decimation by a factor of two
provides second level of decomposition. The successive
levels of decomposition can be achieved by repeating this
procedure. The idea behind the MDCT is to replace the
FIR filters with DCT21.

The information flow diagram of MDCT (one level of
decomposition) is shown in Fig. 2.  The image to be decomposed
is transformed into frequency domain by applying DCT
in column-wise. Take the IDCT on first 50 % of points
(0 to 0.5p) to get the low passed image L. Similarly, take
the IDCT on second 50 % of points (0.5p to p) to get the
high passed image H. The low passed image L is transformed
into frequency domain by applying DCT in row wise. Take
the IDCT on first 50 % of points   (in row wise) to get
low passed image LL and similarly take IDCT on the remaining
50% to get the high passed image LH.  The high passed
image H is transformed into frequency domain by applying
DCT in row wise. Take the IDCT on first 50 % of points
(in row wise) to get low passed image HL and similarly
take IDCT on the remaining 50% to get the high passed
image HH. The LL contains the average image information
corresponding to low frequency band of multi scale
decomposition. It could be considered as smoothed and
sub sampled version of the source image. It represents
the approximation of source image. LH, HL and HH are
detailed sub images which contain directional (horizontal,
vertical and diagonal) information of the source image due
to spatial orientation. Multi resolution could be achieved
by recursively applying the same algorithm to low pass
coefficients (LL) from the previous decomposition.

Figure 1. Computation of 2-D DCT using separability property.

Figure 2. Multi-resolution image decomposition structure using DCT.
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3. FUSION
The schematic diagram for the MDCT based pixel

level image fusion scheme is shown in Fig. 4. One can
observe that the modification of the present scheme is
the use MDCT instead of wavelets or pyramids. The
images to be fused  I

1
 and I

2
 are decomposed into

( 1, 2,..., )D d D=  levels using MDCT. The resultant
decomposed images from I

1 
are

 { }{ }1 1 1 1
1 1,2,...,

, , ,D d d d d D
I LL LH HH HL

=

® and from I
2
 are

 { }{ }2 2 2 2
2 1,2,...,

, , ,D d d d d D
I LL LH HH HL

=

® .  At each

decomposition level  ( 1, 2,..., )d D= , the fusion rule will
select the larger absolute value of the two MDCT detailed
coefficients, since the detailed coefficients are corresponds
to sharper brightness changes in the images such as
edges and object boundaries etc. These coefficients
are fluctuating around zero. At the coarest level (d =
D), the fusion rule take average of the MDCT approximation
coeficients since the approximation coeficents at coarser
level are the smoothed and subsampled verion of the
original image. The fused image I

f
 can be obtained using:
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=

¬              (6)

4. PERFORMANCE EVALUATION
4.1 With Reference Image

When the reference image is available, the performance
of image fusion algorithms can be evaluated using the
following metrics:

1. Percentage fit error29 (PFE)
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where, norm is the operator to compute the largest singular
value.

It is computed as the norm of the difference between
the corresponding pixels of reference and fused image to
the norm of the reference image. This will be zero when
both reference and fused images are exactly alike and it
will be increased when the fused image is deviated from
the reference image.

  

 

Figure 3. (a) Ground truth image; (b) Multi-resolution image decomposition; (c) Reconstructed image from 2nd level of decomposition
and the error image.

(i) Reconstructed image                           (ii) Error image

(i) First level of decomposition              (ii) Second level of
decomposition

(a) (b)

(c)
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2. Peak signal to noise ratio30 (PSNR)
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where, L in the number of gray levels in the image.
Its value will be high when the fused and reference

images are similar. Higher value implies better fusion.

3. Measure of structural similarity31, 32 (SSIM)
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Natural image signals would be highly structured and
their pixels reveal strong dependencies. These dependencies
would carry vital information about the structure of the
object. It compares local patterns of pixel intensities that
have been normalized for luminance and contrast.

4.2 Without Reference Image
When the reference image is not available, the following

metrics could be used to test the performance of the fused
algorithms.

1. Standard deviation33 (SD)
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where,  ( )
fI

h i is the normalized histogram of the fused
image  ( , )fI x y  and L number of frequency bins in the
histogram.

It is known that standard deviation is composed of
the signal and noise parts. This metric would be more
efficient in the absence of noise. It measures the contrast
in the fused image. An image with high contrast would
have a high standard deviation.

2. Cross entropy34 (CE)
Overall cross entropy of the source images I

1
, I

2
 ,and

the fused image I
f
 is:
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3. Spatial frequency35-36 (SF)
Spatial frequency criterion is:

 2 2SF RF CF= +                                (12)

where, the row frequency of the image is:
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and column frequency of the image is:

Figure 4. Schematic diagram for the MDCT based pixel level image fusion scheme.
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This frequency in spatial domain indicates the overall
activity level in the fused image. (x, y) is the pixel index.
The fused image with high SF would be considered.

 

5. RESULTS AND DISCUSSION
The National Aerospace Laboratories� indigenous

aircraft SARAS, shown in (Fig. 5(a)), is considered as
a reference image I

r
 to evaluate the performance of the

proposed fusion algorithm. The complimentary pair input
images I

1
 and I

2
 are taken to evaluate the fusion algorithm

 

Figure 5. Reference and source images.

(a) Reference image I
r

(b) First source image I
r

(c) Second source image

 

 

Figure 6. Fused and error image with one level D=1 of decomposition using MDCT.

Figure 7. Fused and error image with one level D=1 of decomposition using wavelets.
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and these images are shown in Figs. 5(b)-5(c). The
complementary pair has been created by blurring the
reference image of size 512 x 512 with a Gaussian mask
using diameter of 12 pixels. The images are complementary
in the sense that the blurring occurs at the top half and
the bottom half respectively. The first column in Figs.
6 - 9. shows fused images and the second column shows
the error images. The error (difference) image is computed
by taking the corresponding pixel difference of reference
image and fused image, i.e., ( , ) ( , ) ( , )e r fI x y I x y I x y= - .
The fused and error images by one level of decomposition
using MDCT and wavelet fusion algorithms are shown
in Fig. 6 and Fig. 7 respectively. Similarly the fused and
error images by two levels of decomposition using MDCT
and wavelet are shown in Fig. 8 and Fig. 9 respectively.
It is observed that the fused images of both MDCT and
wavelet are almost similar for these images. The reason

could be because of taking the complementary pairs.
The performance metrics for evaluating the image fusion
algorithms are shown in Table 1. The metrics shown in
table with asterisk (*) mark, are better among others.
The performance of MDCT is almost similar to that of
wavelets. Higher level of decomposition performs superior
fusion.

6.  CONCLUSION
Pixel level image fusion by MDCT algorithm has been

implemented and evaluated. The performance of this algorithm
is compared with well known image fusion technique by
wavelets. It is concluded that image fusion by MDCT is
almost similar to that of wavelets. It is computationally
very simple and it could be well suited for real-time applications.
Image fusion by higher level of decomposition provides
better fusion results.

 

Figure 9. Fused and error image with two levels D=2 of decomposition using wavelets.

 

Figure 8. Fused and error image with two levels D=2 of decomposition using MDCT.

With  reference image Without reference image Levels of  
decomposition 

Algorithm 
PFE PSNR SSIM CE SD SF 

D = 1 MDCT 3.8772 38.6038 0.9673 8.8438 46.1094 12.4658 
D = 1 Wavelets 3.7899 38.7026 0.9736 10.6944 46.2320 13.0840 
D = 2 MDCT 3.3175 39.2808 0.9635 10.3484 46.8292 15.4992 
D = 2 Wavelets 3.2027* 39.4338* 0.9764* 11.3181* 46.9953* 15.6984* 

Table 1. Performance evaluation metrics
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