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1. INTRODUCTION
Different approaches have been proposed to realise 

planning in dynamic environments1. Sampling2 based motion 
planning algorithms have made real time planning of motion 
for unmanned vehicles possible3. A bias towards the goal4 is 
usually added by giving an increased probability to the goal 
states which tends to increase the rate of convergence of the 
planner. Shaping the probability distribution function5 which 
is used to generate random samples to grow a tree has shown 
improvements in the rate of convergence of the path planner6. 
The negative side of increasing the bias is that like randomised 
potential field it becomes too greedy also leading to local 
minima problem7. The goal directed approach presented 
in this paper is intended to provide an indirect goal bias 
without the probability based goal bias included in sampling 
algorithms. With the known advantage of increase in the rate 
of convergence, this approach tends to provide a solution with 
improved solution length. Study shows the improvement of  
goal directed approach over the probabilistically goal biased 
RRT algorithm for different unmanned vehicle platforms8.

2. RAPIDLY EXPLORING RANDOM TREES 
Path planning involves defining a state space, X which 

constitutes both free region, Xfree where the path can proceed 
and obstacle region, Xobs where the path cannot proceed through. 

The state space enables representation of both configuration 
and velocity in a space. A collision detection algorithm enables 
to determine if a state, x causes collision in the modeled world. 
Thus selecting a number of collision-free states and computing 
a path from the start, xinit to the goal state, xgoal.

The RRT algorithm9 considers dynamic constraints for 
path planning.

Algorithm 1: BUILD RRT(xinit)
a. T.init(xinit)
b.   for k = 1 toKdo
c.    xrand←RANDOM_STATE();
d.    EXTEND(T, xrand);
e.  Return T

Given an initial and goal state, a tree is constructed 
with the root of the tree in the initial state and branching till 
the goal state is reached. Adding nodes to the tree involves 
generation of random state xrand, within the state space using the 
RANDOM_STATE function. The selection of random nodes 
can be controlled by introducing a bias towards goal using 
probabilistic shaping in RANDOM_STATE function. Followed 
by the generation of a state xrand, extension of the tree is realised 
by the EXTEND function. 

The node in the tree which is nearest to the random state is 
identified using NEAREST_NEIGHBOR function. The function 
uses a certain metric to compute the distances of each node 
of the tree with the random state. The node with the shortest 
distance to the random node, called nearest neighbour, xnear is 
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selected to connect the random node to the tree. 
Algorithm 2: RRT EXTEND(T, x)

a. xnear←NEAREST_NEIGHBOR( x, T);
b. if NEW_STATE(x, xnear, xnew, unew) then 
c. T .add vertex(xnew) 
d. T .add edge(xnear, xnew, unew) 
e. if xnew=x then 
f.  Return Reached;
g. else 
h.  Return Advanced;
i. Return Trapped;

NEW_STATE function is to make a motion towards xrand 
from xnear using an input unew or an incremental distance, ε. The 
function checks if the random state, xrand and also the intermediate 
states from xnear are reachable. If the random sample state xrand 
was reached then the function returns Reached. If the tree only 
progresses towards xrand then it returns Advanced and if the 
motion is trapped by an obstacle it returns Trapped. The new 
state is represented as xnew.

3. GOAL DIRECTED RRT PATH PLANNER 
A different variations10 has been proposed in this paper 

to the basic RRT algorithm. The current existing variations to 
the algorithm are classified under three categories as methods 
for generating random state, methods to extend towards a 
new node and methods to add bias to the goal. Every type 
of variation has its own advantages. The goal directed RRT 
path planner introduces a new method of adding bias towards 
the goal primarily by using a NEAREST_TO_GOAL function 
resulting in faster rate of convergence of the planner. And 
for certain reasons the experiments also show a reduction in 
solution length. 

Algorithm 3: BUILD DIRECTED_RRT(xinit)
a. T .init(xinit)
b.  for k = 1 toKdo
c. xrand1←RANDOM_STATE();
d. xrand2←RANDOM_STATE();
e. xrand← NEAREST_TO_GOAL(xrand1, xrand2);
f. EXTEND(T , xrand);
g. Return T

With the knowledge of initial and goal state, the planner 
starts by generating two random statesxrand1and xrand2 instead of 
one random state generated by the basic RRT planner in the free 
region using the RANDOM_STATE function. The difference in 
the RANDOM_STATE function introduced in GRRT is that it 
does not include probabilistic shaping towards goal as in RRT 
and hence avoiding the local minima problem. 

The GRRT achieves the search towards the goal by the 
introduction of NEAREST_TO_GOALfunction which selects 
the random state closer to the goal out of the two random states, 
xrand1and xrand2. The randomstate out of xrand1 and xrand2 which is 
closest to the goal becomes the chosen random state xrand for 
further growth of the tree.

The number of random states to choose from was set to 
two after simulation results showed best performance when 
the number of random states was limited to two. So, GRRT 
algorithm is proposed to include a preferential selection out of 
just two random states.

The EXTEND function in GRRT carries out the same 
functionality as in RRT by extending an edge from the tree 
towards the chosen xrand. The NEAREST_NEIGHBOUR function 
then computes the neighbour in the tree xnear, closest to the chosen 
random state, xrand. Then the tree extends towards the random 
state. If the tree reaches xrand, the function returns Reached or if 
it advances but does not reach xrand it returns Advanced and if the 
motion gets trapped by an obstacle, it returns Trapped.

The RRT tree structure exhibits the advantage of 
exploration of the entire search space. The tree structure of 
Goal directed RRT has an inclination towards the goal. This 
initiates a faster rate of convergence of the Goal directed RRT 
algorithm.

A possible variation to the proposed approach is if xrand1 or 
xrand2 lies in Xobs, whichever lies in Xfree can be selected within 
the NEAREST_TO_GOAL function. 

4. EXPERIMENTAL SETUP
The experiments were carried out on Intel Core i3 CPU 

with 2.53 GHz processor with 4GB RAM. The OMPL11 motion 
planning library was used for benchmarking the proposed 
algorithm. OMPL has provision for carrying out benchmarking 
tests by including new motion planning algorithms. The GRRT 
was included in OMPL for benchmarking the algorithm. OMPL 
includes different environment wherein the benchmarking can 
be carried out. Scripts available with OMPL to visualise the 
benchmarking results can be used for data visualisation. 

On an average 25 runs were made for each planner in 
every scenario with a minimum planning time of 10 seconds 
to a maximum of 100 seconds. Whenever goal bias i.e., adding 
goal state to the distribution with a higher probability was 
considered, it was set to 0.05. 

Algorithm 4: DIRECTED_RRT EXTEND(T, x)
a. xnear ← NEAREST_NEIGHBOR(x, T)
b.   if NEW_STATE(x, xnear, xnew, unew) then
c. T.add_vertex(xnew)
d. T.add_edge(xnear, xnew, unew)
e. if xnew = x then
f.  Return Reached
g. else
h.         Return Advanced
i.   Return Trapped

4.1 Kinematic Car Planning
The configuration of a car can be expressed as,

1( , , )q x y R S= θ ∈ ×                                                        (1)
where the position is,

2( , )x y R∈                                                                      (2)
and the orientation is, 

1Sθ∈                                                                             (3)
The definition of the benchmarking parameters is as 

follows:
Graph Motion: The number of edges in the constructed 

graph.
Solution Length: The length of the found solution.
Solution Segments: The number of segments on the 

solution path.
Time: The amount of time spent planning, in seconds.
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Solution Difference: If the solution is approximate, this 
refers to the distance of goal from the end-point of the found 
approximate solution.

Solved: Indicating whether the planner found a solution 
(even approximate solution is considered)

The benchmarking was carried out on maze environment 
as shown in Fig. 1. As seen from Table 1 and Table 2, GRRT 
shows a decrease in graph motion, which represents a reduced 
graph tree data structure resulting in a faster search. Any graph 
search algorithm would be benefited by the reduced graph data 
structure.

with a maximum runtime of 10 s for 25 runs for each planner. 
Similar to kinematic car benchmarking, different benchmarking 
parameters like solution length, time, solution segments, graph 
motions were considered for benchmarking. The results for a 
dynamic car are shown in Table 3 and the percentage change 
in Table 4.

Figure 1.  Maze environment for kinematic car planning.

Table 1.  Kinematic car benchmarking results

Performance measure RRT GRRT
Graph motions 42057.32 32661.72
Solution length 24.278 24.410
Solution segments 18.16 16.32
Time 7.93 6.85
Solved 8 12

Table 2.  Percentage change for kinematic car

Performance measure Improvement - GRRT (%)

Graph motions decrease of 22.34

Solution segments decrease of 10.13

Time decrease of 13.62

Solved increase of 50

Figure 2. Random polygon environment for dynamic car 
planning.

Table 3.  Dynamic car benchmarking results

Performance measure RRT GRRT
Graph motions 17841.4 17591

Solution length 83.915 76.8071

Solution segments 56.4 50.24

Solution difference 0.96536 0.770209

Time 9.86 9.33

Solved 2 4

Table 4.  Percentage change for dynamic car

Performance measure Improvement – GRRT (%)

Graph motions  decrease of 8.47

Solution length   decrease of 10.92

Solution segments  decrease 20.21

Time  decrease of 5.38

Solved  increase of 100

4.2 Dynamic Car Planning
Dynamic car planning involves considering the 

acceleration q in addition to velocity q and configuration q .
For dynamic car planning, the state is, 

( , , , , )s x y s= θ ϕ                                                              (4)
where the position,

2( , )x y R∈                                                                      (5)
the orientation,

1Sθ∈                                                                              (6)
the translational velocity,

s R∈                                                                              (7)
the steering angle,

Rϕ∈                                                                              (8)
The benchmarking of algorithms for a dynamic car was 

performed in ‘Random Polygon’ environment shown in Fig. 2, 

4.3 Quadrotor Planning
Quadrotor motion planning12 is a very hard motion 

planning problem13 even with a simplified dynamics model. 
Quadrotor motion using predefined waypoints has become a 
basic capability but generating motion plans autonomously is 
still a challenging research area. The dynamics of the quadrotor 
are defined as follows:

0mp u n p mg= − β −                                                         (9)
1, 2 3( , )Tu u uα ∈                                                              (10)

where p is the position, n is the Z-axis of the body frame in 
world coordinates, α is the angular acceleration, m is the mass 
and β is the damping.
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The system is controlled through,
0 1 2 3( , , , )u u u u u=                                                          (11)

The control inputs include 0u , which is the mass normalised 
collective thrust, the roll rate about the body axes 1u , the pitch 
rate 2u and the yaw rate 3u .

The quadrotor benchmark was carried out in ‘Cubicles’ 
environment as shown in Fig. 3, with a maximum time limit 
for every planner execution set to 10 s for one trial and to 100s 
for another trial.

As seen in Table 5, the goal direction approach defined 
in this paper improves on the solution length. Even in a high 
dimensional environment like quadrotor planning, the directed 
approach presents itself as a valuable addition to the RRT 
algorithm. The improvement in solution becomes significant as 
time of planning increases and so would be profited by higher 
computing power.

Goal directed RRT algorithm shows significant improvements 
in time and solution lengths. The algorithm was formulated in 
order to overcome the disadvantages of heuristic probability 
shaping. This goal directed approach can be considered for 
different types of sampling based planners. The effectiveness of 
this method will be determined with experiments on unmanned 
vehicles in unknown environment.
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Figure 3.  Cubicles environment for quadrotor planning.

 Table 5.  Percentage change for quadrotor

Performance
 measure

Improvement GRRT
10s (per cent) 100s (per cent)

Solution length      ↓ 7.6       ↓ 14.5
Solution segments      ↓ 4.4       ↓ 5.2

5. WORK IN PROGRESS
Currently, work is being carried out to implement GRRT 

algorithm in a real world environment with quadrotor as an 
unmanned vehicle platform. This serves the cause of furthering 
the research on autonomous quadrotor planning as well as to 
analyse the proposed algorithm.  

6. CONCLUSION
In this paper we have presented the first results for an 

algorithm which is proposed to overcome the local collisions 
caused by goal bias in unmanned vehicles along with improving 
the solution length and computing time which is required to 
perform real-time planning. The GRRT algorithm presents 
a faster solution with shorter solution length and would be 
useful in the case of large search spaces and in places where 
planning is to be accomplished in previously unknown search 
spaces. The goal bias is introduced by a modified approach 
in the selection of sampled random state. The test results of 
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