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1. IntroductIon
Metamaterials have attracted lot of attention in recent 

times due to their unprecedented range of applications in 
electromagnetics. These are defined as artificially structured 
materials which attain their properties from the unit structure, 
and not from the constituent materials. They have their unit 
structure comparable to the wavelength of interest; due to 
which their electromagnetic response is expressed in terms of 
homogenized material parameters (i.e. effective permittivity 
and effective permeability)1. In 1968, Veselago theoretically 
proved the possibility of left handed materials2. Later, this  
domain of science (and mostly, the technology) initiated when 
Smith et al. published their works on a structured material 
with simultaneously negative permeability and permittivity at 
microwave frequencies, in the year 20003. Various applications 
came in later, which exhibited the metamaterials in various 
sizes, shapes, materials and geometry for applications including 
cloaking, superlenses and antennas4-5. Sensors are also one 
domain of the applications, in which significant progress has 
been done, in recent 5 years or so6-9. Our own efforts have also 
been documented towards making of such structures, mainly 
electrical metamaterials for applications in sensing10-12.

Fuel adulteration is a global menace especially in South 
Asian countries. For petrol and diesel, kerosene is the most 
widely used adulterant, mixed for monetary gains. Adulteration 
as high as 30 per cent is incorporated13, which results in 
substantial loss to the country’s economy. Further, kerosene is 
more difficult to burn than petrol, and hence its addition results 
in higher emission of carbon and carbon monoxide; leading to 
environmental pollution along with premature failure of engine 
components14. There are many methods to detect adulteration 
in fuel, like density measurement method, fiber grating 

sensor technology, emission testing, filter paper method, gas 
chromatography, ash contamination determination and so 
on15-17. However, these methods are either laboratory-based or 
equipments are too bulky and costly. So there is crucial need 
of a fuel detection device, which should be highly sensitive, 
selective, low-cost with quick recovery and response time. In 
this context, we propose a metamaterial based device designed 
in the  industry scientific and medical (ISM) standard band for 
detection of adulteration in conventional fuel. 

Using the preliminary studies done earlier10, a device is 
being developed and projected here working in ISM standard 
band. The sensor is a complementary split ring resonator 
(CSRR) circuit, which exhibits sub-wavelength resonance 
(resonance at λ/18 in this case) having higher sensitivity and 
Q-factor. Further, a PDMS-based sample cavity is fabricated 
for micro-quantity sensing to make the device more sensitive, 
precise and selective.  A device operating at 2.47 GHz is hence 
proposed for kerosene adulteration (in petrol, varying upto 30 
per cent). Standard samples (unadulterated fuel) were derived 
from the Company operated Company owned (CoCo) petrol 
pump, and the adulterated samples were actually made in the 
laboratory for accurate calibration. Systematic changes in 
the resonance frequency as well as magnitude (power) were 
observed with adulterated fuels. The sensing measurements 
were done on vector network analyer (VNA, (Agilent PNA 
N5222A)). The sensing was fast and the recovery was almost 
instantaneous; promising an accurate and sensitive device for 
detection of adulterated petrol.

2. desIgn and theory
Electrical metamaterials made from the CSRRs are based 

on Babinet’s principle18, having two concentric rings etched 
out from a conductive surface which behaves as an electric 
dipole as they are excited by an axial electric field,applied 
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perpendicular to the CSRR plane. This excitation can be 
accomplished by using a microstrip transmission line with the 
CSRR etched on the ground plane. The resonant frequency is 
given by the following standard expression19:

( ) 2    
1/2

o f l Co c cω =
−

= π                                          (1)

ωo is the angular resonant frequency lC and CC are 
inductance and capacitance of the CSRR. Change in the 
permittivity of the sample material reflects the change in the 
capacitance of the CSRR (CC) of the sensor20. The CSRR 
was designed with specific dimensions to yield the resonant 
frequency of 2.51 GHz. Figure 1(a) shows the copper structure 
which was fabricated on a commercially available FR4 epoxy 
(εr= 4.4 thickness h = 1.6 mm) substrate. The structure was 
embedded in the PDMS mould, to make a cavity for liquid 
confinement which shifted the resonating frequency of the 
sensor to 2.47 GHz. A micro-pipette was used to drop-cast the 
liquids in the cavity, completely filling the cavity for pure as 
well as adulterated fuels. The color difference in the adulterated 
fuels, when compared to pure petrol, is hardly differentiable as 
shown in inset of Fig. 1(a). The measurements were carried out 
for 10 per cent, 20 per cent and 30 per cent adulterated fuels. 
The PDMS cavity was so designed that the walls of the cavity 
restricted the liquid sample strictly over the active area of the 
sensor. The CSRR unit cell structure and experimental set 
up has been mentioned in detailed by Rawat10, et al. The cell 
dimensions of the CSRR for the desired resonant frequency 
area = 6.82 mm, c =0.52 mm, d = 0.2 mm and g = 0.32 mm. 
The shape of the microstrip line was changed from rectangular 
to plus-sign as to further reduce the size while retaining the 
Q-factor of the device. Dimensions  of the device was 26 mm 
x 20 mm.

3. results and dIscussIon
The simulation of CSRR design (with and without PDMS 

cavity) was carried out using CST Microwave Studio which 
matched well with experimental results (not shown). Fig 1(b) 

shows E-fields at the time of the resonance of the simulation 
setup of the CSRR cavity. The figure clearly shows more flux 
of E-fields above the CSRR structure rather than below. This 
suggests that upon insertion of the sample inside the cavity, 
significant change in the E-fields path will lead to change 
in Cc (dependent on the real part of relative permittivity of 
sample) and hence the inherent resonance frequency shift 
(of the CSRR frequency). Table 1 shows the experimental 
values of the permittivity measurements done using Agilent 
Dielectric Probe Kit (85070E) for the fuels21 along with the 
simulation and experimental response for petrol and kerosene. 
On exposing the sensor with 300 μL of petrol and kerosene, 
the resonant frequency of the empty cavity shifted from 2.47 
GHz to 2.254 GHz and 2.281 GHz by 216 MHz and 189 MHz, 
respectively. Figure 2 shows the S21 response of the sensor 
for adulterated combination for 10 per cent, 20 per cent, and 
30 per cent kerosene in petrol. This indicated that it is easy to 
identify contamination (adulterated fuel), if the adulteration is 
around 10 per cent or more. Figure 3 shows the data for various 
percentages of adulterated fuels, both in terms of magnitude 
(power) as well as frequency change where the transmission 
frequency shifted to 6 MHz, 9 MHz, and 13 MHz with respect to 
petrol. There was negligible change in transmission magnitude 
of all the samples (approx. 1.5 dB for petrol and kerosene). 
Further detailed studies are ongoing, which can offer a proper 
calibration scale with this device; for adulteration in petrol.

Figure 1. (a) shows the CSRR device with the PDMS cavity along with photograph of fuel samples (inset) (b) Simulation of E-fields 
of csrr cavity sensor. 

Fuels Permittivity 
(real part)

loss 
tangent

s21 resonance frequency 
(ghz)
simulation experimental

Kerosene
 (300 uL) 

2.26 ~0.00 2.280 2.281

Petrol 
(300 uL)

2.41 ~0.00 2.260 2.256

table 1. comparison of  simulation and experimental values 
of petrol and kerosene.

(a) (b)
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It is important to mention that the sensor had good 
repeatability, rapid recovery, and cheap fabrication technique. 
Substantial shift in the resonance frequency of the sensor 
ensures its practical applicability not only at gas stations, 
and to the consumers, but also the fuel owners, to check the 
quality and hence life of their automobile engines. Extreme 
miniaturization due to the metamaterial approach is the 
prominent advantage of the envisaged device. 

4. conclusIon
In conclusion, a CSRR based sensor has been designed 

which provide good sensitivity in detecting a small amount of 
liquid samples of adulterated fuels. The sensors also provides 
extreme miniaturization, micro-quantity, fast sensing and 
repeatability; thus promising a practically implementable 
product. The cavity based approach, along with the ISM band 
applicability provides impetus for ease in manufacturing. 
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