Simultaneous Mapping and Localisation for Small Military Unmanned Underwater Vehicle

Paper proposes a simultaneous localisation and mapping (SLAM) scheme which is applicable to small military unmanned underwater vehicles (UUVs). The SLAM is a process which enables concurrent estimation of the position of UUV and landmarks in the environment through which the vehicle is passing. An unscented Kalman filter (UKF) is utilised to develop a SLAM suitable to nonlinear motion of UUV. A range sonar is used as a sensor to collect the relative position information of the landmark in the environment in which the UUV is navigating. The proposed SLAM scheme was validated through towing tank experiments about two degrees of freedom motion with UUV motion simulator and real range sonar system for small UUV. The results of these experiments showed that proposed SLAM scheme is capable of estimating the position of the UUV and the surrounding objects under real underwater environment


Keywords:    Simultaneous localisation and mappingrange sonarunmanned underwater vehicleunscented Kalman filtertowing tank experiment


Autonomy of an unmanned underwater vehicle (UUV) allows the UUVs to be used in the many missions in military area1. A precise navigation system of UUV is mandatory for mission success, because navigational error affects the quality of recorded data during the mission and the recovery of UUV. Inertial navigation system (INS), which is composed of the inertial measure unit (IMU) and auxiliary sensor such as Doppler velocity log (DVL) to prevent the growth of the navigational drift from IMU2 has been widely used as navigation system of UUV for a long time. However, since navigational error is still accumulate, as mission time increases even if using DVL, it is necessary to reset the navigational drift by determining UUV’s position to external reference point3. The reset can usually be done by resurfacing for GPS, but this can be impossible if the mission of UUV is covert. One of the alternatives for resetting the drift is simultaneous localisation and mapping (SLAM) because SLAM can deduce the position of UUV from the map of underwater environment which is built up simultaneously during the mission4. Although any Bayesian estimation theory can be used in SLAM, many researches apply Kalman filter and its variations to SLAM5,6 because of low computational burden and optimality under Gaussian assumption. When the dynamics system is nonlinear, extended Kalman filter (EKF) can be used by using first Taylor series to approximate nonlinear system under assumption that system is locally linear. However, if dynamic system is highly nonlinear as like a lawn mowing motion of UUV in the mine countermeasure (MCM) mission, EKF can be unstable by broken locally linear assumption while unscented Kalman filter can be consistent through statistical linearisation instead of analytical linearisation7, 8.

The aim of this work is to implement the suitable SLAM into small UUV for MCM and other military missions. Thus SLAM in this work adopted UKF as an estimation method and range sonar system as a sensory system considering the nonlinear motion and payload of small UUV. The proposed SLAM was verified through experiments under towing tank conditions and the experimental results are presented.

.

The SLAM in this work is composed of 3 steps that are: state estimation, data association, and map management. The position of UUV and landmark is estimated simultaneously in the state estimation step. The decision about changing the system state by adding newly detected objects and deleting not detected landmark from system state is performed through data association step. Map management step manages the size of system state vector for efficient computation.

2.1 State Estimation

If the UUV is assumed to move in three degrees of freedom in the ocean with multiple objects located adjacent to where the vehicle is operating, the state of the vehicle can be written as:



x v = [ x v y v z v ψ v θ v V v ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaadAhaaeqaaOGaeyypa0ZaamWaaeaafaqabeqagaaaaeaa caWG4bWaaSbaaSqaaiaadAhaaeqaaaGcbaGaamyEamaaBaaaleaaca WG2baabeaaaOqaaiaabQhadaWgaaWcbaGaamODaaqabaaakeaacqaH ipqEdaWgaaWcbaGaamODaaqabaaakeaacqaH4oqCdaWgaaWcbaGaam ODaaqabaaakeaacaWGwbWaaSbaaSqaaiaadAhaaeqaaaaaaOGaay5w aiaaw2faamaaCaaaleqabaGaamivaaaaaaa@4AB6@      (1)

where x v , y v , z v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWG4bWaaS baaSqaaiaadAhaaeqaaOGaaiilaiaadMhadaWgaaWcbaGaamODaaqa baGccaGGSaGaamOEamaaBaaaleaacaWG2baabeaaaaa@3DD7@ denote the positions in 3-D space; ψ v , θ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHipqEda WgaaWcbaGaamODaaqabaGccaGGSaGaeqiUde3aaSbaaSqaaiaadAha aeqaaaaa@3C80@ denote the heading and pitch angle; and V v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWG2baabeaaaaa@37D9@ denotes the total velocity. The state of M objects acquired by the sensor equipped with UUV are given by their positions:



x o = [ x o1 y o1 z o1 x oM y oM z oM ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bWaaS baaSqaaiaad+gaaeqaaOGaeyypa0ZaamWaaeaafaqabeqahaaaaeaa caWG4bWaaSbaaSqaaiaad+gacaaIXaaabeaaaOqaaiaadMhadaWgaa WcbaGaam4BaiaaigdaaeqaaaGcbaGaamOEamaaBaaaleaacaWGVbGa aGymaaqabaaakeaacqWIVlctaeaacaWG4bWaaSbaaSqaaiaad+gaca WGnbaabeaaaOqaaiaadMhadaWgaaWcbaGaam4Baiaad2eaaeqaaaGc baGaamOEamaaBaaaleaacaWGVbGaamytaaqabaaaaaGccaGLBbGaay zxaaWaaWbaaSqabeaacaWGubaaaaaa@4FB8@      (2)

Since system state vector in SLAM is defined as the combination of a vehicle state and an object’s state, the system state vector in authors work is as follows:



x= [ x v T x o T ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH4bGaey ypa0ZaamWaaeaafaqabeqacaaabaGaaCiEamaaDaaaleaacaWG2baa baGaamivaaaaaOqaaiaahIhadaqhaaWcbaGaam4Baaqaaiaadsfaaa aaaaGccaGLBbGaayzxaaWaaWbaaSqabeaacaWGubaaaaaa@4110@      (3)

The motion of UUV is modelled with second kinematics model by a constant velocity with white noise acceleration9. The discrete time state equation at time k and k+1 with sampling time ΔT MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiLdqKaam ivaaaa@3817@ is described as:



x v (k+1)= x v (k)+ V v cos( ψ v +r)cos( θ v +q) ΔT+ q x (k) y v (k+1)= y v (k)+ V v sin( ψ v +r)cos( θ v +q) ΔT+ q y (k) z v (k+1)= z v (k)+ V v sin( θ v +q) ΔT+ q z (k) ψ v (k+1)= ψ v (k)+r+ q ψ (k) θ v (k+1)= θ v (k)+q+ q θ (k) V v (k+1)= V v (k)+ q V (k) x o (k+1)= x o (k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakqaabeqaaiaadI hadaWgaaWcbaGaamODaaqabaGccaGGOaGaam4AaiabgUcaRiaaigda caGGPaGaeyypa0JaamiEamaaBaaaleaacaWG2baabeaakiaacIcaca WGRbGaaiykaiabgUcaRiaadAfadaWgaaWcbaGaamODaaqabaGcciGG JbGaai4BaiaacohacaGGOaGaeqiYdK3aaSbaaSqaaiaadAhaaeqaaO Gaey4kaSIaamOCaiaacMcaciGGJbGaai4BaiaacohacaGGOaGaeqiU de3aaSbaaSqaaiaadAhaaeqaaOGaey4kaSIaamyCaiaacMcacaqGGa GaeyiLdqKaamivaiabgUcaRiaadghadaWgaaWcbaGaamiEaaqabaGc caGGOaGaam4AaiaacMcaaeaacaWG5bWaaSbaaSqaaiaadAhaaeqaaO GaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiabg2da9iaadMhadaWg aaWcbaGaamODaaqabaGccaGGOaGaam4AaiaacMcacqGHRaWkcaWGwb WaaSbaaSqaaiaadAhaaeqaaOGaci4CaiaacMgacaGGUbGaaiikaiab eI8a5naaBaaaleaacaWG2baabeaakiabgUcaRiaadkhacaGGPaGaci 4yaiaac+gacaGGZbGaaiikaiabeI7aXnaaBaaaleaacaWG2baabeaa kiabgUcaRiaadghacaGGPaGaaeiiaiabgs5aejaadsfacqGHRaWkca WGXbWaaSbaaSqaaiaadMhaaeqaaOGaaiikaiaadUgacaGGPaaabaGa amOEamaaBaaaleaacaWG2baabeaakiaacIcacaWGRbGaey4kaSIaaG ymaiaacMcacqGH9aqpcaWG6bWaaSbaaSqaaiaadAhaaeqaaOGaaiik aiaadUgacaGGPaGaey4kaSIaamOvamaaBaaaleaacaWG2baabeaaki GacohacaGGPbGaaiOBaiaacIcacqaH4oqCdaWgaaWcbaGaamODaaqa baGccqGHRaWkcaWGXbGaaiykaiaabccacqGHuoarcaWGubGaey4kaS IaamyCamaaBaaaleaacaWG6baabeaakiaacIcacaWGRbGaaiykaaqa aiabeI8a5naaBaaaleaacaWG2baabeaakiaacIcacaWGRbGaey4kaS IaaGymaiaacMcacqGH9aqpcqaHipqEdaWgaaWcbaGaamODaaqabaGc caGGOaGaam4AaiaacMcacqGHRaWkcaWGYbGaey4kaSIaamyCamaaBa aaleaacqaHipqEaeqaaOGaaiikaiaadUgacaGGPaaabaGaeqiUde3a aSbaaSqaaiaadAhaaeqaaOGaaiikaiaadUgacqGHRaWkcaaIXaGaai ykaiabg2da9iabeI7aXnaaBaaaleaacaWG2baabeaakiaacIcacaWG RbGaaiykaiabgUcaRiaadghacqGHRaWkcaWGXbWaaSbaaSqaaiabeI 7aXbqabaGccaGGOaGaam4AaiaacMcaaeaacaWGwbWaaSbaaSqaaiaa dAhaaeqaaOGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiabg2da9i aadAfadaWgaaWcbaGaamODaaqabaGccaGGOaGaam4AaiaacMcacqGH RaWkcaWGXbWaaSbaaSqaaiaadAfaaeqaaOGaaiikaiaadUgacaGGPa aabaGaaCiEamaaBaaaleaacaWGVbaabeaakiaacIcacaWGRbGaey4k aSIaaGymaiaacMcacqGH9aqpcaWH4bWaaSbaaSqaaiaad+gaaeqaaO GaaiikaiaadUgacaGGPaaaaaa@ED20@      (4)

where q x (k),  q y (k),  q z (k),  q ψ (k),  q θ (k),  q V (k) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbWaaS baaSqaaiaadIhaaeqaaOGaaiikaiaadUgacaGGPaGaaiilaiaabcca caWGXbWaaSbaaSqaaiaadMhaaeqaaOGaaiikaiaadUgacaGGPaGaai ilaiaabccacaWGXbWaaSbaaSqaaiaadQhaaeqaaOGaaiikaiaadUga caGGPaGaaiilaiaabccacaWGXbWaaSbaaSqaaiabeI8a5bqabaGcca GGOaGaam4AaiaacMcacaGGSaGaaeiiaiaadghadaWgaaWcbaGaeqiU dehabeaakiaacIcacaWGRbGaaiykaiaacYcacaqGGaGaamyCamaaBa aaleaacaWGwbaabeaakiaacIcacaWGRbGaaiykaaaa@58A9@ are the process noise.

The range sonar system with four channels is considered as a sensor system for taking a measurement of the relative location between landmark and UUV. Fig 1. shows the concepts of measurement model.

The measurement model for four channel range sonar system at time k+1 is described as:



z(k+1)=[ z 1 (k+1) z 2 (k+1) z 3 (k+1) z 4 (k+1) ]+[ w 1 (k+1) w 2 (k+1) w 3 (k+1) w 4 (k+1) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bGaai ikaiaadUgacqGHRaWkcaaIXaGaaiykaiabg2da9maadmaabaqbaeqa bqqaaaaabaGaaCOEamaaBaaaleaacaaIXaaabeaakiaacIcacaWGRb Gaey4kaSIaaGymaiaacMcaaeaacaWH6bWaaSbaaSqaaiaaikdaaeqa aOGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaqaaiaahQhadaWgaa WcbaGaaG4maaqabaGccaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaa baGaaCOEamaaBaaaleaacaaI0aaabeaakiaacIcacaWGRbGaey4kaS IaaGymaiaacMcaaaaacaGLBbGaayzxaaGaey4kaSYaamWaaeaafaqa beabbaaaaeaacaWH3bWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaadU gacqGHRaWkcaaIXaGaaiykaaqaaiaahEhadaWgaaWcbaGaaGOmaaqa baGccaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaabaGaaC4DamaaBa aaleaacaaIZaaabeaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMca aeaacaWH3bWaaSbaaSqaaiaaisdaaeqaaOGaaiikaiaadUgacqGHRa WkcaaIXaGaaiykaaaaaiaawUfacaGLDbaaaaa@6F9A@       (5)

The subscript in Eqn (5) denotes the corresponding direction in the range sonar system as shown in Fig 1.. The measurement model for single objects detected by ith range sonar at time k+1 is described as:



z i (k+1)=[ r i (k+1) α i (k+1) β i (k+1) ] + w i (k+1)= h i (x(k+1))+ w i (k+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWH6bWaaS baaSqaaiaadMgaaeqaaOGaaiikaiaadUgacqGHRaWkcaaIXaGaaiyk aiabg2da9maadmaabaqbaeqabmqaaaqaaiaadkhadaWgaaWcbaGaam yAaaqabaGccaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaabaGaeqyS de2aaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadUgacqGHRaWkcaaIXa Gaaiykaaqaaiabek7aInaaBaaaleaacaWGPbaabeaakiaacIcacaWG RbGaey4kaSIaaGymaiaacMcaaaaacaGLBbGaayzxaaGaaeiiaiabgU caRiaahEhadaWgaaWcbaGaamyAaaqabaGccaGGOaGaam4AaiabgUca RiaaigdacaGGPaGaeyypa0JaaCiAamaaBaaaleaacaWGPbaabeaaki aacIcacaWH4bGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiaacMca cqGHRaWkcaWH3bWaaSbaaSqaaiaadMgaaeqaaOGaaiikaiaadUgacq GHRaWkcaaIXaGaaiykaaaa@6A32@       (6)

where w i (k+1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4DamaaBa aaleaacaWGPbaabeaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMca aaa@3BE0@ represents the measurement noises of the sonar, which are assumed to have a zero mean while Gaussian noise with the covariance dependent on the sonar specifications. z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik8vrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG6bWaaS baaSqaaiaadMgaaeqaaaaa@384A@ is composed of range r i (k+1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaBa aaleaacaWGPbaabeaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMca aaa@3BD8@ , angle rotated from z axis in α i (k+1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaamyAaaqabaGccaGGOaGaam4AaiabgUcaRiaaigdacaGG Paaaaa@3C9D@ , and angle rotated from y axis in in the β i (k+1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHYoGyda WgaaWcbaGaamyAaaqabaGccaGGOaGaam4AaiabgUcaRiaaigdacaGG Paaaaa@3C9F@ Fig 1.. The h i (k+1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAamaaBa aaleaacaWGPbaabeaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMca aaa@3BCE@ in Eqn (6) can be described as a function of the UUV state and objects state as:


Figure 1. Coordinate system and measurement concept.



h i (x(k+1))=[ ( ( x v (k+1) x om (k+1)) 2 +( y v (k+1) y om (k+1) ) 2 + ( z v (k+1) z om (k+1)) 2 ) arctan y v (k+1) y om (k+1) x v (k+1) x om (k+1) ψ v arctan z v (k+1) z om (k+1) x v (k+1) x om (k+1) ϕ v ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipy0xf9vqqrpepeea0dXdHaVhbbf9v8qqaqFr0xc9pk 0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9 Fve9Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWHObWaaS baaSqaaiaadMgaaeqaaOGaaiikaiaahIhacaGGOaGaam4AaiabgUca RiaaigdacaGGPaGaaiykaiabg2da9maadmaabaqbaeqabmqaaaqaam aakaaabaWaaeWaaqaabeqaaiaacIcacaWG4bWaaSbaaSqaaiaadAha aeqaaOGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaiabgkHiTiaadI hadaWgaaWcbaGaam4Baiaad2gaaeqaaOGaaiikaiaadUgacqGHRaWk caaIXaGaaiykaiaacMcadaahaaWcbeqaaiaaikdaaaGccqGHRaWkca GGOaGaamyEamaaBaaaleaacaWG2baabeaakiaacIcacaWGRbGaey4k aSIaaGymaiaacMcacqGHsislaeaacaWG5bWaaSbaaSqaaiaad+gaca WGTbaabeaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMcacaGGPaWa aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadQhadaWgaaWcba GaamODaaqabaGccaGGOaGaam4AaiabgUcaRiaaigdacaGGPaGaeyOe I0IaamOEamaaBaaaleaacaWGVbGaamyBaaqabaGccaGGOaGaam4Aai abgUcaRiaaigdacaGGPaGaaiykamaaCaaaleqabaGaaGOmaaaaaaGc caGLOaGaayzkaaaaleqaaaGcbaGaciyyaiaackhacaGGJbGaaiiDai aacggacaGGUbWaaSaaaeaacaWG5bWaaSbaaSqaaiaadAhaaeqaaOGa aiikaiaadUgacqGHRaWkcaaIXaGaaiykaiabgkHiTiaadMhadaWgaa WcbaGaam4Baiaad2gaaeqaaOGaaiikaiaadUgacqGHRaWkcaaIXaGa aiykaaqaaiaadIhadaWgaaWcbaGaamODaaqabaGccaGGOaGaam4Aai abgUcaRiaaigdacaGGPaGaeyOeI0IaamiEamaaBaaaleaacaWGVbGa amyBaaqabaGccaGGOaGaam4AaiabgUcaRiaaigdacaGGPaaaaiabgk HiTiabeI8a5naaBaaaleaacaWG2baabeaaaOqaaiGacggacaGGYbGa ai4yaiaacshacaGGHbGaaiOBamaalaaabaGaamOEamaaBaaaleaaca WG2baabeaakiaacIcacaWGRbGaey4kaSIaaGymaiaacMcacqGHsisl caWG6bWaaSbaaSqaaiaad+gacaWGTbaabeaakiaacIcacaWGRbGaey 4kaSIaaGymaiaacMcaaeaacaWG4bWaaSbaaSqaaiaadAhaaeqaaOGa aiikaiaadUgacqGHRaWkcaaIXaGaaiykaiabgkHiTiaadIhadaWgaa WcbaGaam4Baiaad2gaaeqaaOGaaiikaiaadUgacqGHRaWkcaaIXaGa aiykaaaacqGHsislcqaHvpGzdaWgaaWcbaGaamODaaqabaaaaaGcca GLBbGaayzxaaaaaa@C0D0@      (7)

Unscented Kalman filter estimates the system state described in Eqn (3) using Eqns (4) ~ (7). The UKF follows the process of Kalman filter to estimate using the sigma points and the unscented transform. The detailed process of UKF is found in reference7.

2.2 Data Association and Map Management

Even though data association and map management are important problem in SLAM, the established methods about data association and map management were used in this work because purpose of this work is implementation of the SLAM into small military UUVs. In data association step, the detection of new object determines the nearest neighbourhood standard filter (NNSF)9. Measurements that do not correspond to existing objects through NNSF are considered as new objects, and a new object is added to the existing system state vector and covariance matrix using the stochastic map. As a number of newly detected objects are added, size of system state vector and its covariance matrix increases and the computational burden grows. In this work, the local submap method10 is considered as map management method and divided the environment in which the UUV is navigating into several local submaps with the full covariance method to estimate the positions of the UUV and landmark in a single submap.

Several experiments under towing tank conditions with a length of 120 m, breadth of 8 m, and depth of 3.5 m using an instrument (Fig 2.) to simulate two degrees of freedom motion and real range sonar system for small UUV (Fig. 2(b)) are carried out for the verification of proposed method.




Figure 2. (a) Instrument setup which is composed of DC motor, LM guide, control device of motor and rotating arm for the experimental simulation of two degrees of freedom UUV motion, surge, and yaw. (b) Blow-up of the rotating arm; the straight arrow represents the carriage motion direction and the curved arrow represents the yaw motion of the arm. Three transducers for range sonar were attached at the end of rotating arm.


Specifications of the range sonar system are summarised in Table 1. and experimental conditions are shown in Table 2.. Two cylindrical and two cubic shaped steel objects were placed as a discrete landmark in towing tank for the verification of data association function.



Table 1. Details of the range sonar system.


Table 2. Conditions for the two degrees of freedom motion experiment.


Experimental results of mapping of wall of the tank and localising of UUV are presented in Fig. 3(a) and the comparisons between locations were found with proposed method. The real location of UUV is shown inFig. 3(b) . Comparing the position of the mapped wall shown in Fig. 3(a) and the towing tank dimension, it is clearly shown that proposed method can map detected objects properly. The data in Fig. 3(b) show that the proposed method can accurately localise the UUV position under two degrees of freedom motion.


Figure 3.(a) Experiment results when the vehicle velocities are 0.1 m/s and 0.3 m/s when yaw changes between -20º and 20º and (b) Comparison between true UUV position and estimated UUV position.


Fig. 4 presented location error and one wall position mapping error about the y-axis for experimental results. Since a mapping error is influenced by localisation error from characteristics of SLAM, the positive localisation error induces the positive mapping error for velocity 0.1 m/s and the negative localisation error does the negative mapping error for 0.3 m/s as shown in Fig. 4. The location and mapping error in Fig. 4 can be increased as heading measurement increase even if heading error is small because of the combination of heading and velocity in Eqn (4). From the RMSEs in Table 3. and the fact that errors in Fig. 4 were not diverging, it is shown that proposed method can be implemented in the system to map the wall of tank and localise the real UUV position and be expected to provide the reference position for resetting navigational drift.


Table 3. Root mean square error of localisation and mapping.


Figure 4. Localisation and mapping errors about results in Fig 3. (a) UUV localisation error, and (b) Wall of tank mapping error.


Paper presents a SLAM method which is suitable for a small military UUV. The proposed method adopts an unscented Kalman filter in estimation step for a nonlinear motion model of UUV, the nearest neighbourhood standard filter in data association step and the local submap method in map management step. The proposed method was tested through the towing tank experiments. Experiment results presents that the proposed method can map the wall of tank and locate the position of UUV under two degrees of freedom motion wrt the estimation function for nonlinear motion and real time calculation capability. Future works will validate the capability of proposed SLAM through experiments with real UUV under three degrees of freedom motion.

1. Christopher von A. REMUS 100 transportable mine countermeasure package. In Proceedings of Oceans 2003. San Diego, California, USA, September 2003. pp. 1925-930.

2. Stutters, L.; Liu, H.; Tiltman, C.; & Brown, D.J. Navigation technologies for autonomous underwater vehicles. IEEE Trans. Syst., Man, Cybernetics-Pt C: Appli. Rev., 2008, 38(4), 581-89.

3. Lee, C.; Lee, P.; Hong, S.; Kim, S. & Seong, W. Underwater navigation system based on inertial sensor and Doppler velocity log using indirect feedback Kalman filter. Int. J. Offshore Polar Eng., 2005, 15(2), 88-95.

4. Aulinas, J.; Petillot, Y.; Salvi, J. & Llado, X. The SLAM problem: survey. In Artificial intelligence and application : Proceedings of the 11th International Conference of the Catalan Association for Artificial Intelligence, edited by Teresa Alsinet, Josep Puyol - Gruart, and Catme Torras, IOS Press, 2008, 184, pp. 363-71.

5. Ribas, D.; Ridao, P.; Tardos, J.D. & Neira, J. Underwater SLAM in man-made structured environments. J. Field Robotics, 2008, 25(11-12), 898-921.

6. Walter, M.; Hover, F. & Leonard, J. SLAM for ship hull inspection using exactly sparse extended information filters. In Proceeding of IEEE ICRA 2008, Pasadena, California, US, May 2008. pp. 1463-1470.

7. Julier, S.J. & Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proceedings IEEE, 2004, 92(3), 401-22.

8. Zhou, W.; Zhao, C. & Guo, J. The study of improving Kalman filter family for nonlinear SLAM. J. Intelligent Robotic Syst., 2009, 56(5), 542-64.

9. Bar-Shalom, Y. & Fortmann, T. Tracking and data Association. Academic Press, Orlando, Florida, USA, 1988. 353 p.

10. Kim, S.J. Efficient simultaneous localisation and mapping algorithm using submap networks. MIT, Cambridge, Massachusetts, USA, 2004. PhD Thesis

Dr Arom Hwang received his PhD from Seoul National University, Seoul Korea in 2007, and is currently working as a Professor in the Department of Naval Architecture and Ocean Engineering, Koje College. His research areas include: Acoustic aid navigation system of underwater guided weapon, unmanned underwater vehicle, acoustic signal processing, SLAM, unscented Kalman filter.

>

Dr Woojae Seong received his MS from Seoul National University, Seoul Korea in 1984 and PhD from Massachusetts Institute of Technology, US in 1990, and is currently working as Professor in the Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, Korea. His research areas include: Sound propagation modelling, ocean sediment acoustics, reverberation and scattering modelling, model-based geoacoustic inversion and source localisation, underwater acoustic communication and instrumentation.