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ABSTRACT

Feature extraction is crucial in biomedical image classification because it determines the accuracy of image 
representations and significantly impacts the effectiveness of classification models. Deep neural network classification 
architectures have gained significant interest due to their ability to automatically extract important features from 
input images, resulting in significant progress in diverse image classification tasks in recent years. However, with 
the rise of deep learning techniques, traditional machine learning approaches have been largely overshadowed. This 
study aims to close this gap by undertaking a rigorous comparative analysis of three important machine learning 
models, namely Gaussian Naïve Bayes, Support Vector Machine, and Random Forest Classifier, and three advanced 
deep learning models, namely VGG16, InceptionV3, and Xception. The comparison is based on their ability to do 
multiclass classification, using two datasets kidney stone and lung cancer. Each dataset consists of four different 
target classes. Both machine learning and deep learning frameworks are trained separately on the datasets, with 
deep learning models utilizing transfer learning techniques. The performance of each model across the varied output 
classes is assessed using evaluation measures such as precision, recall, and F1 scores. The results of the simulation 
analysis reveal that both machine learning and deep learning models perform equally well, as indicated by similar F1 
scores across all output classes for both datasets. This study represents a major step towards simplifying classification 
efforts by promoting the use of machine learning models instead of deep learning models for classifying kidney 
stone and lung cancer datasets. This approach helps reduce the workload and computing requirements for training.

Keywords: Deep learning; Machine learning; Biomedical image classification; Computed tomography; Biomedical 
image processing; Feature extraction

1. INTRODUCTION
Accurate classification of biomedical images, particularly 

Computed Tomography (CT) scans, is vital for early 
detection and precise diagnosis of medical conditions such 
as kidney stones and lung cancer. Feature extraction, a 
fundamental technique in biomedical image classification1,2, 
involves identifying and highlighting crucial image 
elements necessary for distinguishing between different 
disease classes. The effectiveness of any classification 
model heavily relies on the proficiency with which these 
features are extracted, directly impacting the accuracy 
and reliability of the classification process. Deep Neural 
Networks (DNNs)3,4 have emerged as formidable contenders 
in the realm of biological image classification due to their 
capability to autonomously learn intricate patterns from 
input images. These models have demonstrated outstanding 
performance across various image classification tasks, often 
surpassing traditional Machine Learning (ML)5 models. 
However, traditional ML techniques remain pertinent in 

biomedical image classification, offering results that are 
interpretable and computationally efficient, albeit facing 
challenges with complex datasets.

Deep learning models, particularly DNNs, excel 
at detecting complex patterns and correlations within 
extensive and high-dimensional datasets. Their ability 
to learn directly from raw input data enables them to 
perform intricate tasks without necessitating domain-
specific knowledge. Despite their computational demands, 
DL models exhibit exceptional generalisation ability, 
adaptability to changing conditions, and capacity to learn 
from new data. In contrast, ML techniques, while less 
computationally intensive, may require additional support 
when handling large and intricate datasets.

Feature extraction is pivotal in effectively representing 
image information, thereby playing a crucial role in image 
classification. Researchers have proposed various comparative 
approaches and techniques for feature extraction, aiming 
to enhance classification accuracy by identifying the 
most suitable method. Moreover, studies have explored 
the efficacy of deep learning methods in the diagnosis 
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of kidney stones6–9 and lung cancer10–13, demonstrating 
significant advancements in automated kidney stone 
and lung cancer classification. Additionally, researchers 
have investigated methods to improve image quality and 
enhance diagnosis using ML and DL techniques.Within 
the field of medical research, experts are always working 
to improve diagnostic models specifically designed for 
the automated classification of kidney stones14,15 and 
lung cancer16,17. The consistent and determined effort 
highlights the pressing necessity to improve medical 
diagnostics18,19 specifically in crucial fields such as 
oncology. Kanavati20 performed a crucial effort in this 
field, specifically studying the complex distinctions 
between the main histological kinds of lung cancer. By 
carefully developing and training a deep learning model 
utilizing H&E-stained Whole Slide Images of tiny trans 
bronchial lung biopsy specimens, scientists achieved 
a significant improvement in classification accuracy, 
paving the way for more accurate and efficient diagnosis. 
Wang and Dong21 introduced an innovative method for 
identifying lung cancer by utilising the capabilities 
of CT imaging. Their application of transfer learning, 
along with a complex neural network structure, not only 
demonstrates technological progress but also emphasizes 
the integration of varied datasets and approaches in the 
pursuit of diagnostic excellence.

On the other hand, Marentakis and Karaiskos22 undertook 
an extensive investigation, examining various methods for 
classifying tumors using CT images. Their comprehensive 
analysis not only enhances our comprehension of the 
subtle interplay between various approaches but also 
underscores the intrinsic difficulty of medical imaging 
jobs. Moreover, the ground breaking research conducted 
by Adriana and Dinh-Hoan 23 in the automation of kidney 
stone classification represents a major achievement in 
the discipline, introducing a novel age of precision 
and effectiveness through the utilisation of supervised 
learning methodologies. However, in the middle of all 
this innovation, there remains a significant gap - there 
is no comparative study that explains the ability of 
ML and DL models to extract features for classifying 
kidney stones and lung cancer. This unexplored domain 
invites investigation, offering the possibility for profound 
understanding and potentially significant progress in the 
field of medical diagnostics.

This study aims to compare ML and DL models in 
classifying CT images for kidney stone and lung cancer 
detection. The evaluated ML models include Support Vector 
Machines (SVM24), Random Forest Classifier (RFC25), and 
Gaussian Naïve Bayes (GNB26), while DL models comprise 
VGG1627, InceptionV328, and Xception29. By leveraging 
transfer learning, DL models utilize pre-trained weights 
to enhance feature extraction. Performance evaluation is 
conducted using precision, recall, and F1 score metrics 
across multiple output classes. Our objective is to provide 
insights into choosing suitable ML or DL models for 
multi-class classification using CT scans, focusing on 
kidney stone and lung cancer detection. Additionally, 

we aim to elucidate the feature extraction capabilities 
of these models in the context of biological image 
classification, identifying their comparative strengths and 
limitations. The findings of this study have the potential 
to improve patient outcomes and healthcare effectiveness 
by developing more accurate and reliable classification 
models for early disease detection using CT scans and 
potentially expanding to other medical conditions.

The subsequent sections of this paper are organised as 
follows: Section 2 outlines the proposed methodology and 
provides an overview of the simulation study. Section 3 delves 
into the empirical findings and evaluates performance, while 
Section 4 discusses the outcomes of the experiment. Finally, 
Section 5 concludes by suggesting directions for future research.

2. MATERIAL AND METHODS
Fig. 1 represents the flow diagram of the proposed 

framework for kidney and lung cancer classification. It 
has five phases. The first phase is the data collection. 
The second phase is data pre-processing. The third phase 
corresponds to the model training where three ML and 
three DL algorithms are implemented. The result evaluation 
is done in the fourth phase. Model comparison over the 
selected parameters is done in the fifth phase.

Figure 1.  The flow diagram of the proposed classification  
framework.

2.1 Data Collection
This study utilised two distinct datasets to perform 

multiclass classification tasks. One dataset focused on 
categorizing kidney stones, while the other centered on 
classifying lung cancer. The kidney dataset comprised 
12,446 CT images, categorised into four groups: cyst 
(3,709 images), normal (5,077 images), stone (1,377 
images), and malignant (2,283 images). Conversely, 
the lung cancer dataset contained 1,000 CT images, 
distributed among four categories: adeno carcinoma (338 
images), large cell carcinoma (260 images), squamous 
carcinoma (187 images), and normal cell (215 images). 
Both datasets were collected from Kaggle, a publicly 
available data repository. Fig. 2 visually represents the 
class distribution of the lung cancer (left) and kidney 
stone (right) datasets. Within the lung cancer dataset, 
adeno carcinoma emerges as the most prevalent subtype, 
constituting nearly 40% of all lung cancer cases. Large cell 
carcinoma, characterised by atypical features compared to 
other types, and squamous cell carcinoma, often associated 
with a history of smoking and primarily affecting central 
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2.3 The Model Training
The model training phase of this study involves 

the investigation and use of different ML and DL 
algorithms. More precisely, we are considering three 
supervised ML algorithms: SVM, RFC, and GNB. 
The selection of these algorithms is based on their 
effectiveness in classification tasks, and they are then 
utilised on the dataset to evaluate their performance. 
In addition, deep learning models, particularly CNNs, 
are used because of their exceptional capacity to 
acquire intricate patterns from input images. This 
study employs three widely-used CNN architectures, 
specifically InceptionV3, VGG16, and Xception. The 
CNN models utilised in this work have been pre-
trained on extensive ImageNet dataset. And then further 
implemented on the dataset used in this research 
using transfer learning method. CNNs are composed 
of several layers that perform convolution and pooling 
operations. These operations allow the network to 
extract important features from input images at various 
levels of abstraction. The convolutional layers utilize 
filters to analyze the input images, identifying patterns 
such as edges, textures, and forms. Afterwards, the 
pooling layers gather the input from the convolutional 
layers, decreasing the spatial dimensions of the features 
while maintaining their fundamental qualities. CNNs 
utilize a hierarchical feature extraction technique, 
enabling them to effectively capture complex patterns 
and representations contained in the input data. This 
makes them very suitable for image classification. The 
model training phase consists of implementing and 
evaluating a variety of ML and DL algorithms. Each 
algorithm is selected based on its specific strengths 
and capacities to handle classification task being 
performed. The work seeks to determine the best 
efficient algorithm for appropriately classifying the 
dataset using a comprehensive approach. Following 
are the pseudo codes for each algorithm implemented 
in this work.

lung regions, are also depicted. Figure 3 shows sample 
CT scans from the lung cancer dataset, providing visual 
insights into various lung cancer pathologies. Moving to 
the kidney dataset, four distinct classes were identified: 
kidney tumor, cyst, stone and normal, each reflecting 
specific clinical conditions impacting kidney health. Kidney 
tumors denote abnormal growths within kidney tissue, 
which can be either benign or malignant. Conversely, 
kidney cysts represent fluid-filled sacs, typically harmless 
and asymptomatic. Kidney stones, composed of calcium 
oxalate, and other compounds, can form in the kidneys, 
leading to various health issues. Fig. 4 exhibits sample 
CT scans from the kidney stone dataset, illustrating 
different disease manifestations related to kidney health.

2.2 Data Pre-Processing
Data cleaning is the process of detecting and rectifying 

discrepancies in a dataset to ensure its integrity and dependability 
for analysis. The images which are not labelled are discarded. 
Data normalisation aims to scale the values of features in a 
dataset to a comparable range, hence enhancing the performance 
of machine learning algorithms. The dimensionality of 
each image varies, in this stage, all the images are resized 
into one dimension for both the datasets. The input pixels 
are between range (0-255) and all the image pixels are 
normalised to the range (0-1). 

Figure 2.  Class distribution for lung cancer dataset(left) and 
kidney stone dataset(right).

Figure 3. The sample CT images for lung cancer dataset. 

Figure 4. The sample CT imges for kidney stone dataset.
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1.00 for all classes. This indicates that these models have 
accurately predicted all positive cases without any false 
positives. The GNB model has an average precision score 
of 0.86, while the RFC, SVM, VGG16, InceptionV3, and 
Xception models have an average precision score of 1.00.

The remaining phases of the proposed framework 
corresponds to the results evaluation and model comparison 
and are discussed in Section 3. 

3. RESULTS
The experimental results from the simulation study 

are analysed in this section. It has two subsections. The 
section 3.1 contains the result analysis for kidney stone 
classification and section 3.2 contains the result analysis 
for lung cancer classification. All the implemented 
models are evaluated using three metrics: precision, 
recall and F1 score. A model’s precision measures 
how well it predicts the True Positives (TP) out of all 
the occurrences predicted to be positives for a given 
class. It is determined as the proportion of TP to all 
other true and False Positives (FP). Recall measures a 
model’s ability to pick out TP from all the other positive 
examples in that class. It is calculated as the proportion 
of TP to all true positives and False Negatives (FN).
The harmonic mean of accuracy and recall, or the F1 
score, is a measurement of the precision against recall 
trade-off. A higher F1 score denotes greater performance 
in terms of both accuracy and recall. It gives a single 
value that combines both precision and recall.

3.1 Result Analysis Of Kidney Stone Classification
Table 1-3 displays the Precision, Recall, and F1 scores 

for various models in a classification problem involving 
kidney stones. The table consists of the models GNB, 
RFC, SVM, VGG16, InceptionV3, and Xception, along 
with their respective scores for the classes cyst, normal, 
stone, and tumor. Table 1 displays the precision scores 
of the RFC, SVM, VGG16, InceptionV3, and Xception 
models, all of which have achieved a perfect score of 

Models Cyst Normal Stone Tumor Average F1 
score

GNB 0.97 0.83 0.95 0.69 0.86
RFC 1.00 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00 1.00
VGG16 1.00 0.99 1.00 1.00 1.00
InceptionV3 1.00 0.99 1.00 1.00 1.00
Xception 1.00 1.00 1.00 0.99 1.00

Table 1. Precision score for kidney stone classification

Table 2 demonstrates that the RFC, SVM, VGG16, 
InceptionV3, and Xception models exhibit recall scores of 1.00 
for the majority of classes, signifying their ability to accurately 
identify all positive examples without any false negatives. 
Nevertheless, the VGG16 and InceptionV3 models have a 
recall score of 0.99 for the tumor class, suggesting that they 
failed to detect certain positive cases for that particular class. 

Models Cyst Normal Stone Tumor Average F1 
score

GNB 0.76 0.93 0.65 0.87 0.84
RFC 1.00 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00 1.00
VGG16 1.00 1.00 1.00 0.99 0.99
InceptionV3 1.00 1.00 1.00 0.98 0.99
Xception 1.00 0.99 1.00 0.99 1.00

Table 2. Recall score for kidney stone classificatin

Table 3 shows the F1 scores for the classes cyst, normal, 
stone, and tumor. In the GNB model, the F1 scores for these 
classes are 0.85, 0.88, 0.77, and 0.77, respectively. The RFC, 
SVM, VGG16, InceptionV3, and Xception models have perfect 
F1 scores of 1.00 for the majority of classes, indicating their 
effective ability to maintain a balance between recall and 
precision for certain classes. Nevertheless, the VGG16 and 
InceptionV3 models exhibit F1 scores of 0.99 for the tumor 
class, suggesting a somewhat diminished performance for that 
class when considering the balance between precision and recall. 
The GNB model has an average F1 score of 0.84, while the 
RFC, SVM, VGG16, InceptionV3, and Xception models have 
an average F1 score of 1.00.

Models Cyst Normal Stone Tumor Average F1 
score

GNB 0.85 0.88 0.77 0.77 0.84
RFC 1.00 1.00 1.00 1.00 1.00
SVM 1.00 1.00 1.00 1.00 1.00
VGG16 1.00 1.00 0.99 1.00 1.00
IncetionV3 1.00 0.99 1.00 0.99 0.99
Xception 1.00 1.00 1.00 0.99 1.00

Table 3. F1 score for kidney stone classification



27

KUJUR & RAZA: ABILITY OF MACHINE LEARNING AND DEEP LEARNING MODELS FOR MULTICLASS CLASSIFICATION

3.2 Result Analysis Of Lung Cancer Classification
Table 4-6 displays the Precision, Recall, and F1 scores 

for various models used in the classification of lung cancer. 
The tables in this section consist of models GNB, RFC, 
SVM, VGG16, InceptionV3, and Xception, along with their 
respective scores for the classes adenocarcinoma, carcinoma, 
normal, and squamous, similar to the previous section. 

The precision scores for the classes adeno carcinoma, 
carcinoma, normal, and squamous are displayed in Table 4. 
The GNB model yields precision scores of 0.58, 0.34, 0.79, 
and 0.50 for the adeno carcinoma, carcinoma, normal, and 
squamous classes, respectively. The RFC, SVM, VGG16, 
InceptionV3, and Xception models exhibit differing precision 
scores across various classes. The precision scores for 
different models vary between 0.56 and 0.89 on average. 
Higher precision scores indicate greater accuracy in predicting 
relevant outcomes for the respective groups.

According to Table 5, the GNB model demonstrates recall 
scores of 0.20, 0.76, 0.93, and 0.40 for the classification 
of adeno carcinoma, carcinoma, normal, and squamous, 
respectively. The RFC model achieved recall scores of 0.78, 
0.61, 0.98, and 0.81 for the classes of adenocarcinoma, 
carcinoma, normal, and squamous, respectively. For several 
models, the average recall scores vary between 0.51 and 0.88. 

According to Table 6, the GNB model achieves 
F1 scores of 0.29, 0.47, 0.85, and 0.45 for the adeno 
carcinoma, carcinoma, normal, and squamous classes, 

Models Adeno carcinoma Carcinoma Normal Squamous Average F1 score
GNB 0.58 0.34 0.79 0.50 0.56
RFC 0.78 0.89 0.93 0.64 0.80
SVM 0.72 1.00 0.93 0.62 0.80
VGG16 0.88 1.00 0.91 0.77 0.89
InceptionV3 0.96 0.64 0.70 0.77 0.77
Xception 0.96 0.76 0.91 0.84 0.88

Table 4. Precision score for lung cancer classification

Models Adeno carcinoma Carcinoma Normal Squamous Average F1 score
GNB 0.20 0.76 0.93 0.40 0.51
RFC 0.78 0.61 0.98 0.81 0.79
SVM 0.84 0.46 0.95 0.74 0.77
VGG16 0.96 0.88 0.84 0.87 0.88
InceptionV3 0.96 0.44 0.82 0.74 0.77
Xception 1.00 0.81 0.82 0.91 0.88

Table 5. Recall score for lung cancer classification

Models Adeno carcinoma Carcinoma Normal Squamous Average F1 score
GNB 0.29 0.47 0.85 0.45 0.48
RFC 0.78 0.72 0.95 0.72 0.79
SVM 0.78 0.63 0.94 0.67 0.76
VGG16 0.92 0.93 0.88 0.82 0.88
InceptionV3 0.96 0.52 0.76 0.76 0.76
Xception 0.98 0.79 0.86 0.87 0.88

Table 6. F1 score for lung cancer classification

respectively. The RFC model achieves F1 scores of 
0.78, 0.72, 0.95, and 0.72 for the classification of 
adeno carcinoma, carcinoma, normal, and squamous, 
respectively. The F1 scores for several models in this 
situation vary between 0.48 and 0.88 on average. 
Higher F1 scores signify a superior balance between 
precision and recall, resulting in enhanced overall 
model performance for the relevant classes in terms 
of both FP and FN.

4. DISCUSSION
Tables 3 and 6 present the F1 scores attained by 

different models in classifying kidney stones and lung cancer, 
respectively. The F1 score, a composite measure of precision 
and recall, is used to evaluate the accuracy of a model. 
When it comes to both classification challenges, models like 
RFC, SVM, VGG16, InceptionV3, and Xception continuously 
demonstrate high performance, routinely achieving F1 scores 
above 0.76. In contrast, the GNB model has comparatively 
lower F1 scores in both situations, which suggests a decrease 
in accuracy. VGG16 and Xception demonstrate the highest F1 
scores in lung cancer classification, indicating their greater 
accuracy in discriminating between various forms of lung 
cancer. However, choosing the best model requires careful 
evaluation of other criteria such as computational complexity, 
interpretability, and practical application. This necessitates 
comprehensive study and testing for each unique use case. 
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The results of the simulation study highlight the complex 
and diverse parameters that affect the effectiveness of ML 
and DL models in tasks involving image classification. 
The kidney stone dataset, which consists of 12,446 CT 
images, shows enhanced performance in both ML and 
DL models. However, the smaller lung cancer dataset, 
which includes 1000 CT scans, produces relatively 
inferior results. Factors like as the relevance of the data, 
the presence of noise, the size of the dataset, and the 
quality of the features have significant impacts on the 
performance of the model. Images that are of excellent 
quality and clearly labeled, and that accurately depict 
real-life situations, have a tendency to improve the 
accuracy of models. On the other hand, images that are 
of poor quality, containing a lot of noise, arti facts, or 
inconsistencies, might negatively impact the accuracy 
of classification. The presence of noise in image data 
might introduce irrelevant information or mask important 
patterns, which can negatively impact the effectiveness 
of the model. Likewise, when there is a large amount of 
variation in the image data, it becomes difficult for the 
model to apply what it has learned to new and unseen 
images, resulting in reduced accuracy. The size of the 
image dataset used for training is crucial, as larger 
and more diverse datasets result in more accurate and 
representative features. However, this comes at the cost 
of requiring extensive resources for data collecting and 
management. Moreover, the accuracy of the model is 
greatly influenced by the quality of the features used for 
training, specifically the image representations. Relevant 
features that enhance the ability to distinguish and 
accurately classify, contribute to the model’s effectiveness. 
Conversely, poorly chosen or irrelevant features decrease 
the model’s effectiveness. This research highlights the 
important relationship between data quality, noise, data 
variance, dataset size, and feature quality in determining the 
effectiveness of ML and DL models in image classification 
tasks. Although larger datasets that are of good quality 
often result in more accurate models, it is important to 
consider and address aspects such as noise and feature 
quality in order to enhance the performance of the model 
for various classification tasks.

5. CONCLUSIONS
This work has produced numerous noteworthy 

contributions that have been clarified by the collected 
results: Firstly, it thoroughly evaluates the effectiveness 
of ML and DL models in classifying images of two 
different medical illnesses, specifically kidney stones 
and lung cancer. This analysis offers vital insights 
into how these models compare in terms of their 
usefulness in healthcare applications.  Additionally, 
the analysis presents the F1 scores of several models 
used in the classification tasks. It demonstrates that 
models like RFC, SVM, VGG16, InceptionV3, and 
Xception consistently exhibit enhanced performance 
in both kidney stone and lung cancer classification.  
Furthermore, the study finds key characteristics that 

have a substantial impact on the performance of image 
classification models. These elements include the quality 
of the data, the level of noise present in the data, the 
variation in the data, the size of the dataset, and the 
effectiveness of feature selection. It is important to 
note that noise in image data negatively affects the 
accuracy of models, while large variation makes it 
difficult to apply the models to new, unseen images. 
Moreover, the size of the image dataset utilised for 
model training is a significant factor, since larger 
datasets enable more accurate feature extraction and 
improved accuracy. However, this comes with the 
drawback of requiring extensive resources for data 
collecting and management.  Furthermore, the selection 
of high-quality features for model training is crucial. 
Relevant features improve model accuracy, while 
irrelevant or poorly chosen features reduce the model’s 
ability to distinguish and overall effectiveness. 

The study highlights the crucial role of image 
quality in datasets, emphasizing the importance of 
clear, accurately labelled, and representative images in 
improving the accuracy of model performance. It also 
emphasizes the negative impact of low-quality images 
on misclassifications and reduced accuracy of both 
ML and DL models. Furthermore, the results highlight 
the need of taking these characteristics into account 
when choosing the most suitable model for particular 
use cases, while balancing computational complexity, 
interpretability, and real-world applicability requirements. 
It emphasizes the significance of conducting further 
analysis and testing to ascertain the most suitable model 
for certain situations. Future research should prioritize 
overcoming the problems outlined in order to improve 
the accuracy and dependability of image classification 
models for classifying kidney stones and lung cancer. 
Furthermore, there is a requirement for the advancement 
of more efficient feature extraction techniques that can 
accurately capture significant image attributes to enhance 
classification results.

Future work will be focused on improving the 
accuracy and reliability of image classification models for 
kidney stones and lung cancer. Efforts will be directed 
towards enhancing image quality, mitigating noise in data, 
collecting larger and diverse datasets, and developing 
efficient feature extraction techniques
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