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ABSTRACT

The precise diagnosis and treatment planning of brain tumors significantly rely on the accurate segmentation 
of sub-regions from Magnetic Resonance Imaging (MRI) data. In this research, we propose a framework, D-UNET 
(Dilated-UNET), which enhances the traditional UNET architecture by incorporating dilated convolutions. UNET 
is the deep CNN architecture widely adopted for biomedical image segmentation tasks. D-UNET is specifically 
designed for brain tumor sub-region segmentation from multi-modal (T1, T2, T1ce, Flair) MRI images in nifti 
file format, each comprising 155 slices. The framework comprises of four distinct steps viz. data collection, data 
preprocessing, model training, and outcome evaluation. D-UNET employs two key modules during training, the 
dilated encoding module and the dilated decoding module. These modules enable the model to efficiently capture 
multi-scale contextual information, facilitating better representation learning for complex and varied tumor sub-
regions. We evaluated the performance of D-UNET using Intersection over Union and Dice Coefficient metrics. The 
experimental results demonstrate that D-UNET outperforms the traditional UNET and other benchmark models in 
terms of segmentation accuracy. Notably, D-UNET excels in capturing finer details and intricate shapes of tumor 
sub-regions, contributing to its superiority in brain tumor segmentation. The ability to precisely delineate tumor 
sub-regions from different modalities provides crucial insights for medical professionals in treatment planning and 
decision-making.
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including radiotherapy planning, disease progression 
monitoring, and treatment evaluation.

Deep Learning8 (DL) techniques,  part icularly 
Convolutional Neural Network9 (CNN), has gained 
remarkable success in biomedical image segmentation, 
particularly in cases where distinguishing complex 
features is a major challenge. CNNs are designed 
to automatically learn and extract relevant features 
from input data, making them highly suitable for 
analysing complex medical images. The fundamental 
architecture of CNNs is inspired by the visual processing 
mechanisms of the human brain. Convolutional layers, 
comprise of interconnected neurons, being present in 
numerous layers within the structure, captures the 
local patterns and features from the input images. The 
convolutional layers are subsequently accompanied 
with non-linear activation functions, such as ReLU, 
which introduces non-linearity into the network and 
enable it to effectively capture intricate correlations 
among image features. 

U-Net10 is an example of deep CNN architecture 
which has been widely adopted for biomedical image 
classification and segmentation tasks. The U-Net 
architecture, characterized by its U-shaped structure 
comprising contraction and expansion blocks, has 

1.    INTRODUCTION
 In diagnostic imaging, brain tumor segmentation 

plays a pivotal role in aiding diagnosis and therapy 
planning1.  The precise delineation of tumor sub-
regions, namely, Tumor Core (TC), edema (including 
the entire tumor), and Enhancing Tumor (ET) regions, 
offers doctors valuable insights into the structural and 
characteristic aspects of the tumor2,3. These insights 
facilitate accurate treatment decisions and the development 
of personalized therapy plans4. Given that tumors 
consist of abnormal cell masses that can be life-
threatening, identifying and separating cancerous cells 
through segmentation is a fundamental procedure for 
diagnosis and monitoring5. However, traditional manual 
segmentation by expert radiologists is resource-intensive 
and time-consuming6. To overcome these limitations 
and expedite the diagnostic process, the development of 
automated segmentation models is highly desirable. By 
leveraging automated segmentation, medical professionals 
can achieve accurate, rapid, and reliable diagnoses, 
leading to improved patient outcomes7. Moreover, 
automated segmentation has diverse applications, 
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gained signif icant  populari ty due to i ts  eff icacy 
in  accura te ly  del ineat ing object  boundar ies  and 
segmentation masks. The contraction path of the 
U-Net,  also known as the encoder,  captures and 
encodes image features at multiple spatial resolutions. 
On the other hand, the expansion path, or decoder, 
employs transposed convolutions to upsample and 
produce dense feature maps,  faci l i ta t ing precise 
segmentation.  This unique architecture of  U-Net 
allows it  to capture both local and global context 
information effectively, contributing to its superiority 
in biomedical image segmentation tasks.

Several brain tumor segmentation techniques have 
been proposed in the li terature to address specific 
l imitations and enhance segmentation performance 
in the domain. Zhao, et al.  presented a correlation 
model capable of accommodating missing modalities 
by estimating modality-independent parameters and 
fusing correlation representations using an attention 
mechanism11.  Ru, et  al .  introduced a multi-scale 
convolu t ion  module-based  approach  to  enhance 
fea ture  ext rac t ion  us ing  the  M-UNet  ne twork 12, 
resulting in improved segmentation results compared 
to the original U-Net network. Qiu, et  al .  proposed 
a 3D EMSU-Net model with an effective multi-scale 
feature extraction component,  focusing on regions 
affected by brain tumors to enhance segmentation 
performance13. 

Soltaninejad, et al.  developed a fully automated 
encoder-decoder  ne twork  capable  of  process ing 
images of any size as input and achieving mean 
dice scores of 78 %, 70 %, and 66 % for WT, TC, 
and ET, respectively14.  Ali ,  et al.  combined 2D and 
3D UNET models to extract radiomic characteristics 
from MRI volumes, maximizing the advantages of 
both models 15.  Qamar,  et  al .  suggested a unique 
Hyperdense Inception 3D U-Net design achieving high 
dice coefficients for different tumor sub-regions16. 

C. Zhao et al. proposed multiple deep architectures 
to learn contextual information and integrate model 
es t imat ions  for  accura te  segmenta t ion  resu l t s 17. 
Ding,  et  al.  improved U-Net’s topology to address 
information loss and excessive parameter stacking 
in  deeper  networks ,  s t r ik ing a  balance between 
segmentation accuracy and efficiency18.

While many studies have focused on enhancing 
segmentation performance through U-Net modifications, 
it  remains essential to consider the trade-off between 
accuracy and computational efficiency. These diverse 
approaches contribute to the advancement of brain 
tumor segmentation techniques, addressing various 
limitations and enhancing the overall  reliabili ty and 
performance of the models.

In-spite of the success of U-Net, there remains 
a room for its improvement, particularly in handling 
multi-modal MRI images and capturing extensive con-
textual information. To address these challenges, this 
work proposes a DL framework called D-UNET for 

brain tumor sub-region segmentation from MRI images. 
The D-UNET model is an enhancement of the traditional 
UNET architecture, incorporating dilated convolutions to 
improve the model’s ability to capture multi-scale contex-
tual information. This enables the model to better com-
prehend the intricate and diverse characteristics of tumor 
sub-regions, resulting in more accurate and comprehensive 
segmentation.

The challenge of brain tumor sub-region segmen-
tation is further compounded by the presence of MRI 
images acquired from multiple modalities, including 
T1, T2, T1ce, and Flair. The integration of information 
from these distinct modalities can provide a more com-
prehensive view of the tumor, enabling a more robust 
and informative segmentation. The proposed D-UNET 
framework addresses this multi-modal segmentation 
task, providing a unified solution for efficient and pre-
cise delineation of tumor sub-regions across different 
imaging modalities. 
Following is a summary of the contributions made by 
this study:
•	 Proposed a D-UNET (Dilated-UNET) framework for 

brain tumor sub-region segmentation, incorporating 
dilated convolutions to capture multi-scale 
contextual information effectively.

•	 Implementation and evaluation of the D-UNET model 
on the standard BraTS 2020 dataset, showcasing 
better segmentation performance compared to other 
state-of-the-art models.

•	 Comparison of D-UNET with S-UNET, 3D Unet, 
MTAUnet, and 3D CNN, highlighting the advantages 
of dilated convolutions in improving segmentation 
accuracy.
The subsequent sections of this research paper are 

organized in the following ways: Section 2 provides 
a comprehensive account of the suggested approach, 
encompassing the description of the dataset ,  the 
design and implementation specifics of the D-UNET 
model, and the assessment metrics employed. Section 
3 presents the experimental result evaluation. Section 
4 presents a comprehensive discussion and comparison 
with existing models.  Finally,  Section 5 concludes 
the  paper  by  summar iz ing  the  cont r ibu t ions  of 
the proposed D-UNET model and outlining future 
directions for potential  enhancements.

2.   MATERIAL AND METHODS
The research  methodology for  the  proposed 

D-UNET is structured into four main phases.  The 
first  phase involves the collection of MRI dataset 
containing brain tumor images from multiple modalities. 
The second phase encompasses preprocessing steps, 
including data normalization and augmentation, to 
enhance the model’s generalization and adaptabili ty 
to diverse MRI data.  The third phase focuses on 
the training of the D-UNET model,  incorporating 
two  key  modules :  the  Di la ted  Encod ing  Block 
(DEB) and the  Di la ted Decoding Block (DDB). 
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These modules are tailored to exploit the strengths of 
dilated convolutions, enabling D-UNET to effectively 
capture context and spatial information at various scales. 
In the fourth phase, we evaluate the performance of 
the D-UNET model using two widely used metrics, 
Intersection Over Union (IOU)19 and Dice Coefficient 
(DC)20. The IOU metric quantifies the overlap between 
predicted and ground truth masks, while the DC measures 
the similarity between these masks. By employing these 
metrics, the aim is objectively asses the accuracy and 
robustness of the proposed D-UNET model in segmenting 
brain tumor sub-regions. An analysis and interpretation 
of the experimental results is done by comparing the 
performance of D-UNET against traditional UNET and 
other state-of-the-art models on BraTS2020 dataset.

2.1 Data Collection 
The BraTS 2020 dataset employed in this research is 

known as the Multimodal Brain Tumor Image Segmentation 
Benchmark dataset21-22. The dataset is publicly available on 
Kaggle (https://www.kaggle.com) and constitutes a valuable 
resource for brain tumor image analysis. It comprises MRI 
images from four distinct modalities which includes T1, T2, 
T1ce, and Flair. Each modality is represented as a three-
dimensional volume, consisting of 155 slices and are in nifty 
file format. The brain MRI images in the BraTS dataset are 
annotated and categorised into four regions: the enhancing 
tumor, necrotic core, and edema region. Accurate segmentation 
of these regions is essential for precise diagnosis and treatment 
planning. In total, the dataset encompasses 368 files, out 
of which 265 files are allocated for model training, 74 files 
for validation, and 30 files for testing the proposed model’s 
performance. 

2.2 Data Pre Processing  
Before model training, data pre-processing is performed 

to ensure cleanliness and uniformity. For the data processing 
and manipulation, two essential tools, Nilearn and Nibabel, 
have been utilized to preprocess the MRI data files that are 
available in nifti file formats. Nilearn offers an approachable 
and versatile platform for conducting analyses on brain 
volumes, enabling efficient handling and processing of the 
MRI data. On the other hand, Nibabel provides essential 
functionalities for reading and writing various medical and 
neuroimaging file formats, further facilitating data preparation 
and model training. The original dataset is structured into 369 
directories, each containing five files. One file was discarded 
from the dataset due to an improperly formatted name. Each 
nifti file, consists of five files corresponding to each MRI 
modality, along with an additional file for the image mask. 
To facilitate data manipulation and analysis, the images were 
implemented in the nifti file format.

Further, the MRI images are standardized to have 
a consistent dimension, and all input pixel values are 
normalized. This step is crucial for achieving uniformity in 
data representation and facilitating model convergence 
during training. There are four channels in the images, 
depending on the four MRI modality used during 

training. The batch size for model training is set to one, 
and a data generator is employed to generate additional 
image data for training purposes, improving the 
model’s capacity to generalize and effectively manage 
a wide range of variances present in MRI images. No 
post processing step has been employed in this study. 
By leveraging the BraTS 2020 dataset and employing 
rigorous data pre-processing, the proposed D-UNET 
model aims to achieve accurate and robust brain tumor 
sub-region segmentation. 

2.3 Model Training
During the model training phase, two UNET 

architectures, namely S-UNET (Standard UNET) and 
D-UNET (Dilated-UNET) were implemented. S-UNET 
represents the traditional UNET architecture being referred, 
as the standard UNET in this paper. However, D-UNET 
incorporates dilated convolutions, also known as atrous 
convolutions, into the UNET architecture. Figure 1 
presents the DEB, DDB and employed dilation rate for 
the model training. Figure 2 depicts the flow diagram of 
the proposed framework and the D-UNET architecture. 
Further, the pseudo code for the implemented D-UNET 
method has been presented in Fig. 3. 

Dilated convolutions in D-UNET have demonstrated 
the ability to capture spatial features effectively from a 
wide receptive window without significantly increasing 
the model’s parameter count. These convolutions introduce 
gaps or dilations between the kernel elements, enabling a 
larger receptive field while maintaining the same number 
of parameters as traditional convolutions. Both S-UNET 
and D-UNET architectures have an equal number of 
layers and hyper-parameters, with the primary difference 
being the integration of dilated convolutions in some 
convolutional layers of D-UNET.  Both models are 
trained separately on the BraTS2020 dataset. As shown 
in Fig. 2, each image modality consists of a volume of 
slices. For model training, the input image shape is set to 
(128, 128, 4), where 4 denotes the number of channels, 
representing the different MRI modalities. Each channel 
corresponds to an MRI modality, containing 100 slices. 
Out of the total 155 slices, 100 slices per modality are 
selected for the training process.

The D-UNET design comprises a contracting path 
and an expanding path. The former includes four blocks, 
each containing two Dilated Encoding Blocks (DEBs) 
that incorporate dilated convolutions with a dilation 
rate of 2, along with one normal convolutional layer. In 
block 5, one DEB and one normal convolutional layer 
are employed. The corresponding numbers of filters for 
each block are as follows: block 1 (32, 32, 32), block 
2 (64, 64, 64), block 3 (128, 128, 128), block 4 (256, 
256, 256), and block 5 (512, 512), facilitating feature 
extraction, followed by ReLU activation. In each block of 
the contracting path, the feature maps are down-sampled 
using max-pooling of size (2, 2). The expanding path 
consists of four blocks, each incorporating one up-
convolution with filter sizes of (2, 2). The numbers of 
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filters for the up-convolutions are 256, 128, 64, and 32, 
respectively. A concatenation operation is performed with 
the corresponding feature map cropped from the encoder 
path, followed by two Dilated Decoding Blocks (DDBs) 
having two dilated convolutional layers with a dilation 
rate of 2, followed by one normal convolutional layer. 
The numbers of filters for the decoding blocks in block 1, 
block 2, block 3, and block 4 are (256, 256, 256), (128, 
128, 128), (64, 64, 64), and (32, 32, 32) respectively, 
each with ReLU activation.

Finally, a convolutional layer of size (1, 1) is employed 
which maps 32-component feature vector to four output 
labels (edema, enhancing tumor, necrotic core and no tumor 
region), representing the tumor sub-regions. The model 
training process employs the categorical cross-entropy loss 
function, while model optimization is performed using the 
Adam optimizer with a learning rate of 0.001. The model 
is trained for 100 epochs, allowing it to iteratively update 
its parameters and learn to accurately segment brain tumor 
sub-regions from the MRI images.

involves the multiplication of the intersection between 
the predicted and ground truth masks by a factor of two, 
followed by division by the sum of the volumes of the two 
masks. The range of DC is between 0 and 1, where the latter 
signifies a complete alignment between the two masks. By 
evaluating both the IOU and DC for each tumor region, a 
comprehensive understanding of the model’s performance in 
accurately segmenting brain tumor sub-regions is achieved. 
The IOU and DC scores for each tumor region signify 
precise delineation of the tumor boundaries and overall 
segmentation performance. 

Figure 2. Flow diagram of the D-UNET framework.

Figure 1. Proposed DEB, DDB and dilation rate.

2.4 Evaluation Metrics
As part of the model evaluation, two crucial metrics 

are employed to assess the segmentation performance: 
IOU and DC. 

The DC is calculated separately for each tumor 
region, providing valuable insights into the accuracy 
and consistency of the segmentation results. 

IOU reflects the amount of overlap considering the 
ground truth and the predicted segmentation mask for 
each tumor region and is calculated as the ratio between 
the intersection of two masks and their union, quantifying 
the degree of spatial alignment between the predicted 
and true segmentations.

DC serves as an indicator of segmentation accuracy 
and is calculated for each tumor region. The computation 

3.  	RESULTS
This section presents the results observed from the 

simulation study. The segmentation performance of the 
proposed model is evaluated using the two popular measures: 
mean IOU and DC. Moreover, DC is also measured for 
specific tumor sub-regions viz. DC for Necrotic Core (NC), 
edema/WT and ET.

  Table 1 presents the results of the D-UNET model 
on three different sets: train, validation, and test. The 
model achieved IOU scores of 87.32 % for train, 0.8831 
for validation, and 0.8797 for test datasets. The model 
achieved DC of 75.77 % for train, 66.43 % for validation, 
and 69.27 % for test datasets.

DC (NC): This metric quantifies the accuracy of 
segmenting the NC within the tumor region. The proposed 
model achieved DC scores of 78.31 % for training, 59.36 
% for validation, and 65.52 % for the test set in accurately 
delineating the necrotic core.

DC (WT) and DC (ET): These metrics specifically 
assess the accuracy of segmenting the WT and ET regions, 
respectively. In the training set, the model achieved DC of 
89.10 % for WT and 78.97 % for ET. For the validation 
set, the DC scores were 74.21 % for WT and 70.13 % 
for ET. Lastly, in the test set, the model achieved DC 
of 78.10 % for WT and 72.69 % for ET. These results 
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Table 1. Performance measures for D-UNET model

Measures Train Validation Test

IOU 0.8732 0.8831 0.8797

Dice Coefficient 0.7577 0.6643 0.6927

Dice Coefficient
(Necrotic Core)

0.7831 0.5936 0.6552

Dice Coefficient
(Edema)

0.8910 0.7421 0.7810

Dice Coefficient
(Enhancing Tumor)

0.7897 0.7013 0.7269

The findings of using the S-UNET model to analyse the 
train, validation, and test datasets are shown in Table 2. DC 
(Edema) and DC (ET): The model achieved DC scores of 
67.73 % for edema and 63.60 % for ET in the train set, and 
on the validation set, 65.57 % for Edema and 58.06 % for 
ET. Finally, for the test set, the dice scores are 69.33 % for 
edema and 61.53 % for enhancing tumor. It is important to 
note that there is some variability in performance observed 
across different tumor regions. Specifically, lower scores 
were observed for the NC and ET regions.

Pseudo code for proposed D-UNET model
 Define the function DUNET_Model(inputs):
 DEB1 ← Conv2D(32, 3,dilation_rate=2)(inputs)
 DEB1 ← Conv2D(32, 3, dilation_rate=2)(DEB1)
 C1 ← Conv2D(32, 3)(DEB2)
 P1 ←MaxPooling2D(pool_size=(2, 2))(C1)

 DEB2 ← Conv2D(64, 3,dilation_rate=2)(P1)
 DEB2 ← Conv2D(64, 3, dilation_rate=2)(DEB1)
 C2 ← Conv2D(64, 3)(DEB2)
 P2 ← MaxPooling2D(pool_size=(2, 2))(C2)

 DEB3 ← Conv2D(128, 3,dilation_rate=2)(P2)
 DEB3 ← Conv2D(128, 3, dilation_rate=2)(DEB3)
 C3←Conv2D(128, 3)(DEB3)
 P3 ←MaxPooling2D(pool_size=(2, 2))(C3)

 DEB4 ← Conv2D(256, 3,dilation_rate=2)(P3)
 DEB4 ← Conv2D(256, 3, dilation_rate=2)(DEB4)
 C4←Conv2D(256, 3)(DEB4)
 P4 ← MaxPooling2D(pool_size=(2, 2))(C3)

  C5 ← Conv2D(512, 3, dilation_rate=2)(P4)
  C5 ← Conv2D(512, 3)(C5)

  Up6 ← Conv2D(256, 2)(UpSampling2D(size=(2, 2))(C5))
  Merge6 ← concatenate([C4, Up6], axis=3)
  DDB6 ← Conv2D(256, 3, dilation_rate=2)(Merge6)
  DDB6 ← Conv2D(256, 3, dilation_rate=2)(DDB6)
  C6 ← Conv2D(256, 3)(DDB6)

  Up7 ← Conv2D(256, 2)(UpSampling2D(size=(2, 2))(C6))
  Merge7 ← concatenate([C3, Up7], axis=3)
 DDB7 ← Conv2D(256, 3, dilation_rate=2)(Merge7)
 DDB7 ← Conv2D(256, 3, dilation_rate=2)(DDB7)
 C7 ← Conv2D(256, 3)(DDB7)

 Up8 ← Conv2D(256, 2)(UpSampling2D(size=(2, 2))(C7))
 Merge8 ← concatenate([C2, Up8], axis=3)
 DDB8 ← Conv2D(256, 3, dilation_rate=2)(Merge8)
 DDB8 ← Conv2D(256, 3, dilation_rate=2)(DDB8)
 C8 ← Conv2D(256, 3)(DDB8)

 Up9 ← Conv2D(256, 2)(UpSampling2D(size=(2, 2))(C8))
 Merge9 ← concatenate([C1, Up9], axis=3)
 DDB9←Conv2D(256, 3, dilation_rate=2)(Merge9)
 DDB9 ← Conv2D(256, 3, dilation_rate=2)(DDB9)
 C9 ← Conv2D(256, 3)(DDB9)
C10 ← Conv2D(4,(1,1), activation=’softmax’)(C9)

       Return DUNET_Model(inputs=inputs, outputs=C10)

Figure 3. Pseudo code for the proposed D-UNET method.

show the effectiveness of the proposed approach in accurately 
segmenting the WT and ET regions. Overall, the D-UNET model 
achieved good segmentation accuracy as indicated by relatively 
high IOU and DC for train, validation, and test sets. However, 
there is some variability in performance across different tumor 
regions, with lower scores observed for NC in particular.

Table 2. Performance measures for S-UNET model

Measures Train Validation Test

IOU 0.8330 0.8319 0.8339

Dice Coefficient 0.5782 0.5635 0.5868

Dice Coefficient (Necrotic 
Core)

0.5394 0.4825 0.5164

Dice Coefficient (Edema) 0.6773 0.6557 0.6933

Dice Coefficient (Enhancing 
Tumor)

0.6360 0.5806 0.6153

Fig. 4 depicts the segmented brain tumor sub-regions 
utilising the D-UNET and S-UNET architectures. The 
test set results indicate the DC scores obtained using 
the D-UNET model. The results indicate that the NC 
achieved a percentage of 65.52 %, the edema achieved a 
percentage of 78.10 %, and the ET achieved a percentage 
of 72.69 %. The second row displays the equivalent 
predicted images generated by the D-UNET model. The 
measured metrics for the D-UNET model can be referred 
from Table 1.

On the other hand, the S-UNET model exhibited 
a segmentation performance on the test data, with dice 
coefficient scores of 51.64 % for the necrotic core, 
69.33 % for the WT, and 61.53 % for the ET. The 
measured metrics can be seen from the table 2, for the 
S-UNET model. Significantly, the first row of Figure 4 
illustrates the predicted segmented images derived from 
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convolutions, enabling it to capture multi-scale contextual 
information efficiently. This results in better representation 
learning for brain tumor sub-region segmentation. The 
incorporation of dilated convolutions allows D-UNET 
to capture finer details and intricate shapes of tumor 
sub-regions, contributing to its superior performance 
compared to the S-UNET.

Overall, the proposed D-UNET model outperforms 
its peers under comparison, making it a promising and 
effective tool for brain tumor sub-region segmentation. 
Although, D-UNET exhibits robustness and accuracy on 
the BraTS2020 dataset, still further investigations and 
validations on larger datasets and diverse populations 
can ascertain its general applicability and scalability.

5. 	 CONCLUSIONS
This work presents a deep learning framework called 

D-UNET for brain tumor sub-region segmentation from MRI 
images. This enhancement allows D-UNET to achieve better 
performance in accurately delineating tumor sub-regions, 
demonstrating its potential as a valuable tool for brain 
tumor diagnosis. Through comprehensive evaluations on 
the BraTS2020 dataset, the D-UNET model was compared 
with S-UNET, 3D Unet, MTAUnet, and 3D CNN. The 
results reveal that D-UNET consistently outperformed the 
other models, achieving higher IOU and Dice Coefficient 
scores across various tumor sub-regions. The D-UNET 
model, an extension of the traditional UNET architecture, 
incorporates dilated convolutions to capture multi-scale 
contextual information effectively. Further, its ability to 
capture finer details and intricate shapes of tumor regions 
contributes to its superior segmentation accuracy. 

This work can be extended with further research and 
validation initiated on larger datasets. Moreover, clinical 
settings can be warranted to confirm the efficacy and 
generalizability of the same.

the S-UNET model, so suggesting a relatively imprecise 
segmentation. In contrast, the evaluation metrics clearly 
demonstrate the higher performance of the D-UNET model, 
as observed in the second row. The results of this study 
clearly indicate that the D-UNET model outperforms the 
S-UNET model in terms of segmentation performance, 
as evidenced by the measured performance metrics.

4.  	DISCUSSION
This section discusses the effectiveness of the DL 

models for brain tumor sub-region segmentation based 
on IOU and DC metrics. The comparison includes the 
proposed D-UNET model, S-UNET, 3D CNN23, MTA-Unet24, 
and 3D Unet25 method. The evaluations were conducted 
using the BraTS 2020 dataset. Table 3 represents the 
comparison of our proposed model with other models. 
The D-UNET model, an enhancement of the traditional 
UNET architecture with dilated convolutions, demonstrated 
superior segmentation results compared to the other 
models. It achieved an IOU score of 87 % and a DC 
score of 78 % on the whole tumor region. 

On the other hand, the S-UNET model, representing the 
traditional UNET architecture without dilated convolutions, 
yielded reasonable results but fell short compared to 
D-UNET. It achieved an IOU of 83 % and a DC of 
57 % on the whole tumor, with lower values on tumor 
subregions. The 3D Unet proposed by Sohail et al. and 
MTAUnet proposed by Avasthi et al., both models have 
lower performance, achieving DC score of 72 % on the 
whole tumor region. However, specific results for other 
tumor subregions were not reported in their evaluation. 
3D CNN proposed by Chen et al., also has DC score of 
72 % which again is lower that the D-UNET. Moreover, 
IOU scores were not reported in the compared models 
as their evaluation metric. The significant advantage of 
the D-UNET model lies in its ability to leverage dilated 

Figure 4. Predicted output of brain tumor sub-regions from S-UNET (first row) and D-UNET (second row).
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Model Dataset IOU DC DC for tumor sub regions

NC EDMA ET

D-UNET Brats2020 87% 78% 65% 78% 72%

S-UNET Brats2020 83% 57% 51% 69% 61%

3D   CNN (Chen et al.)23 Brats2020 - 72% - - -

MTAUnet (Avasthi et al.)24 Brats2020 - 72% 59% 72% 61%

3D Unet (Sohail et al.)25 Brats2020 - 72% - - -

Table 3. Comparison of D-UNET with peers.
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