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  ABSTRACT

Endophytes constitute living microorganisms inhabiting inside tissues of plants. Endophytes perform critical 
functions in upgrading the growth of plants and their defense to fight stress by a variety of phytohormones, biologically 
active compounds, volatile organic compounds, and biotechnologically valuable enzymes. How biological nitrogen 
fixation, nutrient uptake, and disease suppression occurs by endophytes, have been discussed in detail in the review. The 
mutual symbiotic relationship enhances plant growth, fitness, physiology, and metabolite production ability. Endophytes 
inhibit the invasion of pathogenic microorganisms and protect crops against diseases. Endophytes are also involved 
in strategies for environmental clean-up such as biodegradation, bioremediation, and phytoremediation. Therefore, 
it is necessary to analyze and study the mechanisms of interactions, colonisation, diversity, and functionalities for 
successful implications in agriculture. Thus, the endophytic relationship opens possibilities for medicine, agriculture, 
and biotechnology. The present review emphasizes the importance of endophytes in sustainable agriculture under 
several adverse environmental impacts through a better understanding of their functioning inside the plant. 

Keywords: Bioactive compounds; Biocontrol; Bioremediation; Biotic and abiotic stress; Endophytes; Secondary 
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1.  INTRODUCTION 
Climatic changes have a catastrophic effect on 

crops in the 21st century, constituting a growing threat 
to global food.1 According to the FAO report (2016), 
climatic factors (e.g., higher temperature, frequent 
changes in weather events, water deficit, increase in 
sea levels, degradation of land, and loss of biodiversity) 
drastically affect agriculture’s ability to meet the efforts 
in eradication of poverty, hunger, and malnutrition. 
Modern agricultural practices use unacceptable level of 
agrochemicals (for e.g., pesticides and fertilisers) which 
have adverse consequences on soil fertility, creates an 
ecological imbalance, contaminates groundwater, affects 
microbial communities, and alters the soil pH and human 
health.2 Conventional breeding practices and genetic 
engineering techniques proved inefficient because many 
resources were spent on trailblasing protocols to identify 
and study such transgenics.3 Therefore, an alternate  
eco-friendly strategy must be preferred for enhancing 
plant yield potential, pest and disease resistance, and 
improved performance. The microscopic organisms are 

used in agriculture to elevate soil productiveness, and 
expanded nutrient driving and productivity of crops.

Endophytes are beneficial microorganisms (actinomycetes, 
bacteria, or fungi) that live within plants, inter or 
intracellularly, causing no harm to them. They are an 
abundant source of a variety of secondary metabolites, 
phytochemical compounds, and green approaches to 
reducing the practice of agrochemicals.4 Endophytes 
promote plant development by various mechanisms. Direct 
mechanisms for plant growth include the production of 
plant hormones like auxins, cytokinin, and gibberellins, 
nitrogen fixation, solubilisation of PO4, and siderophores 
production. Indirectly endophytes increase competition for 
nutrients, and ecological niches and induce antimicrobial 
bioactive metabolites production5. Endophytes are bestowed 
with another remarkable potential to suppress diseases, 
improve phytoremediation efficacy, and help in stress 
alleviation.6,7 Their interaction with their host plant 
increases specific responses against pathogenic attacks. 
These microorganisms can induce positive reactions 
against herbivore pests, synthesising important bioactive 
metabolites, improving tolerance to plant stress, and 
enhancing the immunity of plants.8 More recently, Asian 
Development Bank (ADB) has also recognised fungal 
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symbionts as ‘climate adaptation technology’ in improving 
stress responses that emerged from abiotic stressors9. 
Unlike chemical fertilisers, the endophytes serve as 
biofertilisers which have no repercussions on the climate, 
texture, and productivity of soils.10 

2.  COLONISATION OF ENDOPHYTES 
Plants exhibit a close relationship with diverse 

microorganisms in various ecological niches. A plant host 
can be occupied by epiphytic, rhizospheric, and endophytic 
microorganisms. Among all these interactions endophytic 
interaction is most intimately associated with the plant 
host. The plant host’s and its endophyte’s relationship 
is often symbiotic.11 Every living plant is colonised and 
inhabited by diversified species of endophytic microbes in 
a mutualistic and symbiotic manner. The colonisation of 
microbes starts with the initial communication signaling 
process providing the entry of microorganisms from soil 
to root. Endophytic microbes can get into plants either by 
vertical seeding technique or by horizontal transmission 
into the plants from the soil.12 

Plant rhizospheric zone and root exudates led to 
the formation of compounds that function as chemo 
attractants.13 This assists in the recruitment of microbes 
and communication between plant roots and microbes. 
As soon as chemotaxis occurs, endophytes migrate to the 
plant surface.14  The next step is attachment facilitated by 
structural organelles/biomolecules (i.e., flagella, fimbriae, 
pili, lipopolysaccharides, and exopolysaccharides).15 

Passive penetration in host tissue occurs when cracks 
open in the root zone or the stem, flowers, cotyledons, 
and leaves.16 Endophytes can penetrate plants through 
stomata present on the surface of leaves and young stems, 
periderm of stems via lenticels, germinating radicals, and 
seeds.17 Penetration and attachment may be achieved by 
acquiring biologically active compounds such as lytic 
enzymes (including cellulases) and lysozymes. Internal 
tissues of plants colonised by bacterial endophytes have 
different genomic organisation than rhizospheric bacteria.18 
Lateral gene transfer through plasmid or transposon may 
induce colonisation in plant.19

3.  A C T I N O B A C T E R I A L E N D O P H Y T E S  I N 
SUSTAINABLE AGRICULTURE 
These gram-positive microorganisms have high guanine 

and cytosine nucleotide base content with filamentous 
aerial mycelia producing luxurious bioactive compounds. 
These endophytes can act as antibiotics, antioxidants, 
enzymes, and as enzyme inhibitors.20 They are found in 
extreme habitats such as arid zones, saline and aquatic 
ecosystems, caves, and in different environmental niches.21 

Actinobacteria are equipped with multifunctional plant 
growth-promoting characteristics and impart beneficial 
properties to the host plant. They are involved in atmospheric 
N2 fixation, siderophores, and IAA production facilitating 
ecological balance in soil system.22 Actinobacteria are 
producers of antibiotic compounds and hydrolytic enzymes 
such as chitinases and glucanases. Endophytic actinobacteria 

Host plant Endophytic actinobacteria       Mode of action Reference

Zea mays Streptosporangium sp. L21 Production of Glucoamylase 25-26

Artemisia herba alba Streptomyces sp. Biocontrol against Botyris cinerata 27

Cicer arietinum L Microbispora sp. CP56, Actinomadura sp. 
CP84B, Streptomyces spp. CP200B and CP21A

positively affect many aspects of the 
chickpea-Mesorhizobium symbiosis and 
resulting in increases in grain yield

28

Camellia oleifera Abel Streptomyces sp. 2GM57, Amycolatopsis Shoot length and ground diameter 
significantly increased 29

Elaeis guineensis Jacq. Nocardiopsis sp. ac9, Streptomyces, 
Violaceorubidus 6ca11, Streptomyces sp. ac19 Cellulase, Xylanase, Lignolytic activity 30

Setaria viridis var. 
pachystachys Streptomyces sp. strain SANK 63997 Herbicidin H (herbicide) 31

Cucumis sativus Actinoplanes campanulatus, Micromonospora 
chalcea and Streptomyces spiralis

Biocontrol against Pythium 
aphanidermatum 32

Eupatorium odoratum, 
Musa superb, Mirabilis 
jalapa, Curcuma 
longa, Clerodendrum 
colebrookianum, Alstonia 
scholaris, Centella asiatica,

Leifsonia xyli BPSAC24, Streptomyces sp. 
BPSAC34

Biocontrol against
Rhizoctonia solani, Fusarium 
graminearum, Fusarium oxysporum 
ciceri, Fusarium prolifratum, Fusarium 
oxysporum, Fusarium graminearum, 
Colletotrichum capsica

33

Table 1. Some endophytic actinobacteria in plant growth promotion and biocontrol of phytopathogen
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Streptomyces niveus and S. sanglieri from leaves and 
roots of the tea plant, Camellia sp. and Eurya japonica 
showed positive plant growth-promoting characteristics 
such as phosphate solubilisation, IAA, ammonia, and 
siderophore production.

Saccharomonospora sp. and Streptomyces yani showed 
broad-spectrum antifungal activity. Streptomyces sp. 
has biosynthetic genes [i.e., Chitinase, Nonribosomal 
Peptide Synthetase (NRPS), and Polyketide Synthase 
(PKS)] that suggest their role in the inhibition of fungal 
phytopathogens.23 Due to its antifungal activities, formulated 
actinobacteria spores can be utilised as biofungicides.24 
Some of the actinobacteria contributions to plant growth 
promotion have been listed in Table 1.

4.     PLANT GROWTH PROMOTION MECHANISM 
EMPLOYED BY ENDOPHYTES 
Although most of the molecular mechanisms underpinning 

endophytic interactions with plants are poorly understood, 
some of these have been scientifically proven advantageous 
and effective.34 Based on the potential it can be of two 
types: rhizospheric-found in the rhizospheric zone of 
the plants, and endophytic-which colonises inside the 
tissues of plants. Although rhizospheric and endophytic 
plant growth-promoting microorganisms do not utilise 
identical mechanisms, it employs similar mechanisms in 
plant growth promotion. The advantage of endophytes 
is that, once they enter and colonize the internal plant 
tissue, they are not exposed to the quirk of changing 
soil conditions.35,36 Endophytes employ phytohormones 
production, uptake of phytonutrients, mineral solubilisation, 
lowering stress responses, and protection from pathogenic 
attack Figure. 1 Their functions enhance biomass and 

yield productivity of important cash crops in agriculture.37 

 4.1 Direct Beneficial Mechanisms 
Direct mechanisms directly enhance plant development. 

It occurs when endophytes i) produce auxin, IAA, 
(Indole Acetic Acid), cytokinin, and gibberellic acid 
ii) acquire resources from an environment containing 
nitrogen, phosphorus, and iron iii) produces ACC 
(1-aminocyclopropane-1-carboxylate) deaminase which 
lowers ethylene levels.38

 
4.1.1 Phytohormone Production 

IAA, ethylene, gibberellins, cytokinin, and abscisic 
acid are the major phytohormones formed in plants, and 
regulate development under various stress conditions.39,40 
These phytohormones stimulate plant cell growth and 
division. The most active auxin is IAA which boosts the 
growth of root hairs and lateral roots, thus facilitating 
water-nutrient uptake, making them capable of coping 
with water deficits. Indirectly by influencing the IAA 
transport endophytic bacteria alter the homeostasis of 
auxin.41 

Different signaling pathways are involved in producing 
IAA by endophytes thus changing the IAA levels in 
plants. Endophytic bacteria Pantoea alhagi isolated 
from leaves of Alhagi sparsifolia have shown improved 
drought tolerance.42 Wheat plant inoculated with an IAA-
producing fungal endophyte Penicillium roqueforti Thom. 
has obstructed the transfer of Zn, Cd, Ni, Cu, and Pb 
heavy metals.43 Gibberellic acid is crucial in different 
processes notably in seed germination, flowering, and 
elongation of the stem. A gibberellin-producing seed-
borne endophyte Bacillus amyloliquefaciens RWL-1 

Figure 1. Role of endophytic microorganisms in plant growth, stress responses, and biological activities.
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improves rice plant growth and induces regulation of 
endogenous phytohormones.44 Paenibacillus polymaxa and 
Pseudomonas resinovorans from the leaves of Gynura 
procumbens have been found to produce cytokinin-like 
compounds helping in plant growth promotion.45

4.1.2 Nitrogen Fixation
Nitrogen limits the nutritional component in determining 

plant growth. This nutrient is primarily utilised by 
plants and made available through microbial nitrogen 
fixation done by mainly soil bacteria and archaea. It 
serves as a signaling molecule in most biochemical 
and physiological reactions. Nitrate and ammonia are 
preferred sources of nitrogen in plants. Nitrogen-fixing 
endophytes meet the nitrogen demands in the ecosystem. 
Biological N2 fixation is needed to fulfill the demands 
of sustainable agriculture by decreasing the utilisation 
of synthetic-nitrogen fertilizers globally.46,47 The ATP-
dependent nitrogenase enzyme catalyzes the reduction of 
dinitrogen to ammonia. Nitrogenase is sensitive to oxygen. 
Some plant families involved in nitrogen-fixing, transfer 
microbes in lower oxygen modules-they fix nitrogen and 
deliver it to root tissues. Another plant family involves 
endophytic symbiosis consisting of microorganisms that 
inhabit the plant’s internal tissues and go into the soil 
to extend themselves. Mycorrhizal and dark septate 
fungi are responsible for such nutritional symbiosis in 
numerous families of plants.48 Endophytic diazotrophs 
such as Paenibacillus polymyxa strains P2b-2R can 
colonize hosts intracellularly to fix nitrogen, whereas 
in general, it takes several months to fix it.49

 It has been found that endophytic diazotrophs 
Lysinibacillus sphaericus isolated from rice plants play 
an essential role in nitrogen fixation with biocontrol 
activity.50 Gluconacetobacter and Herbaspirillum were 
isolated from the stem of sugarcane and identified as 
probable endophytic nitrogen-fixing bacteria.51 Prokaryotic 
endophytes that establish symbiosis by their capability 
of fixing nitrogen have immense potential in sustainable 
agriculture. In recent decades, nitrogen-fixing free-living 
endophytic bacteria have become research subjects. 
Legume-Rhizobium symbiosis is still studied extensively 
towards enhancing Nitrogen – fixation efficacy through 
plant and bacterial genome manipulation.52

 
4.1.3 Phosphate Solubilisation 

Next to nitrogen, phosphorus (PO4) is the most 
growth-limiting macronutrient. As most phosphorus reserves 
are rock, which is insoluble, it causes a phosphorus 
deficiency in plants.53 Phosphorus has functional and 
structural roles holding great significance. Structurally, 
PO4 is the elementary unit for DNA (deoxyribonucleic 
acid), RNA (ribonucleic acid), and the lipid layer. PO4 
is utilised in the process of phosphorylation shows its 
significant importance in the formation of intermediates 
in different biochemical reactions such as Krebs’s cycle 
and photosynthesis.54 It is also an essential element of 
ATP for cellular energy. Endophytes can facilitate plant 

development by acquiring PO4 or by increasing nutrient 
uptake, stimulating root growth and root hairs.55-57 

Recent studies on bacterial endophytes from Zea 
nicaraguensis have shown that it colonises root hairs 
intracellularly in annual ryegrass (Lolium multiflorum), 
promoting solubilisation of insoluble phosphorus present 
in the rock. It also gave an interesting observation that 
endophytes host specific cells suggesting its target ability 
in only a critical cell type. Host recognition machinery 
is conserved for endophytes despite colonising in two 
divergent evolutionary hosts.58 Bacillus and Pseudomonas 
are important bacterial genera, while Aspergillus and 
Penicillium form the important fungal genera of mineral 
phosphate solubilisers.59

 
4.1.4 Siderophore Production 

Iron is an important element required in diverse 
metabolic cellular pathways. Hundreds of enzymes 
possess iron as a cofactor or heme groups.60 To meet 
the requirements of iron, endophytes secret siderophore, 
a secondary metabolite. Siderophores are those molecules 
designed to produce strong and stable complexes with 
the cooperation of ferric ions. Four different moieties 
form four chemical classes of siderophore; catecholate, 
phenolate, hydroxamate, and carboxylate. When iron 
resources are clustered and bacterial cells are immobile, 
siderophores production is a more beneficial mechanism for 
the uptake of iron.61 A study elucidated that siderophore 
production by bacterial species can suppress pathogenic 
microorganisms by taking away iron in a completion.62 
Gram-positive uptake of iron-loaded siderophore and 
gram-negative bacteria recognising siderophore through 
β barrel receptor in the outer membrane.63 Bacterial 
siderophores exhibit a wide range of functional groups, 
whereas most fungi produce hydroxamate siderophores.64 

Many bacterial and fungal endophytes are reported 
which along with phytohormone production and phosphate 
solubilisation, also synthesize siderophore to provide iron 
to plants. Endophytic bacteria improve the transportation 
of stored iron. Seed endophytes in wheat have been 
reported to enhance bioavailability and iron storage. These 
endophytes are involved in expressing metal tolerance protein 
(MTPs) phytases and ferritins.65 Diazotrophic endophyte 
Herbaspirillum seropedicae induce gene transcripts for 
synthesis and translocation of phytosiderophores and PS-
iron (phytosiderophore-iron) complexes.66 Streptomyces 
sporocinereus OsiSh-2, an endophyte in rice plants, 
showed antagonistic activity against the rice blast-causing 
pathogenic microorganism Magnaporthe oryzae, due to 
iron competition.67 
 
 4.1.5 ACC Deaminase Production 

The ethylene biosynthetic pathway contains a step in 
which S-adenosylmethionine (S-AdoMet) is converted into 
1-aminocyclopropane-1 carboxylate (ACC), the immediate 
precursor of ethylene, by enzyme 1-aminocyclopropane-
1-carboxylate synthase. Biosynthetic pathways regulation 
depends on abiotic and biotic stresses, which regulate 
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plant activities16. Under stress conditions, root and shoot 
growth is severely affected because ethylene endogenously 
regulates plant homeostasis. ACC deaminase-producing 
endophytes degrade and confiscate plant ACC to supply 
energy and nitrogen. Endophytes take up ACC before 
its oxidation and improve plant strain by proficiently 
inhibiting ethylene formation.68 By removing ACC, 
endophytes reduce the detrimental effects of ethylene, 
such as inhibition of nodulation, thus helping them to 
cope with plant stress and promoting plant growth.69 In 
recent research, an ACC deaminase deficient strain of 
endophyte Serratia grimesii BXF1 was transformed by 
acd S gene, leading to overexpression of ACC deaminase 
resulting in amplified growth and nodulation in R. tropici 
CIAT 899, compared to the non-transformed strains.70

4.2 Indirect Beneficial Mechanisms 
Endophytes alleviate stress through bioremediation, heavy 

metal detoxification, phytoaccumulation, phytoremediation, 
and by prompting complete resistance to plant pathogenic 
attack.
 
4.2.1 Bioremediation and Phytoremediation 

Bioremediation is a low-cost, most advanced, and 
effective method of biotechnology that uses different 
organisms in the removal of contaminants and converts 
it into less polluting substances with less impact on 
humans and the environment.71 In recent years, endophytes 
have become an emerging tool for the bioremediation 
of pollutants.72 Pseudomonas putida has been found to 
improve the degradation of crude oil demonstrating its 
potential in bioremediation.73 Chromium-resistant endophytes 
Aspergillus fumigatus, Rhizopus sp., Penicillium radicum, 
and Fusarium proliferatum biotransform it in the soil, 
promoting Cr-stressed Lactuca sativa to maintain its 
growth.74 Mixed cultures of actinobacteria had successfully 
removed chlordane, a pesticide that had adverse effects 
on human welfare and the environment.75

Phytoremediation is an in-situ bioremediation technology 
for highly contaminated soils. Organic toxic contaminants 
are removed by various enzymes secreted by endophytes.76 
During the process of phytoremediation, endophytes 
help to decrease phytotoxicity and evapotranspiration of 
volatile contaminatants.77 In a recent approach of clean-up 
through phytoremediation of Arsenic (As) by As tolerant 
endophytes isolated from Lantana camara, inhabiting the 
contaminated site, were successfully transferred within 
Solanum nigram. Besides increasing bioaccumulation 
of As, it improves plant growth when applied as a 
consortium under As stress.78

 
4.2.2 Production of Bioactive Compounds  

There are largely hidden opportunities in the discovery 
of bioactive compounds with distinct chemical structures 
that evolved in plants. These molecules are crucial in 
communication between organisms, plant adaptation, and 
protection. Acting as natural antagonists, endophytes 

reduce plant-pathogen interactions by competing for 
the nutrient in an eco-friendly manner.79 Endophyte 
produces chemical substances harmful to pathogens in 
the same ecological niche.80 A novel bioactive compound 
harziaphilic acid was isolated from the co-culture of the 
biocontrol agent Trichoderma harzianum and endophyte 
Talaromyces pinophilus F36CF. Eucryphia cordifolia 
harbors an endophytic fungus, Gliocladium sp. discovered 
to produce volatile antimicrobial compounds. One such 
compound characterised as annulene, utilised as rocket 
fuel, brought to light for the first time, produced by 
endophytic fungus.81 Fungal endophyte Nodulisporium 
sp. isolated from Bontia daphnoides has been identified 
as a producer of nodulisporic compounds. These are 
indole diterpenes that possess insecticidal properties 
against blowfly larvae.82 Plants that belong to unique 
environmental settings exhibit unusual biology, that is 
endemic, and grow in areas of rich biodiversity, may 
harbor endophytes that produce novel and unique bioactive 
compounds to combat environmental stress.
 
4.2.3 Biocontrol  

The Association of plants with microbes can be 
pathogenic, associative, symbiotic, or naturalistic and protect 
them from herbivores and insects. Several metabolites 
like flavones and flavonoids are produced in response 
to microbial adhesion to the root surface which also 
possesses antimicrobial properties, suggesting their role 
as a biocontrol agent. As a defense measure, it secretes 
a variety of signaling molecules.83 

Endophytes can upregulate jasmonate pathways and 
salicylic acid (SA) and, ethylene thus reducing stress, 
disease severity, and protection from herbivores and 
insects.84 The induced systemic response restricts pathogen 
entry and increased the expression of pathogen-related 
proteins and phenolic compounds.85 Most endophytes, 
rhizospheric bacteria belonging to genera Bacillus and 
Pseudomonas, can be effective agents of biocontrol. A 
wide variety of lipopeptides produced by endophytes 
results in leakage in fungal hyphal membranes transforming 
them into inefficient and avirulent pathogens of plants 
thus inducing a ‘quorum-quenching effect.86-87 Ambuic 
acid, produced from the endophytic fungus Pestalotiopsis 
microspora was active against several Fusarium and 
Pythium species88. Fungal endophytes of Populus alba 
L, confer resistance to trees from Venturia tremulae 
Aderh., which causes dieback in trees.89 Pseudomonas 
putida PICP2 and P. fluorescens PICF7 are environment-
friendly.90 Lime leaves showed complete control against 
citrus canker.91 Curtobacterium, an endophytic bacteria 
found in maize, soybean, strawberry, and grapevine can 
act by stimulating plant resistance and phytoremediation.92 

Further studies in conferring resistance to cacao 
plant by endophytes showed an increase in phytoalexins 
such as  cyclohexene,  2  methoxy-guaiacol ,  and  
2, 3, -dihydrobenzofuran.93 Another remarkable finding 
suggests that horizontal gene transfer of resistant genes from 
endophytic fungi might provide resistance to phytopathogens. 
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Flat gene transfer of Fhb7 from endophyte Epichloe 
species to Thinopyrum elongatum, confers resistance 
against Fusarium. Fhb7 detoxifies trichothecenes via  
de-epoxidation and its introgressions in wheat provide 
confrontation to fusarium head blight and crown rot.94

 
4.2.4 Plant Stress Tolerance 

Endophytes are extensively studied for their involvement 
in various stresses. Extreme heat, solar UV radiation (280-
315nm), metal pollution, and frequent droughts drastically 
affect plants.95 Abiotic stresses trigger the formation of 
hydroxyl radicals, superoxides, and hydrogen peroxides 
belonging to reactive oxygen species and significantly 
cause oxidative destruction to plant cell membranes, 
proteins, and nucleic acid. The q-PCR finding shows 
that the initial steps of bacterial colonisation triggered 
the upregulation of glutathione reductase and superoxide 
dismutase gene. This may reduce the destruction caused 
by oxidative stress in plants induced by pathogen ROS 
production. 

Endophytes have the potential to reduce stress by 
altering the metabolism of plants. Endophytes induce cold 
resistance and produce related compounds to combat the 
adversity (like starch, proline, and phenolics) caused inside 
the plant.96 Several other mechanisms include alteration in 
phytohormonal activity, production of volatile compounds, 
secondary metabolites, antioxidants, enhancing ACC 
deaminase activity, and production of osmolytes. It causes 
alteration in root stress morphology and helps the plant 
to adapt to various stress conditions.97 The production of 
exopolysaccharides plays a vital function in water stress 
conditions or excessive salt concentrations in soil.98-99 

Endophytic fungus Epichloe coenophiala residing in 
Festuca arundinacea (Tall fescue grass) was found to 
have a higher amount of osmoprotective mannitol and 
some antioxidant conferring resistance to plants under 
oxidative stress.100 Piriformospora indica a fungus, induces 
stress in many plants.101 The upregulation of drought 
defensive genes DREB2A, CBL1, RD29A, and ANAC072 
is induced due to endophyte in Chinese cabbage treated 
with polyethylene glycol.102 

5. 	 CO-CULTURE OF ENDOPHYTIC MICROBES 
FOR THE PRODUCTION OF NOVEL BIOACTIVE 
COMPOUNDS AND EPIGENETIC MODIFIERS 
Genomic sequencing of some endophytic fungi 

revealed that these organisms have certain secondary 
metabolites encoding gene clusters, some of which fail to 
express themselves under standard laboratory conditions. 
Some novel bioactive compounds can be isolated by 
co-culturing two or more endophytes where they trigger 
the silent gene clusters or by using specific elicitors. 
The growth of various fungi can be co-cultured with 
other endophytic organisms.103 Two endophytic strains 
Talaromyces purpureogenus H4 and Phanerochaete sp. 
H2, isolated from Handroanthus impetiginosus leaves 
were able to produce meroterpenoid austin displaying 
trypanocidal activity.104 

Some researchers have shown that the presence 
of endophytes reduces plant death to a great extent 
from pathogen attacks. Hydroxyl oxylipins are produced 
by the genes pvlox1 and pvlox2 of fungal endophyte 
Paraconiothyrium variable having lipoxygenase activity. 
The heterologous expression of the pvlox2 gene produces 
the PVLOX2 enzyme responsible for the production 
of 13 HPODE (13-hydroperoxy 9,-11-octadecadienoic 
acid). Upon interaction in dual culture with Fusarium 
oxysporum, pvlox2 levels were upregulated and none of 
the F. oxysporum genes varied. The induced expression 
of the beauvericin synthase gene in F. oxysporum leads 
to an increase in beauvericin level which inhibits P. 
variable growth. P. variable biotransforms this mycotoxin 
and decreases the amount in the interaction zone. It 
allows the expansion of endophytes in plants. Further 
planta interaction studies on Arabidopsis thaliana show 
that the P. variable has reduced the death caused by 
F. oxysporum to 85 per cent when present before the 
pathogen attack.105

Epigenetic modifiers are small molecule elicitors 
that encourage the synthesis of particular specialised 
metabolites. These elicitors cause a change in the proteins 
that package DNA into nucleosomes, forming chromatin 
structures. Histone acetylation and DNA methylation are 
two mechanisms by which epigenetic modifications are 
controlled. The processes involved in DNA methylation, 
posttranslational modification of histones, and non-
coding RNAs have a significant role in the physiology 
and maintenance of homeostasis in plants, animals, and 
microorganisms.106 

The formation of inappropriate quantities of compounds, 
and reduced ability or attenuation of endophytes to 
manufacture the compound is a significant challenge when 
grown in lab culture. This drives the findings of small 
chemical elicitors which stimulate epigenetic modifications 
in endophytes to actively induce the expression of silent 
gene clusters.107 The biosynthetic gene cluster of fungi 
is often placed in the distal region of chromosomes 
where these epigenetic changes regulate genes. Small 
molecule inhibitors of histone deacetylase (HDAC) and 
DNA methyltransferase (DNMT) are effective in the 
production of metabolites by fungi.108,109 Some of the 
compounds induced by epigenetic modifiers involving 
the treatment of fungi have been listed in Table 2.

6.  GENE EXPRESSION STUDIES IN PLANT 
GROWTH PROMOTION BY ENDOPHYTES
Gene expression studies are beneficial tools in the 

context of understanding and comparing the responses of 
an organism with its environment. Hybridisation-based 
microarray to RNA sequencing is a powerful approach to 
detecting the role of endophytes in inducing tolerance. 
A study with endophyte Herbaspirillum seropedicae 
revealed that 255 genes were differentially expressed, 59 
of which were stress related. These genes were related to 
secondary metabolite production, hormone signaling, cell 
wall synthesis, proteolysis, PR proteins, and peroxidases. 
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Gene transcripts help in cell wall synthesis, cell 
motility, and nitrogen fixation, and were mostly expressed in 
endophyte H. seropedicae.66 High expression (upregulation) 
of spP5CS1 and spP5CS2 genes were recorded, which 
involved proline acquisition in sorghum leaves in drought.119 
Studies of gene expression were done to analyse the 
protective activity of endophyte Serendipita vermifera 
against Bipolaris sorokiniana infection in barley root 
tissue. The investigation leads to the finding that S. 
vermifera identifies modification done by the pathogen in 
the plant and resulted in the upregulation of detoxification 

and redox homeostasis-related genes. Genes that encode 
CAZymes (Carbohydrate-Active Enzymes) and presumed 
effectors were induced significantly, while genes encoding 
secreted proteins were found to be suppressed in B. 
sorokiniana.120 Endophytic Fusarium sp. induces the 
gene involved in protein degradation by ubiquitin 
mediation.121 For Cd and Ni stress, the most relevant 
genes, like OsGST and OsMPT1, were studied for gene 
expression in rice plants treated with endophytes. The 
OsGST expression was highly upregulated and lowered 
in treated inoculated plants.122

Endophytes Epigenetic modifiers    Mode of action Induced compound Reference

Penicillium concavoradulozum 
VE892 Quercetin

Inhibition of HDAC of 
classes III, Inhibition of 
protein kinases, inhibits 
DNA topoisomerases, 
and regulates gene 
expression

vinblastine 110

Lophiotrema sp. F6932, 
Muyocopron laterale F5912, 
and Colletotrichum tropicicola 
F10154

5-azacytidine and 
suberoylanilide hydroxamic 
acid (SAHA)

DNA methyltransferase
Inhibition and 
deacetylases inhibitor

palmarumycin C8 and five novel 
compounds; palmarumycin 
CP30, muyocopronol A-C, and 
tropicicolide

111

Macrophomina phaseolina sodium valproate Histone acetylation

3-acetyl-3-methyl dihydro-furan-
2(3H)-one (3) and methyl-2-
(methyl-thio)-butyrate (4), plus 
volatile chemicals: butylated 
hydroxtoluene (BHT), di-methyl-
formamide, 3-amino-1-propanol, 
and 1,4-benzenediol, 2-amino-1-
(O-methoxyphenyl) propane.

112

Aspergillus fumigatus (GA-L7) Valproic acid Inhibition of HDAC of 
classes I and II fumiquinazoline C 113

Co-culture of Chaetomium sp. 
and bacterium Bacillus subtilis

Suberoylanilide hydroxamic 
acid

Inhibition of HDAC of 
classes I and II isosulochrin 114

Pestalotiopsis crassiuscula 5-azacytidine Inhibition of DNA 
methyl transferase

4,6-dihydroxy- 7-hydroxymethyl-
3-methoxymethylcoumarin 115

Penicillium herquei 5-aza-2- deoxycytidine Inhibition of DNA 
methyl transferase. ɑ-pyrone derivatives 116

Co-culture of endophytic 
fungus Phomopsis sp. XP-8 
and resveratrol-producing 
Alternaria sp. MG1 spores

Ethanol, sodium butyrate Inhibition of HDAC of 
classes I and II

pinoresinol, pinoresinol 
monoglucoside, pinoresinol 
diglucoside

117

Dimorphosporicola tragani 
CF-090383

5-azacytidine and valproic 
acid, XAD-16 resin

Inhibition of DNA 
methyl transferase, 
Inhibition of HDAC of 
classes I and II, XAD-16 
resin-unknown

Mycotoxin dendrodolides and 
fatty acid synthesis inhibitor, 
cerulenin (in presence of XAD-
16 resin)

118

Table 2. Compounds induced by epigenetic modifiers through treatment of fungi
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7.  ROLE IN HERBICIDE RESISTANCE AND 
INSECT CONTROL
Xenobiotics and pesticide degradation by microorganisms 

is an adaptation that uses metabolic activities to survive 
in an adverse environment.123 Microbial biotransformation 
of herbicides by oxidation, reduction, bond cleavage by 
lyases, and hydrolytic reactions has been described in many 
studies.124-126 Endophyte Pseudomonas putida POPHV6, 
harboring inside the tissue of poplar, has been shown 
to cause the vanishing of 2,4-D from soil and decrease 
its translocation.127 Endophytic bacteria also play role in 
the detoxification of glyphosate and s-triazine atrazine 
pesticides in soil application.128,129 Endophytic bacteria 
Burkholderia xenovorans producing protein BphKLB400 
imparts the potential to bioremediate several pesticides. 
BphKLB400 shows a similar sequence to glutathione 
transferases (GSTs) involved in xenobiotic compound 
detoxification and catalyze dechlorination reactions.130 
Microbial endophytes in many wild types of grass and 
weeds contribute to herbicide resistance which may cause 
a global problem.

Numerous research works elucidate the involvement 
of endophytes in insect control. Endophyte-colonised 
grasses show higher resistance to insects and produce 
biologically active alkaloids which interfere with the life 
cycle of insets. Endophytic fungus Beauveria bassiana 
has caused the death of mycoses insects in the banana 
plant when inoculated in rhizome.131 Another finding 
suggested that the endophytic fungus Chaetomium globosum 
inhibited root-knot nematode.132 Insecticidal activity has 
been reported against Spodoptera littoralis, a polyphagous 
insect by endophyte Sarocladium strictum, isolated from 
Cyanchum acutum.133

 
8.   GENETICALLY MODIFIED ENDOPHYTES

 Modifying the endophytic genome can be a more 
suitable strategy rather than manipulating the host 
plant genome.134 In a recent study, it has been found 
that a genetically engineered strain of Pseudomonas 
sp. 102515, harboring an expression plasmid showed 
increased yield in the amount of a carotenoid, zeaxanthin 
diglucoside than its wild type.135 To control insects, 
bacterial endophyte Clavibacter xyli was genetically 
modified to express endotoxin.136 To protect against 
Bombyx mori, endophyte was genetically modified for 
biocontrol against Fusarium, and Pseudomonas putida 
to reduce the fungal population.137

 
9.   LOSS OF ENDOPHYTIC SYMBIONTS

 It has been found that symbiotic microbes may 
disappear in domestication and long-lasting cultivation. 
Using inorganic fertilisers, pesticides, and fungicides harms 
the endophytic population. In an investigation, seven years 
of continuous cultivation and seed cleansing of a wild 
variety of tobacco (Nicotiana attenuata) leads to the loss 
of symbiotic microbes and reduced resistance against the 
fungal pathogen of genera Alternaria and Fusarium.138 

The reintroduction of symbiotic microorganisms from 
the wild variety of tobacco confers resistance to some 
fungal diseases. Procuring symbiotic microbes from 
uncultivated plants in cotton helps the cotton seedlings 
to combat stress and diseases more effectively.139 The 
increased level of diseases and pests may be because of 
the eradication of symbiotic microorganisms in cotton 
seeds. Cultivated crops such as maize have been intensely 
transformed, and many beneficial microbes have been 
lost. Modern hybrid maize needs more nitrogen and 
pesticide to enhance productivity than older Indian maize 
or tropical maize- causing loss of endophytes in hybrid 
maize.140 One solution is the reacquisition of endophytic 
microorganisms from their wild-related crops into the 
cultivated crop as treatment of seed.
 
10. 	 CONCLUSION AND FUTURE PERSPECTIVE

  Abiotic environmental stress is a significant limitation 
for worldwide crop development and productivity. Global 
warming and water shortages negatively affect the current 
situation. Endophytes serve as potential candidates for a 
sustainable agriculture system. It is now well-established 
that almost every individual plant inhabiting this earth, 
almost every tissue of the plant, is colonised by one or 
several endophytes. The endophytes should have some 
characteristics to fulfill their requirement to exploit 
themselves in agricultural needs. They must not provoke 
plant diseases, should be culturable, and can colonize 
plants. 

As stated in the review, endophytes have numerous 
roles in benefitting host plants that are impossible 
for a synthetic molecule to provide a wide range of 
positive functions. However, little effort must be done 
to increase the endophyte’s efficiency for developing 
as a powerful tool in agriculture. The current efforts to 
find and implement endophytic microbes in plants are 
the beginning step to improving plant health, enhancing 
productivity, and decreasing chemicals in crop production. 
Thus, the alternative approach is to search for beneficial 
plant microbial symbionts that provide tolerance to 
significant environmental stress. Genetic manipulation in 
the endophyte’s genome can be an alternative strategy 
to confer new desirable traits in it to improve plant 
growth promotion. 

In the last 50 years, we have witnessed uncontrolled 
pesticides, herbicides, and chemical fertilizers in agricultural 
applications. We are not only introducing new selection 
pressure on weeds, pests, and pathogens but also on beneficial 
symbiotic microbes and endophytes. Many efforts must be 
done to the identification of more beneficial endophytes 
and cropping techniques that do not harm the diversity 
of endophytes. Identifying endophytes that can be used 
as bioinoculants, bio-fertilisers, and biopesticides with 
specific inoculum concentrations should be prioritised. 

Along with chemical pesticides, formulations of 
sprayable endophytes can be developed for effective 
integrated pest management. Enhancement in industrial 
production by increasing the performance of culture 
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bioreactors at the lab scale must be executed. Suitable 
candidate strains must be screened by in vitro and in vivo 
testing for biomass production and commercialisation as 
potential biocontrol agents. Advanced progress in ‘omics’ 
technology such as proteomics, genomics, and metabolic 
engineering must be used with full potential to unravel 
novel pathways and mechanisms behind the biosynthesis 
of bioactive compounds by different endophytes in plants. 
Also, efforts must be made in a proper way to manage 
crops that involve transgenic endophytes. 

In the review, we highlighted functions of microbes 
that have profound applications in the biotechnological 
aspect of agri-businesses. Moving on with current leads 
available, future research must be concerned with the 
identification of suitable kinds of endophytes and addressing 
their potential in field evaluation to give new insights 
for sustainable agriculture.
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