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1.	 Introduction
Venous thrombo-embolism (VTE) is a multifactorial 

blood coagulation disease, which is comprised of two major 
complications Deep vein thrombosis (DVT), and Pulmonary 
embolism (PE), which is potentially fatal. Hypoxic environment, 
especially at high altitudes has been identified as a predisposing 
factor causing thrombosis. The altered physiological response 
at hypoxic conditions favors a pro-thrombotic milieu suitable 
to further accumulate complications like VTE1. In alignment 
with the previous findings, the results demonstrating fibrinogen 
levels and platelet count with respect to hypoxia reported an 
increase in fibrinogen levels, which is reasonable, as it is the 
main component of clot formation.

Insufficient oxygen levels at tissue sites can affect cellular 
respiration and cause hypoxia. On sensing this decline in the 
blood oxygen availability by the carotid bodies, the human 
body undergoes adaptive changes to overcome this stress. This 
includes activation of regulatory proteins by changes in gene 
expression, that may rapidly modulate pulmonary ventilation 
as well as blood circulation, thus promoting survival in oxygen 

deprivation2. There might be several reasons for hypoxia, like 
hyper-proliferation at tumor sites, classical heart and respiratory 
diseases like asthma, ascend to high altitude, and sometimes 
even over-exertion during exercise or physical labor.

In a natural homeostatic balance of the body, the 
hematological parameters maintain an equilibrium between the 
anti-coagulants and pro-coagulating factors. However, hypoxic 
stress exposure can facilitate the activation of the coagulation 
cascade by increasing thrombin generation and simultaneously 
increasing Protein C levels and FVIII-mediated thrombin 
generation3. In vitro and animal model studies have also 
reported hypoxia-induced endothelial dysfunction leading to 
endothelial cell atrophy, impairment in Ca2+ ion homeostasis, 
and a functional disturbance in eNOS (endothelial nitric oxide 
synthase) activation4.

The Hypoxia Inducible Factor (HIF) family of transcription 
factors are the key regulators facilitating induction of genes 
for adaption of the body to hypoxia, as well as during optimal 
environmental conditions5. HIF-1 is a heterodimeric protein 
comprising of two subunits, HIF-1α and HIF-1β (also known 
as aryl hydrocarbon receptor nuclear translocator (ARNT)). 
These protein subunits are members of basic Helix-Loop-
Helix transcription factor superfamily containing a PAS (PER 
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(periodic clock)-ARNT-Sim (single minded)) (bHLH-PAS). 
Five members of this superfamily include, HIF-1a, HIF-2a 
(Also known as EPAS1 gene), HIF-3a, HIF-1β (ARNT) and 
ARNT26. Splice variant of HIF-3a, IPAS (Inhibitory-PAS) is a 
dominant-negative regulator of HIF-1a which revents its DNA 
binding activity7. HIF 1 is a heterodimer of oxygen dependent 
HIF-1a and constitutively expressed HIF-1b. Post translational 
regulation of HIF transcription activity occurs by degradation 
of its subunits under normoxic conditions. However, under 
hypoxic conditions, such degradation does not take place and 
HIF heterodimers enter into nucleus where they bind to HRE 
(Hypoxia Response Element), within the promoter region of 
large number of genes affecting their transcriptional activity. 

There are considerable experimental evidences 
showing that platelets are activated and their adhesiveness is 
increased in healthy individuals upon exposure to hypoxia8. 
In accordance to the increase in P-selectin level, the platelet 
activation biomarker; proteomic profiling of hypoxic platelets 
also revealed differentially expressed Calpain protein levels1; 
Although the heightened platelet activity cannot be concluded as 
the sole factor for thrombotic precipitation, this predisposition 
could be the result of accumulated substrates of coagulation. 
Since, hypoxia enhances platelet aggregation, which is pivotal 
to venous thrombosis, this could be an explanation to the fact 
that venous thrombosis is more prevalent at high altitude 
compared to arterial thrombosis9.

In addition, platelet α-granules are a storehouse of 
key anti-coagulants (like TF, TFPI), pro-coagulant factors 
(Fibrinogen, FV, FVIII and vWF (von Willebrand factor) and 
fibrinolytic proteins) which are responsible for coagulation10. 
Interestingly, platelet count has been shown to decrease on 
exposure to hypoxia, which could be due to increased number 
of platelets being consumed during the process of aggregation8. 
Findings of a longitudinal study reveal that mean platelet 
volume and levels of plasma fibrinogen increase on ascent to 
high altitude11.

MicroRNAs (miRNAs) belong to class of small RNA 
epigenetic regulators which control expression of large number 
of genes by post transcriptional gene silencing. MiRNAs act 
by hybridizing to target mRNA by non-complimentary base 
pairing thus affecting its translation and stability. A single 
miRNA can have multiple mRNA targets12. The degree of 
complementarity between the mRNA and an ~8 nucleotide 
seed sequence within the ~22 nucleotides stretch of miRNA 
which binds to the mRNA determines how the later will be 
silenced; either through translation inhibition or a decrease in 
mRNA levels13. This property of having multiple targets, and 
altering protein expression post-transcriptionally makes it a 
strong candidate for target-mediated expressional study as a 
biomarker for blood coagulation disorders.

This study is an attempt to identify potential miRNA 
candidate list which regulate post-translational mechanism 
of gene expression with response to adaptation to hypoxia 
exposure or under normoxic conditions, as well as regulating 
genes of the coagulation cascade. It also consolidates all the 
available literature into a comprehensive meta-analysis to 
extract essential information from the most relevant findings 
which align with the objectives of the study. The objective 

of the present study was to identify common regulatory 
microRNAs linking Hypoxia and coagulation mechanism. Our 
findings may pave a way for future experimental validation 
of these miRNAs to identify biomarkers of hypoxia induced 
coagulation.

2.	 Methodology
The present study involved meta-analysis and in-silico 

analysis of published data and hence ethical approval was not 
necessary.

2.1 	Meta-Analysis
The meta-analysis was performed conforming to guideline 

laid by Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA)14. A diagrammatic representation of 
the work-flow is depicted in Fig. 1.

Figure 1. Methodology for meta-analysis, following PRISMA 
guidelines.

2.1.1 Data Sources and Retrieval Strategy
Literature search was done for all the studies that reported 

microRNAs in association with VTE, DVT or PE on PubMed, 
Google Scholar and Science Direct (last search was updated 
in October 2020). All the databases were searched using 
common key search terms “microRNA”, “miRNA”, “miR”, 
“venous thrombosis”, “venous thromboembolism”, “deep 
vein thrombosis”, “acute pulmonary embolism”, “pulmonary 
embolism”. A manual search was also done to find relevant 
articles in previously published meta-analysis and reviews.

2.1.2 Inclusion and Exclusion Criteria
Studies were considered as potentially eligible if they 
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showed role of microRNAs in the selected pathophysiology. 
The inclusion criteria for selection of articles were as follows: 
(i) research articles indicating role of microRNAs in VTE, PE, 
APE or DVT, (ii) human studies, (iii) association studies, (iv) 
reports published in English language, (v) full view articles. 
The excluded studies consisted of reviews, previous meta-
analysis, duplicate entries, studies on patients with other co-
morbidities, non-heterogenous population studies, and studies 
without proper sample details.

2.1.3 Study Selection and Data Extraction
The articles that met the inclusion and exclusion criteria 

were thoroughly read and manually processed for further 
analysis. The data extracted from the studies included all the 
details that could be inferred from the articles; (a) first author’s 
name, (b) year of publication, (c) location of study population, 
(d) sample size, (e) average age, (f) type of cases and controls, 
(g) source of sample, (h) method of diagnosis, (i) microRNA(s) 
(j) fold change, (k) p-value, (l) area under curve (AUC), (m) 
95 per cent CI, (n) sensitivity, (o) specificity, and (p) standard 
error.

2.1.4 Statistical Analysis
The statistical analysis of the study was done using Graph 

pad Prism (5.0) and Comprehensive Meta Analysis Version 3.0 
software. The data extracted was analysed for association of 
microRNAs in VTE and associated complications of DVT and 
PE by following fixed model effects study after plotting the 
Forest plot of the data. The study groups were also assessed 
for heterogeneity, effect size and 95 per cent CI, and 2-tailed 
test of null.

2.2	 In-silico Analysis
2.2.1 Candidate Gene Selection

Second objective of the study was to identify microRNAs 
involved in coagulation under hypoxic environment. We 
enlisted 5 hypoxia inducible factor (HIF) family genes as well 
as genes involved during coagulation, considering only the 
intrinsic and extrinsic pathway using KEGG pathway database 
(https://www.genome.jp/kegg/pathway.html).

2.2.2 Data Sources and Retrieval
MiRNA targets were retrieved for genes of HIF family 

and coagulation pathway from 3 reliable and highly cited 
databases–miRWalk (http://mirwalk.umm.uni-heidelberg.
de/)15, miRNet (https://www.mirnet.ca/)16, and miRTargetLink 
Human (https://ccb-web.cs.uni-saarland.de/mirtargetlink/)17 

without setting up any filters. A vast network data was obtained. 
Each retrieved dataset from different databases were compiled 
together and the results were then filtered for any pre-mature 
miRNAs and repeated entries.
2.2.3 Inclusion Criteria

The data was filtered again exclusively for miRNAs 
targeting genes of both the HIF family and coagulation pathway. 
The data was re-organised by sorting the candidate miRNAs 
with respect to the types and number of targeted genes. This 
helped us to prioritise the miRNAs targeting most genes of HIF 
family and coagulation pathway.

2.2.4 Target Identification
We thus obtained a list of candidate miRNAs targeting 

genes of both the HIF family and coagulation pathway. To 
validate that these miRNAs are non-ubiquitous in expression, 
thereby specifically target genes associated with hypoxic 
adaptation of the body, hemostasis and associated pathways 
simultaneously; a similar yet opposite approach was 
implemented on the same previously cited databases to extract 
details of miRNAs for their target genes.

2.2.5 Target Validation
To confirm that the target gene list predominantly regulated 

hypoxia associated coagulation cascade by manipulating major 
biological pathways that assisted the process of thrombus 
development, the obtained target gene list was categorised 
according to their ontology and regulated biological pathways. 
This sorting was performed on ShinyGO18 and Panther 
database19. A diagrammatic work-flow of the methodology is 
presented in Fig. 2.

Figure 2. 	 Diagrammatic representation for the work-flow of the 
in-silico study.

3.	R esults
3.1 Meta-Analysis

During meta-analysis, a total of 69,051 studies were 
extracted as an outcome of search through PubMed, Google 
Scholar and Science Direct database. Out of these, 68,901 
publications were excluded, among which 60,801 were 
duplicate records, 7,137 were non-relevant studies, 963 were 
studies without control subjects or pre-existing medical 
conditions, 134 were studies on animal models and studies with 
other diseases as controls. In the final selection for qualitative 
analysis, a total of 150 studies were included and scrutinised 
for details of patients. Studies with insufficient information 



20

Hembrom, et al.: Def. Life SCI. J., Vol. 7, No. 1, january 2022, DOI : 10.14429/dlsj.7.17185

were excluded and a total of 16 studies were included for final 
quantitative synthesis among which 8 studies having complete 
information were selected for statistical analysis. These studies 
established the role of miRNAs in promoting VTE, DVT and 
PE development under normoxic conditions. Among these 
studies miR-32020-22 miR-19523,21,24 and miR-13425-26 were 
found to express most frequently in patients.

The final results of the meta-analysis include statistical 
analysis of results of eight research articles that had all the 

Figure 3. Forest plot analysis of the selected studies in a fixed effect model.

Figure 5. Funnel plot of standard error by mean.

Figure 4. Funnel plot of standard error by mean.

relevant details needed for the study. Details of the included 
studies are described in Annexure I. These studies were 
published between the year 2011 and 2020, and the population 
under study was mainly from China. All the included studies 
showed a comparison between the patients (APE, PE or DVT) 
and healthy controls. The sample used for estimating miRNA 
levels was Peripheral blood mononuclear cells (PBMCs), 
serum or plasma. 

The statistical analysis of the eight studies and 
their relative weight for the forest plot point estimate 
of the averaged studies lies far right to the line of 
null effect, depicting the all the included studies 
showed an association of miRNA in the subjects, 
with the fixed model averaged mean value of 0.77 
and standard error 0.014 (Fig. 3). This was also 
later confirmed by the effect size and 95 per cent CI 
value point size estimate of 0.77. The Funnel plot of 
standard error by mean showed some asymmetry in 
the data, however this small study effect might be 
due to chance alone (Fig. 4). The statistical analysis 
of the study data also rejected the null-hypothesis 
by 2-tailed test Z-value of 54.462. The test for 
heterogeneity Q-value and I2 value was 43.466 and 
74.683, however these large variations might be 
within the study subjects within the selected study 
groups (Annexure II). 

3.2 In silico Analysis
In the in-silico analysis, the study for miRNAs 
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Table 1. 	O ther candidate miRNAs list prioritized on the basis of 
number and type hypoxia and coagulation pathway genes 
regulated by them.

MicroRNAs HIF Family 
Genes Coagulation Pathway Genes 

miR-5698
miR-4633-3p 
miR-504-5p 
miR-6782-5p 
miR-6893-5p

ARNT, ARNT2, 
HIF1A, HIF3A

F2, F3, F8, F9, F11, F2R, F2RL1, F2RL2, 
F2RL3, FGB, PLAT, PLAUR, PROCR, 
TFPI, PLG, PLGLB1, PLGLB2, THBD, 
CPB2, KNG1, KLKB1, SERPINA1, 
SERPINE1

miR-6510-5p ARNT, HIF1A, 
HIF2A, HIF3A

F13B, F2RL2, F5, F8, F9, FGA, FGB, 
KNG1, PLGLB1, PLGLB2, PROCR, PROS1, 
SERPINA1, SERPINE1

miR-3157-5p
ARNT2, 
HIF1A, HIF2A, 
HIF3A

F2RL1, PLGLB1, PLGLB2, PROS1

miR-4701-3p ARNT, ARNT2, 
HIF1A, HIF2A

F13A1, F5, FGB, PLAT, PLGLB1, PLGLB2, 
PROCR, SERPINA1, TFPI

Figure 5. 	T he candidate microRNAs (miR-4667-5p, miR-4433a-3p, miR-
6777-3p, miR-6815-3p and miR-6735-5p) and their respective 
targets of hypoxia and coagulation pathway genes.

regulating HIF family genes and that of the coagulation 
cascade under hypoxic conditions was conducted and a 
systematic approach was applied to the predict candidate 
miRNAs whose target genes overlap between regulatory 
networks of blood coagulation and hypoxic adaptation. On 
validation of gene targets of the candidate miRNAs for non-
ubiquitous expression and targets within the interests of the 
aim of study, it was confirmed that the identified microRNA 
candidates of the in-silico analysis specifically regulated genes 
essential for adaptation to hypoxia and associated biological 

pathways. In addition, other associated signaling 
pathways complementing thrombus formation like 
plasminogen activation cascade, and endothelin 
signaling were also predominantly involved.

3.2.1 miRNAs Eegulating HIF Family 
Genes

Under this approach, the five genes of HIF 
family were selected which included, (i)HIF1a, (ii)
HIF2a, (iii)HIF3a, (iv)ARNT and (v)ARNT2. The 
initial database search for miRNAs targeting these 
genes enlisted over 2300 miRNA entries. Enlisting 
of miRNAs was followed removal of pre-mature 
miRNAs and duplicate entries after sorting.

3.2.2 miRNAs Regulating Coagulation 	
	 Pathway Genes

The selection procedure of miRNAs was 
similar as previously described, including all 
coagulation genes, receptors and their mediators. 
Some genes only enlisted a few miRNAs. However, 
all the entries for validated and predicted miRNA 
targets from the three databases were included for 
a total 42 coagulation pathway genes.

3.2.3 miRNAs Commonly Regulating 
     Hypoxia and Coagulation Pathway 	
     Genes 

	MicroRNAs common between HIF family 
and coagulation cascade genes were selected, 
whereas the ones selectively targeting only 
either of the groups were excluded from 
further analysis. After extensive sorting, a 
list of 1445 miRNA entries were registered. 
The data was further grouped on the basis of 
types and number of genes involved in both 
the pathways (Annexure II). This list was then 
prioritised on the basis of most HIF genes 
regulated; this was necessary for candidate 
miRNA selection for miRNA-gene network 
interaction study.

At the end of this comprehensive sorting, a 
panel of 5 prioritised candidate miRNAs including 
miR-4667-5p, miR-4433a-3p, miR-6777-3p, miR-
6815-3p and miR-6735-5p was obtained (Fig. 5). 
Apart from these 5 candidate miRNAs listed, other 
miRNAs which also regulated at least four genes 
of the HIF family and other important coagulation 

pathway genes were also manually extracted during the process 
(Table 1).

3.2.4 Gene Annotation and Pathway 		
Analysis

The target genes of prioritised miRNAs were validated 
by studying gene annotation using ShinyGO database which 
classified the genes into biological processes, molecular 
functions and cellular components. Pathways analysis 
done using Panther database yielded a list of major related 
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Figure 6. 	G ene enrichment and pathway analysis of 5 miRNAs using ShinyGO and Panther database ((A. Line graph showing number 
of genes targeted by miRNAs in selected Biological pathways, B. Histogram of key Biological process, C. Histogram of key 
Molecular functions, D. Histogram showing important Cellular components).

pathways involved in regulatory processes such as maintaining 
homeostasis, response to stress and other multi-organism 
processes (Fig. 6).

An insight into these biological processes particularised 
a diversity of signaling cascades, including special emphasis 
on hypoxia response via HIF activation, coagulation, PDGF 
signaling and plasminogen activation cascade. Complementary 
pathways like VEGF signaling, oxidative stress response and 
endothelin signaling pathway were also regulated. Among the 
predominantly regulated biological processes were regulation 
of hemostasis, response to stress, biological adhesion and 
other multi-organism process and their regulation. Molecular 
functions included transcription/translation regulator activity, 
catalytic and transporter activities. Similarly, cellular 
components like organelle, membrane, cell, protein containing 
complexes and extracellular regions were also regulated  
(Fig. 6).

4.	Di scussion
A conclusive study of meta-analysis of the previously 

published articles reporting role of microRNAs in VTE and 
associated pathophysiology under normoxic conditions was 
conducted. A total of 12 miRNAs; miR-27a/b, miR-320a/b, 
miR-1233, miRNA-134, miR-424-5p, miR-221, miR-136-5p, 
miR-28-3p, miR-374-5p and miR-338-5p and are presented 
as potential candidates to be used as biomarkers for VTE 
diagnosis. These miRNAs have been accounted for critical 

role in thrombosis and showing differential expression levels. 
MicroRNA-134 was validated in patients and controls of acute 
pulmonary embolism (APE), and the expression was found to 
be increased in patients with a fold change of 25.39225. Wang 
et. al studied the expression level of miR-27a and miR-27b in 
148 APE patients. The study reports upregulated expression of 
miR-27a/b with a sensitivity and specificity of 0.792 and 0.7 
of miR-27a and 0.646 and 0.775 for miR-27b respectively27. 
Similarly, Kessler et. al also report an upregulated level of 
miR-1233 in PE patients with a sensitivity and specificity of 
0.9 and 0.92 respectively28. MiR-221 showed a fold change of 
4 in the serum of APE patients29. Wang et. al 2016 included 
the largest number of DVT patients with an miR-424-5p and 
miR-136-5p fold change of 1.87 and -2.22 respectively30. 
MiR-28-3p studied in PE patients of in by Zhou and co-
workers reported a 1.66-fold change while the sensitivity 
and specificity were 0.62 and 0.83 respectively31. Jiang and 
coworkers reported 1.79- and 1.58-fold change in miR-320a 
and miR-320b respectively20. The most recent study conducted 
on DVT patients for deferential expression of miR-338-5p 
and miR-374-5p also report an AUC value of 0.797 and 0.834 
respectively32.

During conditions of physiological stress, such as hypoxia, 
especially at high altitudes, the body is more susceptible to a 
prothrombotic state. Hypoxia triggers the activation of the 
coagulation cascade genes regardless of the physical activity33. 
A number of studies have reported that hypoxia predisposes 
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an individual towards hemostasis. Disturbance of equilibrium 
between pro-coagulants and anti-coagulants may result in blood 
clotting disorders like stroke, DVT, PE. It is a well-established 
fact that HIF regulates a wide variety of genes34 which are 
particularly responsible for body’s adaptation to hypoxia. 
Also, since microRNAs are known as key modulators of gene 
expression and they could be of considerable importance in 
regulating mechanism of HIF genes expression.

In an attempt to establish a common regulatory link 
between hypoxia and coagulation pathway, this systematic in-
silico analysis consolidates a list of microRNAs which overlap 
in function between both the biological pathways. Since 
only a handful of research cite the association of miRNAs in 
hypoxia induced coagulation21, a thorough search of highly 
cited databases like miRWalk, mirTargetLink Human and 
miRNet followed by enrichment analysis yielded a panel of 
five microRNAs, miR-4667-5p, miR-4433a-3p, miR-6777-
3p, miR-6815-3p and miR-6735-5p as potential regulatory 
biomarkers. To further validate the findings of the study, a 
reverse approach was used to find all the target genes and a 
Gene Ontology and biological pathway analysis was done with 
the help of Panther and ShinyGO databases. The findings of 
the study corroborate our hypothesis, as the genes regulating 
major biological processes like hemostasis, biological response 
to stress and adhesion were not ubiquitously expressed. They 
were also shown to regulate biological pathways like blood 
coagulation, hypoxia response via HIF activation, PDGF 
signaling, and thus predominantly facilitated the coagulation 
cascade. Therefore, this study contemplates a thoroughly 
curated list of microRNAs which regulate both hypoxia and 
coagulation pathway, including associated supporting pathways 
facilitating thrombus formation in hypoxic conditions. The 
predicted miRNA candidates may be further used as reference 
to extrapolate these findings in cell lines and animal models. 
This shall implicate their role as diagnostic biomarkers and 
therapeutic targets for blood coagulation mechanism under 
normoxic and hypoxic conditions.

Present study gives two separate miRNA panels and did 
not find any common miRNA between the two panels suggested 
for blood coagulation under normoxic and hypoxic conditions. 
A few review reports have previously emphasised upon the 
role of miRNAs as diagnostic biomarkers in VTE35. However, 
in addition to the previous findings, our study simultaneously 
conducted an in-silico analysis and a meta-analysis to infer all 
the candidate miRNAs that have been previously studied in 
association with VTE, DVT and PE under normoxic as well as 
hypoxic environment conditions.
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