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1.  IntroductIon
Calpain (EC 3.4.22.17) is well known calcium regulated 

cysteine proteases1. Skeletal muscle expressed three members 
of this family, specially the ubiquitous m- and μ-calpains and 
the muscle-specific p94 calpain (also consider as calpains-1, 
-2, and -3)2. Calpains are calcium dependent proteases and 
once the intracellular calcium concentration increases inactive 
calpains which are usually located in cytosolic compartment, 
translocate to the cell membrane and converts into the active 
form.

A wide plethora of roles have been proposed for these 
proteases, extending from cellular survival and apoptosis2. 
Calpain have imperative role in numerous physiological 
operations such as cell proliferation, differentiation, apoptosis, 
membrane attachments, migration, cytoskeleton, aging and 
signal transduction pathways4-5. In contrary, enhanced calpain 
activity contributes in different pathologies too. Increased 
mRNA levels of calpain were observed in AH-130 hepatoma, 
skeletal muscle of animals6. Few other studies also exhorted 
the role of over-expression of muscle calpain of tumor-bearing 
rats which were treated with sorafenib7. Beside this cancer 
suffered patients showed both type of response either increased 
or unchanged calpain level7,8. Recently, upregulation of calpain 
activity have been observed in hypobaric hypoxia induced 
skeletal muscle atrophy8,9.

Calpeptin is a drug which specifically inhibits calpains10 
and reported  to be beneficial for several cancers11-15, inhibits 
pulmonary fibrosis16, thromobosis17 and cardiac hypertrophy18. 
Even then, till date no study explains the impact of calpeptin on 
hypobaric hypoxia induced skeletal muscle loss. Furthermore 
previous studies reported its role in control mechanical 
ventilation (CMV) induced muscle atrophy19.

Since calpain activation has been reported as one of the 
proteases involved in hypobaric hypoxia induced muscle 
protein loss, the present study evaluates the role of calpeptin in 
amelioration of skeletal muscle damage. 

2.  MaterIals and Methods
2.1  experimental design
2.1.1 Animals

Male Sprague-Dawley rats, 150± 20 g were maintained 
in the Institute’s animal house facility under controlled 
conditions (25±1 °C, humidity 55±10 % with 12-h dark- light 
cycle). Animals had water ad libitum and access to standard 
rodent pellet feed. The approval of the Institutional Animal 
Ethical Committee (IAEC) was obtained for performing the 
study, and the experiments were performed in accordance with 
the regulatory guidelines of IAEC and conformed to National 
Guidelines on the Care and Use of Laboratory Animals, India.

2.2  hypobaric hypoxia exposure
Animal decompression chamber (Decibel Instruments, Received : 18 September 2017, Revised :  05 March 2018 
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India) was used to provide simulated high altitude exposure 
to animals. The pressure was maintained at 282 torr (that is 
equivalent to 7620 m altitude and 8 % oxygen) at 25 °C for 
hypoxic group and humidity controlled at 50±5 per cent. 

Twenty animals were taken and divided into following 
groups (n=5) each:

Group I: Control group maintained in normoxic condition• 
Group II: Calpeptin alone (50 μg/kg body weight; • i.p.)
Group III: Hypobaric Hypoxia exposure  • 
Group IV: Hypobaric Hypoxia exposure + pre-treatment • 
of calpeptin (50 μg/kg body weight; i.p.)
Hypobaric hypoxia exposure was given at 25,000 ft 

for 6 h. Calpeptin was prepared in 0.1 per cent dimethyl 
sulfoxide (DMSO) in saline and Calpeptin (50 μg/kg body 
weight) was administered intraperitoneally 30 min prior to HH 
exposure. The dose of calpeptin was selected based on earlier 
references indicating its protective effects in various diseases20-

21. Once exposure was completed, rats were sacrificed using 
sodium pentobarbital (50 mg/kg, i.p.) and hind limb skeletal 
muscles were excised and used for different biochemical and 
histopathological analysis, thereafter the tissues were stored 
immediately at −80 °C for further use. 

3.  bIocheMIcal assays and 
hIstoPathologIcal analysIs
Skeletal muscle tissue was homogenised in 0.154 M 

KCl-EDTA buffer for biochemical estimations and 4 per cent 
formalin was used for fixation of muscle for histopathological 
analysis.

4.  oxIdatIve stress related MarKers 
reactIve oxygen sPecIes
free radical generation was determined by fluorometeric 

method using 2,7-dichlorofluoroscein diacetate DCfH-DA22. 
DCfH-DA, a nonfluorescent lipophilic dye, passively diffuses 
via cellular membranes which were cleaved by intracellular 
esterase and formed 2,7-dichlorofluorescein (DCf). further, 
DCF reacts with reactive oxygen species (ROS) and produce 
‘fluorescein’ that is highly fluorescent which was readable at 
wave length 485 nm (Ex) and at 530 nm (Em). 

4.1 thiol content  
Primary defense system is operated by thiol content and 

its oxidation is considered as oxidative stress in the body. 5, 
5′-dithiobis (2-nitrobenzoate) (DTNB) is used to estimate 
total SH-groups (T-SH), non protein SH-groups (Npr-SH) and 
protein bound SH-groups (Pr-SH)23. For quantitation of T-SH, 
homogenate aliquot (0.125 ml) was added with incubation 
medium (0.375 ml) (100 mM KCl, pH 8.0, 40 mM Tris, 2 mM 
EDTA), followed by DTNB (25 μl) was added, incubated at 
37 ̊C for 30 min and centrifuged at 2500 rpm for 10 min. Np-
SH was quantified after addition of homogenate (0.5 ml) to 
H2O (1.75 ml) and trichloroacetic acid (50 %) (0.25 ml). After 
centrifugation, DTNB (25 μl ) and 0.4 M Tris (1 ml and pH 
8.9) were added to supernatant (0.5 ml ) and incubated for 5 
min. Yellow colour formazan was formed which was estimated 
at 412 nm. GSH was used as a standard.

5.  oxIdatIve ProteIn daMage 
MarKers ProteIn carbonyl 
content 
Protein carbonyl reacts with 2, 4 dinitrophenylhydrazine 

and form Schiff base to produce the corresponding hydrazone, 
and analysed spectrophotometrically24. Muscle tissue was 
homogenised in ice cold phosphate buffer (pH 7.2) and then 
centrifuged at 10,000 Xg for 15 min. The supernatant (200 μL) 
was added with 600 μL 10 mM 2, 4-dinitrophenylhydrazine 
(DNPH) and incubated for 1 h at room temperature. Further, 
protein precipitation was done with equal volume of 20 per 
cent TCA and was washed with 3times with ethanol/ethyl 
acetate (1:1 v/v). Finally, the precipitate was dissolved in 400 
μL of 6 M guanidine hydrochloride (pH 2.3), and centrifuge to 
remove insoluble debris. Absorbance at 360 nm was measured 
for DNPH derivatives.

5.  advance oxIdatIon ProteIn Product 
One of the relevant markers for oxidant induced 

protein damage is advance oxidised protein product. 
Spectrophotometeric method of Witko-Sarsat25, et al. was used 
for advance oxidation protein product (AOPP) estimation 
and chloramine T was used as a standard. The muscle was 
homogenised in 0.154 M KCl-EDTA and was diluted 1:5 with 
phosphate-buffered saline (PBS), pH 7.4.  200 μL of diluted 
samples were added with 10 μl of 1.16 M potassium iodide 
and 20 μL of acetic acid and absorbance was recorded at 340 
nm immediately.

6.  Pathways of ProteIn degradatIon 
calPaIn assay
Calpains were estimated using N-succinyl-Leu-Tyr-7-

amido-4-methylcoumarin (SLY-AMC), taken as substrate26. 
Buffer solution containing  25 mM HEPES (pH 7.5), 0.1 
per cent CHAPS, 10 per cent sucrose, 10 mM DTT, 0.1 mg/
ml ovalbumin and SLY-AMC, was incubated with muscle 
homogenate at 37 °C for 60 min. Fluorescence of free AMC 
released was observed in fluorimeter at excitation 380 nm and 
emission 460 nm.  

7.  degradatIon of ProteIn 
tryPtoPhan and tyrosIne resIdues
Flourometeric method was used to estimate tryptophan 

content and tyrosine content respectively27-28. Muscle tissue 
was homogenised in ice-cold phosphate buffer (0.1 M, pH 7.4) 
and then centrifuged at 960 g for 10 min at 4 °C. SDS was 
added to sample aliquots. The tryptophan content present in 
solubilised proteins was quantified fluorimetrically at 280 nm 
(excitation) and 345 nm (emission) wavelengths and tyrosine 
content in solubilised proteins was quantified fluorimetrically 
at 277 nm (excitation) and 320 nm (emission) wavelengths, 
respectively.

8.  casPase-9 substrate cleavage assay
Caspase-9, cysteine proteases engage in activating the 

apoptotic cell death machinery. Colorimetric substrate II, 
Ac-Leu-Glu-His-Asp-pNA, Ac-DEVD-pNA (Calbiochem) 
was used to estimate caspase-9 activity29. Muscle tissue 
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was homogenised in lysis buffer (10 mM Tris–HCl 
(pH 7.4), 150 mM NaCl and 1 % Triton X-100). The 
reaction mixture consisted  of 100 mM HEPES–KOH 
(pH 7.3), 10 per cent sucrose, 0.1 per cent CHAPS, 10 
mM dithiothreitol (DTT), 2 per cent dimethyl sulfoxide 
(DMSO), 0.2 mM substrate (Ac-LEHD-pNA) and 200 
μg of protein from the extracts and incubated for 1 h at 
37 °C. The amount of free pNa cleaved by caspases and 
released from the substrate was measured at the wave 
length of 405 nm. The results were expressed as nmol 
p-NA-1 min-1 mg protein-1.

9.  statIstIcal analysIs
The data were reported as mean±SEM. One-way analysis 

of variance (ANOVA) with post hoc Bonferroni analysis 
was used to determine statistical significance among groups. 
GraphPad Prism ver 7.00 software (GraphPad, CA, USA) was 
used for conducting the statistical analysis. The p value of 
≤0.05, with a 95 per cent confidence interval was considered 
significant.

10.  results
10.1 reactive oxygen species (ros) Produced 

acute hypobaric hypoxia Induced oxidative 
stress 
Generation of free radicals could be considered as one of 

the known causes of oxidative stress in cell. Figure 1 shows 
muscle ROS level in response to HH exposure, calpeptin alone 
and HH along with calpeptin. Hypobaric hypoxia exposure 
caused significant elevation in ROS as compared to control 
rats (p < 0.05) and this elevated ROS levels were curtailed by 
pretreatment with calpeptin. While, calpeptin alone treated rats 
showed no-significant change in ROS level as compared to 
control rats.

10.2 acute hypobaric hypoxia alters Intracellular 
thiol content
Cysteine and methionine are the amino acids that contain 

thiol group (-SH group) and these thiol groups have ability 
to undergo oxidation. Total thiol and protein thiol content 
decreased significantly in hypobaric hypoxia exposed animals 

figure 2.  hh-induced oxidative damage via ros generation and 
effect of calpeptin treatment alone or in combination 
with hh in rat muscle. data represents the mean±se; 

n=5. 
aStatistically significant as compared with control (p < 0.05)
bStatistically significant as compared with HH (p < 0.05)

(p < 0.05) which were recovered in calpeptin pre-
treated rats. While no significant changes were 
observed in non-protein thiol content in calpeptin 
alone groups as shown in Fig. 2.

10.3 disturbed oxidative homeostasis 
Induces oxidative Protein Modifications            
10.3.1 Advanced Oxidation Protein 
Products (AOPP)

Advanced oxidation protein products are 
relevant marker for oxidised protein. The results 
indicated a significant higher level of AOPP in 
HH-exposed animals with respect to control 
animals which were recovered in calpeptin pre-
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treated animals (p< 0.05). While, AOPP non-significantly 
increased in calpeptin alone treated animals as compared to 
control animals as shown in Fig. 3(a). 

10.3.2 Protein Carbonyl Content
Protein carbonyl content was also found to increase in 

HH-exposed animals with reference to control animals which 
were ameliorated in calpeptin pre-treated animals (p<0.05). 
However, no-significant changes were observed in calpeptin 
alone treated animals as shown in Fig. 3(b).

10.4 Protein degradation
10.4.1 Oxidised Proteins Lead to Cellular Proteolysis 

and Protein Degradation
Higher degree of oxidised proteins was observed in 

hypobaric hypoxia exposed animals which further led to 
intracellular proteolysis. A significant increase of calpain 
activity was noted in hypobaric hypoxia exposed rats (p< 0.05). 
Calpeptin administration significantly curtailed the hypoxia 
induced increase in calpain activity and, calpeptin alone treated 
rats did not show any adverse effects as shown in Fig. 4.

Aromatic amino acids such as tryptophan and tyrosine in 
the polypeptide chain are highly prone to attack by free radical 
species like ROS, RNS etc. Higher protein oxidation observed 
in hypobaric hypoxia exposed rats resulted into degradation or 
release of oxidised amino acids like tryptophan and tyrosine. 

In the present study, a marginal increase in released 
tryptophan and tyrosine residues were noted in HH-exposed 
animals and no significant change was observed in calpeptin 
pre-treated rats as shown in Figs. 5.

10.4.2 Oxidative Protein Damage and Degradation 
Enhances Apoptosis

A significant increment in caspase-9 activity was observed 
in HH exposed rats (p<0.05). Along with this a decrease was 
also noted in HH exposed and calpeptin treated rats. While 
calpeptin alone treated rats didn’t show any changes in 
caspase-9 activity as shown in fig. 6.

10.4.3 Creatinine Phosphokinase (CPK)
Creatinine phosphokinase (CPK) is a marker of muscle 

damage which was also estimated in skeletal muscle tissue. 
CPK activity was decreased significantly in hypobaric hypoxia 
exposed rats while no significant change was observed in 

calpeptin alone administered rats. Along with this, 
CPK activity was also restored in HH+calpeptin 
pretreated rats as compared to hypobaric hypoxia 
exposed rats as shown in Fig. 7.

 
11.  dIscussIon

Chronic high altitude exposure leads to loss 
of body weight and skeletal muscle atrophy even at 
moderate altitudes.  Upregulation of calpain plays 
a major role for the enhanced protein degradation 
and hypobaric hypoxia induced skeletal muscle 
atrophy. The present study investigated the role 
of calpeptin in the prevention of skeletal muscle 
damage induced by hypobaric hypoxia. 

Reactive oxygen species play a major role 
in hypobaric hypoxia induced oxidative stress 
via mitochondrial electron transport system30. 

figure 3. hh-induced protein oxidation and effect of calpeptin treatment alone or in combination with hh in rat muscle. (a) advance 
oxidized Protein Products (aoPP) (b) Protein carbonyl content. data represents the mean±se; n=5. 

aStatistically significant as compared with control (p < 0.05)
bStatistically significant as compared with HH (p < 0.05)
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Other macromolecules such as protein, lipids and DNA are 
also reported to be damaged due to high altitude associated 
hypoxia31. The previous studies by us and others also reported 
that reactive oxygen species (ROS) was also increased in HH 
exposed rats and that was accompanied by decrease in thiol 
content32-33. The condition is considered as oxidative stress or 
disturbed oxidative homeostasis34.

Disturbed oxidative homeostasis further results protein 
oxidation and our data depicted the same as protein carbonyl 
content and advance oxidised protein products (AOPP) 

increased in HH exposed animals. An increase in 
protein carbonyl residues and advanced oxidation 
protein products (AOPP) are considered as indicator 
of protein oxidative damage35. Further, oxidised 
protein structure leads to modification in amino 
acid residues viz. proline, arginine, and lysine and 
produce increase protein carbonyl content and 
advance oxygen protein products36. Oxidised amino 
acid leads to protein misfolding or unfolded protein 
response (UPR). Disturbed homeostasis and protein 
oxidative modification at high altitude disturb their 
physiological activity, making them highly sensitive 
to proteolysis37. In this respect, several lines of 
evidences suggest that calpain plays a substantial role 
in degrading major myofibrillar proteins. Calpain 
degrades titin and nebulin, major architectural / 
cytoskeletal proteins of the sarcomere which attaches 
to the Z-disk. The removal of oxidised proteins 
through enhanced calpain activation contributes to 
the alleviation of the misfolding load on the cell. 

Thus, the present study was planned to observe 
the ameliorative effect of calpeptin, a calpain 
inhibitor, on hypobaric hypoxia induced skeletal 
muscle damage. The basis of selection of calpeptin 
as preventive measure is because of its restricted 
activity against calpain. Calpeptin is well known 
inhibitor of calpain38-39 and calpain activity could 
be one of the main protease responsible for HH 
induced muscle proteolysis40. Calpeptin is dipeptide 
aldehyde and membrane permeable thus, capable 
of penetrating in the cytosol of the cell. Calpeptin 

binds to the cysteine residue of the active site of the calpain41.
Our data depicted that calpeptin not only inhibited calpain 

activity in HH exposed rats but also able to restore oxidative 
homeostasis to some extent. The exact mechanism for the 
same is still unexplored but it could be due to presence of free 
hydrogen atom in its chemical structure (Fig. 8.) which plays 
role in decreasing ROS and increasing thiol content. Further, 
oxidative protein damage induced by hypobaric hypoxia were 
also found to be decreased in calpeptin treated rats and suggested 
its importance in maintaining oxidative homeostasis.

a a

figure 5. hh-induced increment in oxidized amino acids and effect of calpeptin treatment alone or in combination with hh in rat 
muscle. (a) release of tryptophan, (b) release of tyrosine products.

aStatistically significant as compared with control (p<0.05)
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to endotoxin42. In this respect, we evaluated the activity of 
caspase-9 as it activates caspase-3 and apoptotic signaling 
gets initiated. Our findings suggest the significant decrease in 
caspase-9 activity in calpeptin administered group which has 
been exposed for 6 h of hypoxia as compared to other groups.  
In skeletal muscles, apoptosis is a highly regulated process 
with a subsequent activation of caspase-3 and caspase-9 under 
pathophysiological conditions, so, to counteract the effect 
of apoptosis detailed research is needed with this drug. This 
defence mechanism further suggested its role in decrease in 
protein modification. However, the exact mechanism is still 
unknown. Therefore, further research needs to be done to 
unravel the underlying mechanism in the future.
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